

ScienceDirect

JOURNAL OF CHROMATOGRAPHY B

Journal of Chromatography B, 864 (2008) 178

www.elsevier.com/locate/chromb

Corrigendum

Corrigendum to "Utilisation of controlled pore topology for the separation of bioparticles in a mixed-glass beads column" [J. Chromatogr. B 843 (2006) 63–72]

M. Mota*, J. Teixeira, A. Yelshin, S. Cortez

Centro de Eng. Biológica, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
Available online 14 February 2008

The authors regret that the legends for Figs. 1–11 are missing in the above-referenced manuscript. The legends are listed below. Fig. 1. Scheme of a rod microparticle motion in a granular bed. Trajectory of rod particle in the tortuous channel between spheres is shown by the dashed curve.

- Fig. 2. Sketch of comparative sizes of particles used as the dispersed phase: (1) S. cerevisiae, (2) L. bulgaricus, and (3) Latex microsphere.
- Fig. 3. Binary packing permeability k vs. x_c based on the model [37]. Porosities of fine and coarse packings were assumed to be equal, curves 1 –5. Horizontal line corresponds to the permeability of fine packing ($x_c = 0$).
- Fig. 4. Dependence of binary packing porosity ε , curve 1, and pore size d_{por} , curve 2, on x_c . Line 3 refers to the fine packing pore size.
 - Fig. 5. Micrographs of L. bulgaricus (a) and S. cerevisiae (b).
- Fig. 6. Normalised concentration C_n breakthrough curves vs. elution volume v: (1) microspheres; (2) S. cerevisiae; (3) L. bulgaricus. Curves are the Gaussian distribution fit.
- Fig. 7. Normalised concentration C_n vs. eluted volume v for the fine particle column ($d_f = 0.1115$ mm): (1) dextran blue; (2) microspheres. Samples volume, 5 mL.
- Fig. 8. Dependence C_n on v for the coarse particle column ($d_c = 1.125$ mm): (1) dextran blue; (2) microspheres; (3) bacillus; (4) yeast.
- Fig. 9. Results obtained on separation particles on different packings. Curves: $(1) R = 1/(1/2\lambda 2.8\lambda^2)$; $(2) R = 1.6/(1 + 2\lambda 2.8\lambda^2)$; $(3) R = 1.5/(1 \lambda)^2$; and $(3') R = 1.5/(1 \lambda)^3$. In the fine particles packing, all cells (bacillus and yeast) were retained within the packing. Points marked by thick arrows belong to coarse particle packing.
- Fig. 10. Attempts to fit yeast data by hindered diffusion model (7). Curves (1 and 1') $F_2(\lambda) = 0$; (2 and 2') Renkin approach. For curves 1, 2 and 1', 2' the tortuosity factor is $\tau = 1.0$ and 1.55, respectively.
- Fig. 11. Behaviour of the rod-like particles data depending on the scaling parameter: rod length or diameter. Main data are the same as in Fig. 9. Points in dashed ellipses are corresponded to λ which is defined as the ratio of rod length to the pore size. If we use λ as the ratio of rod diameter to the pore size, data move to the position shown by arrows and the fitting function, curve 4, becomes $R = 1.5/(1 \lambda)^{35}$, giving an inflated value for z in (9).

DOI of original article:10.1016/j.jchromb.2006.05.041.

 ^{*} Corresponding author. Fax: +351 253 678986.