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Abstract— The online generation of trajectories in humanoid
robots remains a difficult problem. In this contribution, we
present a system that allows the superposition, and the switch
between, discrete and rhythmic movements. Our approach uses
nonlinear dynamical systems for generating trajectories online
and in real time. Our goal is to make use of attractor properties
of dynamical systems in order to provide robustness against small
perturbations and to enable online modulation of the trajectories.
The system is demonstrated on a humanoid robot performing a
drumming task.

I. INTRODUCTION

While excellent progress has been made on designing effi-
cient controllers for trajectory following in humanoid robotics,
the problem of generating the trajectories themselves is still
a complex, unsatisfactory solved problem. One of the main
difficulties is that the trajectory generation problem is highly
task-dependent and often requires extensive knowledge of the
task to be solved. Some approaches use hand-coded trajecto-
ries or pre-recorded human trajectories to generate trajectory
templates. Other approaches, e.g. in locomotion control, use
stability criteria to do online trajectory modulation. But most
approaches have significant difficulties when the environment
is dynamic and partially unknown.

In this article, we explore an approach that uses dynamical
systems, i.e. systems of differential equations, for doing online
trajectory generation. See [1], [2], [3], [4], [5], [6], [7] for
related work. Dynamical systems can be designed to have
interesting attractor properties which makes them well-suited
for trajectory generation. These properties include : intrinsic
robustness against small perturbations, low computation cost
which is well-suited for real time, possibility to change pa-
rameters on the fly (i.e. to do online modulation), possibility
to synchronize with external signals, and possibility to inte-
grate sensory feedback terms. A particularity of dynamical
systems is that, instead of encoding a trajectory explicitly,
they encode a whole state space and its time evolution. This
means that the system must be integrated over time to generate
the trajectory (i.e. the trajectory can not be instantaneously
extracted out of the system), and that it encodes more than
just the trajectory, since it also encodes how the trajectory
evolves after a transient perturbation. This property makes
dynamical systems difficult to design (i.e. the problem of

how to encapsulate a trajectory into a dynamical system is
difficult), but at the same time makes them interesting to deal
with dynamic and partially unknown environments (i.e. once a
dynamical system is properly designed, it can be robust enough
to deal with a dynamic environment and to rapidly dampen out
perturbations).

In this article, we address the problem of designing a
dynamical system that can generate trajectories that have
both discrete and rhythmic components, an issue that has so
far received little attention. Typical examples requiring such
trajectories include visually-guided locomotion, e.g. being able
to rhythmically move limbs while making discrete adjustments
for placing the feet at specific locations, and drumming.

While our goal is to apply our dynamical systems approach
to the control of locomotion and movements in general, in this
article we will focus on a simple drumming task. We chose this
task as a starting point because it requires several important
features of movement control, notably timing, synchronization
and accuracy, without being too complex (e.g. no need to keep
balance, avoid obstacles, etc., as in locomotion for instance).
Furthermore it is a good example of movements that require
both rhythmic and discrete components.

Drumming with dynamical systems has been studied before,
for instance to explore synchronization with an external signal
[8] and to learn complex rhythmic patterns by demonstration
[9], but, to the best of our knowledge, not in the framework
of the superposition of discrete and rhythmic movements. The
novelty of the system presented here is inherent to the fact
that the superposition of, and the switching between, rhythmic
and discrete mode is achieved by a single simple system.
The simplicity of the current system allows an easy control
of the different patterns, which will be of crucial importance
when considering autonomous switching between the modes.
However, it is restrictive in the sense that the different possible
patterns of motion are limited, compared to, for instance, the
non linear filtering technique used by Ijspeert, Nakanishi and
Schaal [6].

In our experiment, a Hoap-2 humanoid robot is controlled
to play a given score on a drum set composed of two bongos
and a cymbal. A dynamical system is designed with two
components per degree of freedom of the robot arms : (1)
a discrete system with a single point attractor which generates
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discrete trajectories towards a goal and (2) a rhythmic system
(a nonlinear oscillator) which generates periodic movements of
controlled amplitude and frequency around the discrete trajec-
tories. By transforming the drumming scores into time-varying
parameters controlling the dynamical systems, drumming tra-
jectories can be generated in real time. Couplings between
the different degrees of freedom ensure that the arms stay
synchronized. Interesting properties of the system include :
(1) the fact that drumming trajectories can be generated for
arbitrary drumming scores (i.e. no need to re-design the system
for a given score), (2) the trajectories smoothly superpose,
and/or switch between, discrete and rhythmic behavior, and (3)
the possibility of online modulation of the trajectories. Since
our system is partly inspired from the biological concept of
central pattern generators (CPGs), i.e. neural networks capable
of producing coordinated rhythmic output signals without
rhythmic inputs [10], we will call it a CPG.

In the rest of the article, we will first present the dynamical
system we designed and its properties (Section 2). We then
present the technical setup for the application to drumming
(Section 3). In section 4, we present our results, both theo-
retical and empirical. We conclude by presenting possible
improvements to the system (Section 5).

II. DYNAMICAL SYSTEM

In this section we present our model of the generic CPG
we use to control motion for one degree of freedom (DOF).
First, we present in detail the architecture of the CPG which is
made of discrete and rhythmic primitives and then we discuss
the intrinsic properties of the system that makes it suitable
to generate more complex movements and online trajectories
modulation.

A. Architecture of the CPG

The mechanism of control of a generic CPG is illustrated
on fig. 1. The system is built on the hypothesis that com-
plex movements can be generated through the superposition
and sequencing of simpler motor primitives implemented as
dynamical systems. In particular, our system is made of sets
of motor primitives which implement dynamical goal directed
and also rhythmic movements.

Fig. 1. A generic CPG. Modes of movements are switched on and off by parameters
m and g. Discrete movement is incorporated to the final trajectory as an offset to the
rhythmic movement. Trajectory is modulated by particular choices of m and g.

The CPG for a given DOF i is divided in two subsystems,
one generating the discrete part of the movement and another
generating the rhythmic part. The discrete part is given by the
following system of equations

ẏi = vi (1)

v̇i =
−b2

4
(yi − gi) − b vi (2)

and the rhythmic part by a Hopf oscillator, i.e. by the following
system

ẋi = a
(
mi − r2

i

)
(xi − yi) − ωizi (3)

żi = a
(
mi − r2

i

)
zi + ωi (xi − yi) (4)

where ri =
√

(xi − yi)
2

+ z2
i .

Eqs 1 and 2 describe a discrete motion whose solutions
converge asymptotically and monotically to a goal gi with
speed of convergence controlled by b. As gi is a stable,
globally attractive point, no stability problem will occur for
any value of gi.

Thus, each time gi is changed, the system will be attracted
by the new goal gi and modify the resulting position xi,
generating a discrete movement towards gi (fig. 1).

Eqs. 3 and 4 describe an Hopf oscillator where mi controls
the amplitude of the oscillations, ωi is the oscillator intrinsic
frequency and a controls the speed of convergence to the limit
cycle. This oscillator contains a bifurcation from a fixed point
(when mi < 0) to a structurally stable, harmonic limit cycle
with radius R =

√
mi for mi > 0. The output xi of the

system has an offset given by yi which is the state variable of
the discrete system. For mi < 0 the system exhibits a stable
fixed point at xi = yi.

Rhythmic motion can be switched on or off by simply
setting mi to a positive or a negative value respectively.
Moreover, the amplitude of the movement is specified by mi

and its frequency by ωi (fig. 1).
Thus, by modifying on the fly the gi and mi parameters, the

system can switch between purely discrete movements (mi <

0), purely rhythmic movements (gi fixed), and combinations of
both (i.e. rhythmic movements around time-varying offsets).

As will be described in the next section, the complete system
is made of a network of CPGs coupled together.

III. DRUMMING TASK

A. The Overall Architecture

We use a Hoap-2 robot, which is a 25 DOFs humanoid robot
made by Fujitsu. We control 8 of the 25 DOFs of the robot,
that is 4 DOFs in each arm : 3 in the shoulder and 1 in the
elbow. Figure 2(a) shows a schematic view of the controlled
DOFs of the Hoap-2 robot. From now on, we will refer to the
different joints as L[1], L[2], L[3] and L[4] for the left arm
and as R[1], R[2], R[3] and R[4] for the right arm. The others
DOFs remain fixed to an appropriately chosen value during
the task.

For each controlled DOF, we use the generic CPG presented
in section 2 with the addition of couplings between the CPGs
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(a) (b)

Fig. 2. (a) Schematic view of the controlled DOFs of the Hoap-2 left arm. The
corresponding axes of rotation are also represented, (b) Picutre the real humanoid Hoap-
2 robot sitting in front of 3 intruments : a central bongo, a small bongo and a cymbal
(top view).

Fig. 3. Overall architecture of the system. A score matrix M is translated into a time-
varying control vector α, this vector specifying the parameters of the different CPGs of
the network. Each circle represents a CPG and the arrows represent couplings between
them. By integrating the dynamical system of the different CPGs, we obtained desired
trajectories �x which are transformed in the actual trajectories �̃x by the PID controllers
of the robot.

for different DOFs, as described in subsection III C. The CPGs
network constitutes the controller generating the trajectories
which are used as input for the PID controllers of each joint.

The overall system architecture is depicted in figure 3. A
arbitrary score matrix M is transformed onto a time-varying
parameter vector, �α, that controls the parameters of the CPGs
network that generate drumming trajectories in real time. More
precisely, for each DOF i and for each beat, this vector
specifies the goal gi and the amplitude of the movement,
controlled by mi. Desired trajectories �x of each DOF are
obtained by integrating the CPGs dynamical systems. These
trajectories are used as input for the PID controllers of each
joint and result in the actual trajectories �̃x.

B. Robotic Setup

The robot sits in front of a drum set composed of three
instruments : two bongos and a cymbal, as illustrated on
figure 2(b). The central bongo can be hitten by both arms,
the cymbal only by the left one and the small bongo only by
the right one.

For each CPG of the network, we set b = 20 and a = 100.

Those parameters, which control the speed of convergence of
each system (b for the discrete one and a for the rhythmic
one), were fixed to appropriate values in regard to stability
during the integration process and to feasability of the desired
trajectory. The frequency ω is fixed to π by default with regard
to to motor speed limitations. It can be modified to play the
score faster or slower. The system is conceived to play any
score and we tried 8 different scores. In this article we will
only present the results obtained for the two scores shown
in figure 4, as results were the basically the same for all the
scores.

We will now explain more in details figure 3, and especially
the transformation of a standard score into a time-varying pa-
rameter �α controlling the CPGs network. This transformation
is made in two steps : first, we translate the score into a binary
matrix M , and then, we use a look-up table to assign to α the
values needed to make the robot play this score.

We translate the scores in four rows matrices M , where the
rows stand for, respectively, the cymbal, the central drum for
the left arm, the central drum for the right arm and the small
drum. Thus, the two first rows of M correspond to instructions
for the left arm and the two last ones to instructions for the
right arm. Column elements correspond to a sixteenth note,
which will be our unit of time. We will denote by tj the time
corresponding to the jth column. We set Mi,j to 1 if instrument
i has to be hit at time tj and to 0 otherwise. So, for instance,
the score A will be translated in the following matrix

M =

⎛
⎜⎜⎝

0 1 0 1 ... 0 1
1 0 1 0 ... 1 0
1 0 1 0 ... 0 1
0 1 0 1 ... 1 0

⎞
⎟⎟⎠

Let’s examine in details the rows corresponding to the left
arm. For a given column j (i.e. at a given time tj), we have
three possibilities : the left arm has to hit the cymbal (M1,j =
1, M2,j = 0), the central drum (M1,j = 0, M2,j = 1) or
doesn’t have to hit anything (M1,j = 0, M2,j = 0). Note that
both rows can not be simultaneously equal to one because
that would mean that both instruments have to be hit at the
same time by the same arm. If, for instance, the left arm has
no instrument to hit at a given time tj (i.e. if M1,j = 0 and
M2,j = 0), its posture will not be specified directly by the
score (or, more precisely, by the instrument to be hit). To
overcome this, we anticipitate the movement in the sense that,
if, for instance, M1,j+1 = 1 and M2,j+1 = 0 (i.e. cymbal has
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Fig. 4. The scores we used for the described drumming application.
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CB Cymbal

gL[1] -1.11 -0.95
gL[2] 0.20 0.41
gL[3] -0.26 0.22
gL[4] -1.04 1.31

mL[1] 0.01 0.01
mL[2] -15 -15
mL[3] -15 -15
mL[4] -15 -15

(a) Left Arm

CB SB

gR[1] 1.11 1.14
gR[2] -0.20 -0.17
gR[3] 0.26 -0.34
gR[4] 1.04 0.96

mR[1] 0.01 0.01
mR[2] -15 -15
mR[3] -15 -15
mR[4] -15 -15

(b) Right Arm

Fig. 5. Tables of the values of m and g we used in the experiment.

to be hit at time tj+1), then the arm is set in advance (i.e.
at time tj) upon the cymbal. If no instrument has to be hit a
time tj+1, we try at time tj+2 and so on.

Now, we have to transform the score into the corresponding
trajectories. As ω is independant of the score and will be
externally set, the trajectories corresponding to the score are
specified by only two parameters for each DOF i, i.e. gi and
mi (fig. 1). Matrix M has thus to be transformed onto a time-
varying parameter vector

−→α (t) = [gL[1](t),mL[1](t), ..., gR[4](t),mR[4](t)]
T

, where gL[1] stands for the parameter g for the L[1] DOF at
time t, and so on. This transformation will be achieved by a
function, called f on fig. 3, matching an instrument to be hit
at a certain time ti to the �g and �m values corresponding to
that instrument, those being stored in a look-up table such as
the one shown on fig. 5.

To determine this look-up table, we first parse the motion
in two : the placement of the arm upon the correct instrument
(the discrete part, controlled by �g) and then the beat of this
instrument (the rhythmic part, controlled by �m). To achieve
the placement of the arm, we have to specify for each of the
four joints a target angle (the parameter vector �g in the joint’s
CPG). To define those angles, the robot is manually set in an
appropriate posture for each instrument and then its encoders
are read (see figure 5 for the values we get with Hoap-2,in
radians). For the rhythmic part, only one appropriate DOF,
L[1] here, is required to achieve the beat of the instrument.
This is done by setting the parameter mL[1] to a positive value.
Larger values for m will lead to larger amplitudes of the
oscillation and thus m can be used to control the strength
of the beat. Once this look-up table has been set for a given
drumming setup, it can be used for any score.

C. The Controller Architecture

In the overall, discrete movements are achieved by the four
DOFs of the arm (this implying redundancy, which could be
used to achieve more natural motion) whereas the rhythmic
movement can be achieved by the elbow (L[4]) or by the
shoulder’s DOF generating an up-down movement (L[1]). For
the sake of generality, all DOFs are controlled by the same type
of CPG, that is the discrete and rhythmic system introduced
above (Eqs.1-4 and fig. 1).

In order to ensure synchronization, we couple the different
CPGS toghether. Moreover we add an external clock (see

fig. 3) used as a metronome to provide for a unit of time,
i.e. as an external reference to be synchronized with. This
clock is only coupled to one DOF (L[1]) to avoid oscillations
to be forced in a direct way. We discuss details of the left arm
controller since both arms have similar controller architectures.

We bilaterally couple the Hopf oscillators of the CPGs of the
left arm, those couplings being illustrated by right-left arrows
on fig. 3. We modify eq. 3 and 4 of all the left DOFs as
follows :(

ẋL[i]

żL[i]

)
= . . . + w

∑
j �=i

R(θ
L[j]
L[i])

(
xL[j]−yL[j]

rL[j]
zL[j]

rL[j]

)
, (5)

where rL[j] is the norm of vector (xL[j], yL[j])T. We normalize
the coupled vectors in order to reduce the impact of the
couplings on the amplitude and thus avoid distortion. The
linear terms are rotated onto each other by a rotation matrix
R(θ

L[j]
L[i]), where θ

L[j]
L[1] is the desired relative phase among L[i]’s

and L[j]’s CPGs (i,j=1,2,3,4). In our case, we set it to 0 degrees
as we want all oscillators to be in phase. Coupling strength w

was set to 1 in the experiments. Due to the properties of this
type of coupling among oscillators, the generated trajectories
will stay smooth.

We couple one of the CPG’s rhythmic component with an
external clock (see fig. 3). This clock is an Hopf oscillator
of parameters mclock and ωclock. We use the same type of
coupling than above. The Hopf oscillator of the L[1]’s CPG
was thus further modified as follows :(

ẋL[1]

żL[1]

)
= . . . + wclockR(θclock

L[1] )

(
xclock

zclock

)
(6)

where wclock is the coupling strength and the clock vector
(xclock, yclock) corresponds to the normalized variables of Hopf
oscillator (eqs. 3 and 4). We set the relative phase θclock

L[1] to
0 degrees as we want both oscillators to be in phase. In the
experiments wclock was set to 4, mclock to 0.001 and ωclock to
the same frequency that the other oscillators, i.e. ωclock = π.

As shown on fig. 3, the architecture of the right arm is
similar to the one described for the left arm. Analogously, R[1]
DOF is unilateraly coupled to the clock. There is currently no
connection among arms, so that, if one arm is disturbed by a
perturbation, then the other arm won’t be affected.

IV. RESULTS

Our aim was to build a system able to superpose, and switch
between, discrete and rhythmic modes of movement and easy
to control. In the introduced system, switching between the
modes is controlled by only two parameters, g and m. Indeed,
each time g is changed, a discrete movement is generated and
oscillations occurs only when m is positive. Moreover, those
two parameters allow modulations of the trajectories. In the
results presented here, we set a = 100, b = 20 and ω = 2π.
We solve the equations using Euler integration, with a timestep
of one millisecond.

We first present the behavior of a single CPG without
any coupling. On figure 6, we plot the trajectories obtained
when varying parameters g and m. In part A., both types of
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Fig. 6. Illustration of switch between the different modes and modulation of trajectories
using parameters g and m.

movement are superposed, i.e. discrete movement is a time-
varying offset of the rhythmic movement. In part B., we set m

to a negative value, so that the attractor of the Hopf oscillator
is no longer a limit cycle but a fixed point specified by the
offset, i.e. by g. The resulting discrete trajectory converges
asymptotically to the current value of g. In part C., g is
constant, so that no discrete movement is produced, while m is
fixed to a time-varying positive value, producing oscillations of
amplitude

√
m. Whatever the change is, the system converges

almost immediately to the new solution of the sysem.
For the drumming application, we test the entire architecture

presented on fig. 3 on several scores, to ensure the generality
of the approach. Snapshots of the robot while drumming are
shown on figure 7. We present here the results for scores A
and B (fig. 4). We set the frequency to ω = π in regards with
the motor limitations.

We recorded the trajectories from the joints incremental
encoders (�̃x on fig. 3) and the planned trajectory (�x on fig. 3).

Fig. 7. Snapshots of the drumming robot.

The actual trajectories corresponding to the score A and B
are shown on the upper graph of fig. 8 (left arm) and of
fig. 9 (right arm) respectively. On the middle graph, we have
plotted the difference between the planned and the actual
trajectory, i.e before and after the PID controllers of the robot.
The error being quite small, i.e. about twenty times smaller
than the trajectories, we can conclude that the speed of the
system is well adapted to the motor performance of the robot.
Comparing the errors with the actual trajectory, we can see
that they occurs mainly because of an instrument has been
hit or just after the initiation of a discrete movement. Indeed,
as said before, the discrete system converges asymptotically
towards g, i.e. the movement is really fast in the beginning
and slows down afterwards.

Throughout the score, both arms stay synchronized, as
illustrated by the bottom graph of figs. 8 and 9. We only
plot the trajectory of up and down shoulder DOF for left
and right arm (L[1] and R[1]] resp.), as those are the only
ones producing rhythmic movements. As the orientations of
the axes are opposite for those DOFs, we had to plot the
inverse values for R[1] (this is denoted by the -R[1] or by
-L[1] in the legend of the graphs).

Movies of the robot while drumming and animations done
with Webots are available on our website (birg.epfl.ch).

V. CONCLUSION

In this article, we introduce simple, unique system able
to produce both discrete and rhythmic movements and also
to easily switch from one mode to another or produce a
combination of both modes. In the proposed system, the
resulting movement can be modulated by a simple change of
the parameters of the dynamical systems (�g for the discrete
system and �m for the rhythmic one). Moreover, due to the
properties of dynamical systems, the trajectory will always

Fig. 8. Results for score A. Up : Actual trajectories of the left arm, middle : Difference
between the actual trajectories and the desired one, bottom : Actual trajectories of the
up and down shoulder DOF of each arm.
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Fig. 9. Results for score B. Up : Actual trajectories of the right arm, middle : Difference
between the actual trajectories and the desired one, bottom : Actual trajectories of the
up and down shoulder DOF of each arm.

remain smooth, whatever the change is. The system can
take an arbitrary drumming score and generate the necessary
trajectories for playing it with the robot.

The trajectories are generated online by integrating diffe-
rential equations in real time. This offers several interesting
options such as (1) the possibility to change parameters on
the fly (e.g. the score or the drum set could be abruptly mo-
dified and the system would smoothly change the trajectories
accordingly) and (2) the possibility to include feedback loops
in order to do online trajectory modulation and take external
perturbations into account.

We are currently using those two properties in simulation
(using a robot simulation program called Webots, see [11] for
details). Indeed, we have implemented an inverse kinematics
algorithm to calculate the corresponding angles for a given car-
tesian position. This algorithm is useful to generate movements
towards new cartesian goals. For instance, if an instrument is
moved during the experiment, the system will update the gi

values in the look-up table and smoothly adapt the trajectory
accordingly to the new position of the instrument. Moreover, to
emphasize the possibility online modulation of the trajectories,
we will add in the future a simple interface to allow users to
create a score, so that it could be played by the robot on the
fly.

In addition, we have introduced a feedback loop to enable
us to take perturbation into account. This feedback is based
on the error between planned and actual trajectories and slows
down the system whenever this error exceeds a threshold.

In the drumming application presented here, the type of
movement (discrete or rhythmic) is specified by an external
score. However, in further works, we would like to extend
our system to allow autonomous switches from one type to
another, for instance for obstacle avoidance or foot placement
during locomotion. For this, we will need to introduce a

second level of control in our system, this level specifying
the parameters of the dynamical system and thus the type of
movement produced.
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