
Ball Catching by a Puma Arm: a Nonlinear
Dynamical Systems Approach
Cristina Santos

Industrial Electronics Department
University of Minho
Guimaraes, Portugal

Email: cristina@dei.uminho.pt

Manuel Ferreira
Industrial Electronics Department

University of Minho
Guimaraes, Portugal

Email: mjf@dei.uminho.pt

Abstract— We present an attractor based dynamics that au-
tonomously generates temporally discrete movements and move-
ment sequences stably adapted to changing online sensory infor-
mation. Autonomous differential equations are used to formulate
a dynamical layer with either stable fixed points or a stable limit
cycle. A neural competitive dynamics switches between these two
regimes according to sensorial context and logical conditions. The
corresponding movement states are then converted by simple
coordinate transformations into spatial positions of a robot arm.
Movement initiation and termination is entirely sensor driven.
In this article, the dynamic architecture was changed in order
to cope with unreliable sensor information by including this
information in the vector field.

We apply this architecture to generate timed trajectories for
a Puma arm which must catch a moving ball before it falls over
a table, and return to a reference position thereafter. Sensory
information is provided by a camera mounted on the ceiling
over the robot. We demonstrate that the implemented decision-
mechanism is robust to noisy sensorial information. Further, a
flexible behavior is achieved. Flexibility means that if the sensorial
context changes such that the previously generated sequence is
no longer adequate, a new sequence of behaviors, depending on
the point at which the changed occurred and adequate to the
current situation emerges.

I. INTRODUCTION

This article addresses the problem of generating timed tra-
jectories and sequences of movements for robotic manipulators
when relatively low-level, noisy sensorial information is used
to initiate and steer action. The developed architectures are
fully formulated in terms of nonlinear dynamical systems
which lead to a flexible timed behaviour stably adapted to
changing online sensory information. The generated trajec-
tories have controlled and stable timing (limit cycle type
solutions). Incoupling of sensory information enables sensor
driven initiation and termination of movement.

Specifically, we address the following question: Is it pos-
sible to flexibly generate timed trajectories comprising se-
quence generation and stably and robust implement them in a
robot arm with modest computational resources? Flexibility
means here that if the sensorial context changes such that
the previously generated sequence is no longer appropriated a
new sequence of behaviours, adequate to the current situation,
emerges.

This question is positively answered and shown in an
exemplary situation in which a PUMA robot arm catches a

moving object and returns to a reference position thereafter.
The evaluation results illustrate the stability and flexibility
properties of the dynamical architecture as well as the robust-
ness of the decision-making mechanism implemented.

We build on previous work [1]–[4], where we have shown
that the proposed approach is sufficient versatile to generate,
through limit cycle attractors, a whole variety of richer forms
of behavior, including both rhythmic and discrete tasks. The
online linkage of the generated timed trajectories to online
noisy sensorial information, was achieved through the coupling
of several nonlinear dynamical systems [1], [4]. In [1], this
architecture was implemented in a real vehicle. Further, we
have shown that the proposed approach can be integrated
with other dynamical architectures which do not explicitly
parameterize timing requirements [1], [3].

This work is innovative in the manner how it formalizes
and uses movement primitives, both in the context of biolog-
ical and robotics research. Further, it significantly facilitates
generation of movement and sequences of movements. We
apply autonomous differential equations to model the manner
how behaviors related to locomotion are programmed in the
oscillatory feedback systems of ”central pattern generators” in
the nervous systems [4].

The idea of using dynamic systems for movement genera-
tion is not new. For instance, the Dynamical Systems approach
to autonomous robotics, has been developed for the control
of autonomous vehicles [5], [6]. Other solutions [7]–[11]
have tried to address the timing problem, by generating time
structure at the level of control. More generally, the nonlinear
control approach to locomotion pioneered by [7] amounts to
using limit cycle attractors that emerge from the coupling
of a nonlinear dynamical control system with the physical
environment of the robot. A limitation of such approaches is
that they essentially generate a single motor act in rhythmic
fashion, and remain limited with respect to the integration
of multiple constraints, and planning was not performed in
the fuller sense. However, [12] has been able to generate
temporally discrete movement as well. The flexible activation
of different motor acts in response to user demands or sensed
environmental conditions is more difficult to achieve from the
control level.

The work presented in this article extends the use of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55608946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

oscillators to tasks on an arm robot. It also differs from most
of the literature in that it is implemented on a real robot.

II. TIMED TRAJECTORIES GENERATION

In this article we try to solve a robotic problem applying
the dynamical systems approach to timing. Fig. 1 depicts the
problem setup: a Puma arm must catch a green ball at the
end of the table on which the ball is moving. The task is to
generate a timed movement from an initial posture to intercept
an approaching ball. Movement with a fixed movement time
(reflecting manipulator constraints) must be initiated in time
to catch the ball before it falls over the table. Factors such
as reachability and approach path of the ball are continuously

y
x

z

Fig. 1. The Puma arm must catch the ball before it falls over the table.
The x and z coordinates for catching position are fixed and known. A
camera acquires visual information that enables the system to calculate the y
coordinate of catching position and the time it takes for the ball to be at that
location.

monitored through online visual sensory information, leading
to a return of the arm to the resting position when catching
becomes impossible (e.g., because the ball hits outside the
workspace of the arm, the ball is no longer visible, or ball
contact is no longer expected within a criterion time-to-
contact). After catching the ball, the arm moves back to its
resting position, ready to initiate a new movement whenever
appropriate sensory information arrives.

The three relevant coordinate systems involved in this
task formulation must be linked: (a) The dynamical variable
coordinate system, in which temporal movement is planned,
describes the x dynamical variable position along a straight
path from an initial to a final posture position. (b) The
task reference coordinate system describes the end-effector
position, (x, y, z), of the arm along a straight path from the
initial end-effector position (initial posture) to the ball catching
position. (c) The arm kinematics is described by six joint
angles [13].

Frame (a) and (b) are linked through straightforward for-
mulae, which depend on the calculated ball catching position
(point-to-contact). Frame (b) and (c) are linked through the
kinematic model of the robot arm and its inverse (based on
the geometrical solution [13]). A starting end-effector orien-
tation is established and kept constant during motion. During
movement execution, the dynamical variables are continuously
transformed into task frame (b), from which joint angles are
computed through the inverse kinematic transformation.

A. The dynamical systems trajectory generator

In order to formulate this task using the nonlinear dynamical
systems approach, we model rhythmic and discrete movements
as a time course of behavioral variables (x, y) generated
by dynamical systems. Trajectories are generated as stable
solutions of the following dynamical system, which generates
both stable oscillations and two stationary states [2],(

ẋ
ẏ

)
= 5 |uinit|

(
x
y

)
+ |uhopf |fhopf

+ 5 |ufinal|
(

x − A
y

)
+ gwn. (1)

Although only x will be used to control motion of a relevant
robotic task variable, a second auxiliary variable, y, is needed
to enable the system to undergo periodic motion.

A neural dynamics controls the switching between the three
regimes through three “neurons” ui (i = init,hopf,final).

Herein, an approach is defined to cope with fluctuations in
amplitude of calculated point-to-contact by including in the
vector field quantities that depend on sensory information.
This is achieved in two steps. Firstly, the “init” and “final”
contributions generate stable stationary solutions at x = 0 for
“init” and A for “final” with y = 0 for both. These states are
characterized by a time scale of τ = 1/5 = 0.2.

Secondly, the “Hopf” contribution (as defined in [2]) is
modified as follows:

fhopf =
(

α −ω
ω α

)((
x − A

2

)
y

)
(2)

− γ

((
x − A

2

)2

+ y2

)((
x − A

2

)
y

)
(3)

where γ = 4 α
A2 defines amplitude of Hopf contribution. This

“Hopf” contribution, as described in [1], [2], models the
oscillatory movement between two x values and contains a bi-
furcation from a fixed point to a limit cycle. We use it because
it can be completely solved analytically, providing complete
control over its stable states. This analytical specification is an
innovative aspect of our work. Relaxation to the limit cycle
solution occurs at a time scale of 1/(2 α) = 0.2 time units.

The dynamics are augmented by a Gaussian white noise
term, gwn, that guarantees escape from unstable states and
assures robustness to the system.

1) Neural dynamics: The “neuronal” dynamics of ui ∈
[−1, 1] (i = init,final,hopf) switches the dynamics from the
initial and final posture states into the oscillatory regime and
back. The competitive dynamics are given by

αu u̇i = µi ui − |µi| u3
i − 2.1

∑
a�=i

u2
a ui + gwn, (4)

where “neurons” can go “on” (=1) or “off” (=0). This dynam-
ics enforces competition among task constraints depending on
the neural competitive parameters (“competitive advantages”),
µi. As the environmental situation changes, the competitive
parameters reflect by design these changes causing bifur-
cations in the competitive dynamics. The neuron, ui, with

the largest competitive advantage, µi > 0, is likely to win
the competition, although for sufficiently small differences
between the different µi values multiple outcomes are possible
(the system is multistable) [14].

In order to control switching, these parameters are explicitly
designed such that their functions reflect the current sensorial
context and the global constraints expressing which states are
more applicable to the current situation. They are defined as
functions of user commands, sensory events, or internal states
and control the sequential activation of the different neurons
(see [6], for a general framework for sequence generation
based on these ideas and [2] for a description). Herein, we
vary the µ-parameters between the values 1.5 and 3.5: µi =
1.5+2bi, where bi are “quasi-boolean” factors taking on values
between 0 and 1 (with a tendency to have values either close
to 0 or close to 1). Hence, we assure that one neuron is always
“on”.

The time scale of the neuronal dynamics is set to a
relaxation time of τu = 0.02, ten times faster than the
relaxation time of the x, y dynamical variables. The adiabatic
elimination of fast behavioral variables reduces the complexity
of a complicated behavioral system built up by coupling many
dynamical systems [3], [6]. By using different time scales one
can design the several dynamical systems separately.

B. Coupling to sensorial information

In order to intercept an approaching ball it is necessary to
be at the right location at the right time. This information is
acquired by a camera mounted in the ceiling over the robot
workspace.

The most common algorithms for visual object tracking in
robot applications are typically based on the detection of a
particular cue, most commonly edges, color and texture [15]–
[17].

In our application, the goal is to robustly track a green ball
moving in a table in an unstructured, complex environment,
using inexpensive consumer cameras and avoiding calibration
lenses procedures. Specifically, we have to deal with the
following main computer-vision problems: (1) a clutter envi-
ronment, including non-uniform light conditions and different
objects with the same color pattern (distractors); (2) irregular
object motion due to perspective-induced motion irregularities;
(3) image noise and (4) a real-time performance application
with high processing time.

Although conventional single-cue algorithms fail to catch
variations like changes of orientation and in shape, if flexibility
and/or simplicity, speed and robustness are required, as in our
case, they are a good option. Specifically, we have chosen
a color based real-time tracker, Continuously Adaptive Mean
Shift (CAMSHIFT) algorithm [18], that handles the described
computer-vision application problems during its operation.

The CAMSHIFT algorithm tracks the x′, y′ image coordi-
nates and area of the color blob representing the green ball.
A perspective projection model transforms the x′, y′ image
coordinates onto the x, y world coordinates.

In this application, the robot arm catches the ball at the
end of the table in which the ball is moving (see Fig. 1).
The time it takes to the ball to intersect the arm at this
point in space, that is, the time-to-contact, t2c, is extracted
from the obtained visual information through straightforward
formulae, by considering the ball has a linear trajectory in
the 3D cartesian space with a constant approach velocity. The
point-to-contact, (x(τt2c), y(τt2c), z(τt2c)), is computed along
similar lines.

For simplicity, x(τt2c) is always constant and has a known
value (x(τt2c) = −154 mm). Further, z(τt2c) corresponds to
the table’s height and thus z(τt2c)) = −519 mm.

Movement amplitude, A, is set as,

A =
√

(y(τt2c) − yR(0))2 + (z(τt2c) − zR(0))2, (5)

where yR(0) and zR(0) denote end-effector position previ-
ously to movement initiation.

C. Behavior specifications

These two measures, time-to-contact and point-to-contact,
fully control the neural dynamics through the quasi-boolean
parameters. A sequence of neural switches is generated by
translating sensory conditions and logical constraints into
values for these parameters.

The parameter, binit, controlling the competitive advantage
of the initial postural state, is controlled by sensory input:
it changes from 1 to 0 when the time-to-contact of the
approaching ball computed from sensory information is below
a certain value. Movement is initiated in this manner. binit

must be ”on” (= 1) when the sensed actual position of the
effector is close to the initial state 0 (bxR close xinit(x)); and
either of the following is true: (1) ball not approaching or not
visible (τt2c ≤ 0); (2) ball contact not yet within a criterion
time-to-contact (τt2c > τcrit); (3) ball is approaching within
criterion time-to-contact but is not reachable (0 < τt2c < τcrit;
breachable = 0); (4) ball stopped (bstopped = 1); (5) ball was
catched (bcatched = 1); (6) ball has disappeared (bdisappeared =
1).

The factor bxR close xinit(xrobot) = σ(0.15 A−xrobot) has
values close to one while the sensed actual position of the
effector is bellow 0.15A and switches to values close to
zero elsewhere. This switch is driven from the sensed actual
position of the robot. Herein, σ(·) is a sigmoid function that
ranges from 0 for negative argument to 1 for positive argument,
chosen here as

σ(x) = [tanh(100x) + 1]/2, (6)

although any other functional form will work as well.
These logical conditions can be expressed through this

mathematical function:

binit = σ(0.15A − xR) [σ(τt2c − τcrit) + σ(−τt2c)
+ σ(τt2c) σ(τcrit − τt2c) σ(1 − breachable)
+ bstopped + bcatched + bdisappeared] . (7)

Multiplication and sum of “quasi-booleans” realizes the
“and” and “or” operations among logical conditions, respec-
tively.

A similar analysis derives the bhopf and bfinal parameters,
but the “or” is expressed with the help of the “not” (subtracting
from 1) and the “and”:

bhopf = 1 − (1 − [σ(0.15A − xR) σ(τt2c) σ(τcrit − τt2c)
σ(breachable)]) · (1 − [σ(xR + 0.85A)
{σ(1 − breachable) + σ(−τt2c) + σ(τt2c − τcrit)
+σ(0.85A − xR) + σ(bstopped) + σ(bcatched)
+ σ(bdisappeared)}]) (8)

bfinal = σ(τt2c) σ(τcrit − τt2c) σ(breachable) (9)

σ(xR − 0.85A) σ(1 − bstopped) σ(1 − bdisappeared)

(bstopped), bcatched and bdisappeared are flags set to 1 in order
to indicate that the ball stopped, was catched or disappeared,
respectively. These conclusions are taken dependent on the
acquired visual sensory information.

The puma velocity, Vpuma, as planned by the dynamical
system is set as:

Vpuma = |ẋ|, (10)

where x is the dynamical variable.
Previously to timed trajectory generation, the robot arm

is moved to a pre-defined location, (xR, yR, zR)(0) =
(−154,−393,−123) mm, whose x coordinate equals x(τt2c).
Therefore, robot arm movement only happens in the Z and Y
plane. The x dynamical variable is then converted by simple
coordinate transformations onto the yR and zR coordinates of
robot movement.

III. EXPERIMENTAL RESULTS

The dynamic architecture was implemented and evaluated
on a PUMA arm. The PUMA 560 is a six-joint industrial
robot manipulator, whose original LSI/11 processor, the VAL-
II operating system and the joint controllers, were replaced by
a new system based on the Trident Robotics cards: TRC004,
TRC100, TRC041 (Puma cable card set) [19] and a per-
sonal computer (PC). This new installed architecture gives
direct access to the joint positions and bypasses the old joint
controllers, enabling the implementation of new strategies for
each of the joint controllers, the generation of trajectories or
task planning algorithms. The PUMA arm is set in a blocking
mode. In order to process and start a movement command the
PUMA controller takes around 40 ms.

The CCD color cameras are FireWire with a resolution of
640x480 pixels RGB. Image processing is done on a 2GHz
Pentium M PC. The image sensorial cycle for acquiring and
processing an image takes around 63 ms. The dynamics of
timing and competitive neural of the trajectory generator are
numerically integrated in this PC using the Euler method with
a Euler step around 2ms (cycle time or sensorial cycle).

The two PCs are connected to an Ethernet network. In
order to exchange information between the three processes, we

implemented a communication mechanism based on sockets.
This interprocess communication uses the client server model,
in which the trajectory generator process (the server), connects
to the vision and puma processes (the clients) to make a re-
quest for information. By applying this process separation, we
obtain independent processes and may consider that the cycle
time for the trajectory generator is 2ms if PUMA position
is updated only every 20 sensorial cycles and considering an
image is acquired only every 35 sensorial cycles. This yields
a movement time (MT) of 2s.

A. Properties of the generated timed trajectory

Fig. 2 shows the time courses of the relevant variables
and parameters when the PUMA arm successfully catches an
approaching ball. As the ball approaches, the current time-
to-contact becomes smaller than a critical value (here 3s), at
which time the quasi-boolean for motion, bhopf becomes one,
triggering activation of the corresponding neuron, uhopf , and
movement initiation. Movement is completed (x dynamical
variable varies between the initial postural state at zero and
the final postural state at A = 422 mm) before actual ball
catching is made. The real point-to-contact is at (x, y, z) =
(−154,−553,−519) mm which yields a movement amplitude
of 427mm. Noisy sensory information produces amplitude
fluctuations in point-to-contact. However, these fluctuations
are included in the vector field and thus are filtered.

The arm waits in the final posture. Ball catching is detected
by the vision system which activates the bcatched flag and leads
to autonomous initiation of the backward movement to the arm
resting position.

−200
0

200
400

Timing variables

x

y

neurons

quasi−booleans

time−to−contact

0

1

0

1

1 2 3 4 5 6 7 8
−5

0

10

Time (s)

|u|
init

|u|
hopf |u|

final

|b|
init

|b|
hopf

|b|
final

time−to−contact
reaches threshold

Fig. 2. Trajectories of variables and parameters in autonomous ball catching
and return to resting position. The top three panels represent timing variables,
neural variables and quasi-booleans. The bottom panel shows the time-to-
contact, which crosses a threshold at about 3 time units. At this moment, the
arm initiates its timed movement.

The yR and zR real robot trajectories are illustrated in Fig. 3.
Despite the noisy amplitude, the robot trajectories are almost
not affected.

−500

−580

−400

−520

−120

1 2 3 4 5 6 7 8
410

435

Time (s)

y
B
(τ

t2c
)

y
B

y
R

z
Rz

B
(τ

t2c
)

A

Fig. 3. yR and zR illustrate the timed trajectory as recorded by the
Puma arm for the situation depicted in Fig. 2. Initially, the y coordinate
for point-to-contact, yB(τt2c), and the yB coordinate of ball trajectory, as
acquired by the visual system are quite noisy. The robot trajectories and the
calculated coordinates for contact coincide after movement time, and the ball
is successfully catched.

A rate of failure of 12% is achieved when 20 experiments
are done for the same ball movement. Let dcollision represent
the distance between the end-effector position and the real
ball position at the point-to-contact location. The mean value
of this variable within the 20 simulations is 4.5 mm, while in
cases where no solution was proposed to cope with a noisy
point-to-contact (simulation work described in [2]), the mean
value of dcollision was 100 mm. The proposed solution leads
to improvement.

The fact that timed movement is generated from attractor
solutions of a nonlinear dynamical system leads to a number
of properties of this system, that are potentially useful to other
real-world implementations of this form of autonomy. The
experiment shown in Fig. 2, illustrates how the generation
of the timing sequence resists against sensor noise: the noisy
time and point-to-contact data led to strongly fluctuating quasi-
booleans (noise being amplified by the threshold functions).
The neural and timing dynamics, by contrast, are not strongly
affected by sensor noise so that the timing sequence is
performed as required. This demonstrates approach robust-
ness. Note how the autonomous sensor-driven initiation of
movement is stabilized by the hysteresis properties of the
competitive neural dynamics, so that small fluctuations of the
input signal back above threshold do not stop the movement
once it has been initiated [2], [5].

The hysteresis property allows for a special kind of behav-
ioral stability that leads to a simple kind of memory which
determines system performance depending on its past history
and enables the system to be robust to ambiguity in the
environment.

When sensory conditions change an appropriate new se-
quence of events emerges. When one of the sensory conditions
for ball interception is invalid (e.g., ball becomes invisible,
unreachable, or no longer approaches with appropriate time-
to-contact), then one of the following happens depending on

the point within the sequence of events at which the change
occurs: 1) If the change occurs during the initial postural
stage, the system stays in that postural state. 2) If the change
occurs during the movement, then the system continues on
its trajectory, now going around a full cycle to return to the
reference posture. 3) When the change occurs during posture
in the target position, a discrete movement is initiated that
takes the arm back to its resting position.

The system is able to make decisions such that it flexibly
responds to the demands of any given situation while keeping
timing stable. The decision is dependent on local information
available at the system’s current position. This is achieved
by obeying the principles of the Dynamic Approach and
illustrates the power of our approach: the behavior of the
system itself leads to the changing sensor information which
controls the change and persistence of a rich set of behaviors.

Consider the ball is suddenly shifted away from the arm at
about 2.4 time units, leading to much larger time-to-contact,
well beyond threshold for movement initiation (Fig. 4). The
arm is in the motion stage at this point and hence continues its
movement a full cycle, until captured by the initial postural
state when the arm is back to the reference position. This
behavior emerges from the sensory conditions controlling the
neuronal dynamics. However, because sensory conditions are
appropriate, a new movement is initiated and the ball is
successfully catched.

−200
0

200
400

Timing variables

0

1
neurons

0

1
quasi−booleans

2 4 6 8 101 3 5 7 9
−2,5

0
3

12

Time (s)

time−to−contact

x

y

|u|
hopf |u|

hopf
|u|

init|u|
init |u|

init
|u|

hopf|u|
final

b
hopf

b
hopf

b
init b

final

time−to−contact
reaches threshold

ball is perturbed increasing
time−to−contact beyond threshold

Fig. 4. Similar to Figure 4, but the ball is suddenly shifted at about 2.4 time
units leading to a time to contact larger than the threshold value (3s) required
for movement initiation.

If the ball becomes unreachable another type of sensorial
condition change occurs. At about 1.9 time units, the ball is
suddenly shifted away from the arm leading to a point-to-
contact no longer reachable. Fig. 5 shows how the arm rests in
the reference position when the change occurs during motion
stage but still in the vicinity of initial posture state.

IV. CONCLUSION/OUTLOOK

In this article, an attractor based dynamics autonomously
generated temporally discrete movements and movement se-
quences for a Puma arm. The task was to generate a timed

−300

100
0

Timing variables

0

1
neurons

0

1
quasi−booleans

1 2 3 4 5
1.5

10
time−to−contact

y
x

|u|
init |u|

hopf

|u|
final

b
final

b
hopf

b
init

time−to−contact reaches threshold

ball is perturbed and point−to−contact
becomes unreachable

Fig. 5. The ball is suddendly shifted away from the arm at about 1.9 time
units, leading to an unreachable position, out of the robot workspace. The
arm is still in the vicinity of the initial posture state and rests in the reference
position.

movement from an initial posture to catch an approaching
ball moving in a complex, unstructured environment. After
catching the ball or in case catching becomes impossible,
the arm moves back to its resting position, ready to initiate
a new movement whenever appropriate sensory information
arrives. Movement initiation and termination was entirely
sensor driven and autonomous sequence generation was stably
adapted to changing unreliable online visual sensory informa-
tion.

Ball tracking was robustly achieved by applying a
CAMSHIFT algorithm [18] to the visual sensory information
acquired by an unexpensive FireWire camera.

The described implementation provides a rigorous test of the
dynamic architecture robustness and probes how its inherent
stability properties play out when the sensory information is
noisy and unreliable.

The attractor based dynamics was based on previous
work [2], but the dynamic architecture was changed in order
to cope with unreliable sensor information by including this
information in the vector field.

The dynamical approach has various desirable properties.
Firstly, its inherent properties, such as stability, bifurcation,
and hysteresis provide the ability to modify online the gener-
ated attractor landscape to the demands of the current situation,
depending on the sensorial context. This flexibility property
was illustrated in real experiments. Secondly, a globally opti-
mized behavior is achieved through local sensor control and
global task constraints. Further, we guarantee the stability
and the controllability of the overall system by obeying the
time scale separation principle. Finally, this approach does not
place unreasonable constraints on the environment in which
the robot operates and assures a quick reaction to eventual
changes in the sensed environment.

The analytically solvability and the generalization to se-
quence generation, are two distinguishable features of our
approach.

Future work will address how to extend the described model

to achieve more complex behavior for systems with several
degrees-of-freedom. We will address the approach extension
to robust locomotion generation and movement controllers for
robots as this framework finds a great number of applications
in service tasks and seems ideal to achieve intelligent and more
human like prostheses.

REFERENCES

[1] C. Santos, “Generating timed trajectories for an autonomous vehicle: A
non-linear dynamical systems approach,” in IEEE International Confer-
ence on Robotics and Automation (ICRA). New Orleans, LA U: IEEE,
April 26-1 May 2004, pp. 3741–3746.

[2] G. Schöner and C. Santos, “Control of movement time and sequential
action through attractor dynamics: A simulation study demonstrating
object interception and coordination,” in 9th Intelligent Symposium on
Intelligent Robotic Systems - SIRS’2001, Toulouse, France, 18-20,July
2001.

[3] C. P. Santos, Cutting Edge Robotics, 2005, ch. III. Navigation Section.
Generating Timed Trajectories for Autonomous Robotic Platforms. A
Non-Linear Dynamical Systems Approach, pp. 255–278.

[4] G. Schöner, “Dynamic theory of action - perception patterns: The time-
before-contact-paradigm,” Human Movement Science, vol. 3, pp. 415–
439, 1994.

[5] G. Schöner and M. Dose, “A dynamical systems approach to task-level
system integration used to plan and control autonomous vehicle motion,”
Robotics and Autonomous Systems, vol. 10, pp. 253–267, 1992.

[6] A. Steinhage and G. Schöner, “Dynamical systems for the behavioral
organization of autonomous robot navigation,” in Sensor Fusion and De-
centralized Control in Robotic Systems: Proceedings of Spie-Intelligent
Systems Manufactors, I. M. G. T. S. PS, Ed. Boston: SPIE-publishing,
1998, pp. 169–180.

[7] M. H. Raibert, Legged robots that balance. Cambridge, Massachusetts:
MIT Press, 1986.

[8] S. Schaal and C. G. Atkeson, “Open loop stable control strategies for
robot juggling,” in IEEE International Conference on Robotics and
Automation, Georgia, Atlanta, 1990, pp. 913–918.

[9] D. E. K. M Bühler and Kindlmann, “Planning and control of a juggling
robot,” International Journal of Robotics Research, vol. 13, no. 2, pp.
101–118, 1994.

[10] M. R. Clark, G. T. Anderson, and R. D. Skinner, “Coupled oscillator
control of autonomous mobile robots,” Autonomous Robots, vol. 9, pp.
189–198, 2000.

[11] M. Williamson, “Rhythmic robot arm control using oscillators,” in
Proceedings of IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS’98), Victoria, B.C., Canada, October 1998.

[12] S. Schaal, S. Kotosaka, and D. Sternad, “Nonlinear dynamical systems as
movement primitives,” in IEEE International Conference on Humanoid
Robotics. IEEE, Cambridge, MA, 2000.

[13] K. S. Fu, R. C. Gonzalez, and C. S. G. Lee, Robotics: Control, Sensing,
Vision, and Intelligence. McGraw-Hill, New York, 1987.

[14] E. W. Large, H. I. Christensen, and R. Bajcsy, “Scaling the dynamic
approach to path planning and control: Competition amoung behavioral
constrains,” International Journal of Robotics Research, vol. 18, no. 1,
pp. 37–58, 1999.

[15] E. M. M. Pressigout, “Real-time planar structure tracking for visual
servoing: A contour and texture approach.” Int. Conf. on Intelligent
Robots and Systems, IROS’05, August 2005.

[16] L. K. G. Taylor, “Fusion of multimodal visual cues for model-based
object tracking.” Brisbane: Australasian Conference on Robotics and
Automation, December 2003, pp. 1–3.

[17] B. T. M. Everingham, “Supervised segmentation and tracking of non-
rigid objects using a ”mixture of histograms.” Proceedings of the
8th IEEE International Conference on Image Processing (ICIP 2001),
October 2001, pp. 62–65.

[18] G. Bradski, “Computer vision face tracking as a component of a
perceptual user interface.” Princeton, NJ: Workshop on Applications
of Computer Vision, October 1998, pp. 214–219.

[19] C. Santos, J. Fonseca, P. Garrido, and C. Couto, “Surface profile based
on sensor fusion,” in Proceedings of the 6th UK Mechatronics, Skovde,
Switzerland, 1999, pp. 613–619.

