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MRI Assessment of Superior Temporal Gyrus in Williams
Syndrome

Adriana Sampaio, PhD,*w Nuno Sousa, MD, PhD,w Montse Férnandez, PhD,*
Cristiana Vasconcelos, MD,z Martha E. Shenton, PhD,y and Óscar F. Gonçalves, PhD*

Objective: To evaluate volumes and asymmetry of superior

temporal gyrus (STG) and correlate these measures with a

neurocognitive evaluation of verbal performance in Williams

syndrome (WS) and in a typically developing age-matched and

sex-matched group.

Background: Despite initial claims of language strength in WS,

recent studies suggest delayed language milestones. The STG is

implicated in linguistic processing and is a highly lateralized

brain region.

Method: Here, we examined STG volumes and asymmetry of

STG in WS patients and in age-matched controls. We also

correlated volume of STG with a subset of verbal measures.

Magnetic resonance imaging scans were obtained on a GE 1.5-T

magnet with 1.5-mm contiguous slices, and were used to

measure whole gray matter, white matter, and cerebrospinal

fluid volumes, and also STG volume.

Results: Results revealed significantly reduced intracranial

volume in WS patients, compared with controls. Right and left

STG were also significantly smaller in WS patients. In addition,

compared with normal controls, a lack of normal left >right

STG asymmetry was evident in WS. Also of note was the finding

that, in contrast to controls, WS patients did not reveal a

positive correlation between verbal intelligence quotient and left

STG volume, which further suggests a disruption in this region

of the brain.

Conclusions: In conclusion, atypical patterns of asymmetry and

reduced STG volume in WS were observed, which may, in part,

contribute to some of the linguistic impairments found in this

cohort of WS patients.

Key Words: Williams syndrome, STG, language, neurodevelop-

ment

(Cog Behav Neurol 2008;00:000–000)

W illiams syndrome (WS) is a neurodevelopmental
disorder, with a prevalence of 1 in 7500,1 and

characterized by a submicroscopic deletion on chromo-
some 7 q11.22–23.2 WS patients have an unusual
phenotype, which includes a distinctive profile of physi-
cal, medical, neurocognitive, and neuroanatomic char-
acteristics. Typical physical characteristics include
craniofacial and cardiac/pulmonary abnormalities,
growth delay, hypercalcemia, hyperacusis, and feeding
difficulties.3 The other main component of classic
descriptions of WS phenotype is an altered neurodevelop-
ment/cognitive profile, which consists of relative strengths
and weaknesses. Specifically, initial reports of WS
document a profound impairment in visuospatial proces-
sing in parallel with superior language performance (ie, ‘‘a
linguistic savant’’). Interestingly, much of the attraction
of Williams syndrome research was fostered by this
apparent dissociative pattern of neurodevelopment.4

However, initial reports of excelled performance in
linguistics have not been reproduced in the last 2 decades
and, paradoxically, impairments in narrative, syntax,
morphology, phonology, and pragmatics have been
observed.5–7

A trend for dissociative findings in neuroimaging
studies of WS patients has also been reported, and
includes a general cerebral hypoplasia8–12 with localized
gray matter reductions in parietal and occipital lobes,13,14

contrasting with a relative preservation of frontal and
cerebellar structures, and with volume preservation of
structures like the amygdala, superior temporal gyrus
(STG), orbitofrontal cortex, and hippocampus.8,11,12,15

Several studies have also demonstrated volumetric loss in
white matter, including corpus callosum.16–19 Cortical
and thickness profile abnormalities20,21 with morphologic
changes in central sulcus and in the Sylvian fissure22,23

have also been reported. Finally, abnormal patterns of
cortical symmetry have recently been described in WS.24

Anatomic correlates of neurologic abnormalities
are, however, difficult to establish due to several technical
constraints and due to the complex brain network that
subserves each of the altered functions. Nonetheless, there
are regions of the brain whose integrity seems to be

CE: gayathri ED: geetha Op: vp WNN:200121

Copyright r 2008 by Lippincott Williams & Wilkins

Received for publication January 5, 2008; accepted March 23, 2008.
From the *Department of Psychology; wLife and Health Sciences

Research Institute, University of Minho, Braga; zDepartment of
Neuroradiology, Hospital Geral Santo António, Porto, Portugal;
and yPsychiatry Neuroimaging Laboratory, Department of Psychia-
try, Brigham and Women’s Hospital, Harvard Medical School,
Boston, MA.

Supported by the grants POCTI/PSI/58364/2004 and SFRH/BD/16091/
2004 from Fundação para a Ciência e Tecnologia (Portugal). Also
supported, in part, by grants from the National Institutes of Health
(K05 MH 01110).

Reprints: Nuno Sousa, MD, PhD, School of Health Sciences, Life and
Health Sciences Research Institute, University of Minho, Campus de
Gualtar, 4710-057 Braga, Portugal (e-mail: njcsousa@ecsaude.umin-
ho.pt).

ORIGINAL STUDY

Cog Behav Neurol � Volume 00, Number 00, ’’ 2008 1



1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

113

115

117

crucial for linguistic performance; among these, is the
STG. STG is a component of a frontotemporal network,
including the anterior cingulate cortex, left inferior
frontal gyrus, and middle temporal gyrus, that is involved
in auditory processing,25 being activated in word and
speech processing,26,27 integration of lexical and syntactic
integration,28 and phonologic memory storage.29 Besides
this role in linguistic processes, STG is part of the
network involved in human spatial orientation and
exploration30 and also social cognition,31 which are also
extremely relevant in WS.

In the present study, we evaluated STG volume,
using manual measures of magnetic resonance imaging
(MRI) volume, and using automatic methods of segmen-
tation to separate gray matter, white matter, and
cerebrospinal fluid (CSF). These measures were corre-
lated with a neurocognitive evaluation of verbal perfor-
mance in WS and in a typically developing age-matched
and sex-matched group.

MATERIALS AND METHODS

Participants
Study participants included 10 subjects (5 males and

5 females), diagnosed with WS [mean±SD age,
18.60±5.87; age range: 11 to 29 y; mean full scale
intelligence quotient (IQ): 48.60±6.92]. These subjects
were compared with 10 healthy control subjects indivi-
dually matched for sex, age (mean±SD age,
19.00±5.81; age range: 11 to 29 y; mean full scale IQ:
113.22±11.41). Subjects with WS were recruited at the
Genetic Medical Institute (Portugal) and the Genomic
Foundation in Galicia (Spain). WS diagnoses were made
by fluorescent in situ hybridization confirmation of elastin
gene deletion.2 Controls were typically developing in-
dividuals without evidence of psychiatric, neurologic
disorder, or cognitive impairment. Each participant gave
written informed consent for their participation in the
study via consent forms, after a complete description of
the study. Handedness was assessed through clinical
observation and was controlled for all subjects, one
control subject was left-handed, and because of this was
removed from the asymmetry analysis.

Neurocognitive Assessment
To assess general cognitive functioning, participants

8 to 16 years of age were administered the Wechsler
Intelligence Scale for Children-Third Edition (WISC-
III),32 whereas subjects over 16 years old were adminis-
tered the Wechsler Adult Intelligence Scale-Third Edition
(WAIS-III).33

The Controlled Word Association Test34 and Pea-
body Picture Vocabulary Test35 were also used, to assess
verbal and phonemic fluency and receptive vocabulary.
Raw scores of these assessment tests and verbal IQ were
used for correlational analyses with brain volumetric
measures. Neurocognitive tests were in the native
language of the patients and were administered and
scored accordingly.

MRI Acquisition and Processing
MR images were obtained on a 1.5-T General

Electric system (GE Medical Systems). The scans
acquisition protocol consisted of contiguous 1.5-mm
coronal T1 (Spoiled gradient-SPGR) slices of the whole
brain and an axial PD/T2 sequence (proton density and
T2-weighted). The parameters used were echo time:
5.0ms, repetition time: 35ms, flip angle: 45 degrees,
acquisition matrix: 256� 192, voxel dimensions:
9375� 0.9374� 1.5mm). Images were aligned by using
the line between the anterior and posterior commissures
and the sagittal sulcus to correct head tilt and were also
resampled to make isotropic voxels (0.9375mm3, cubic
interpolation). Then, an atlas-based expectation maximi-
zation segmentation program separated raw MR data
into CSF, gray matter (including cortical and cerebellar
cortices, basal ganglia, and hippocampal-amygdala com-
plex), and white matter.36 Total intracranial volume
(TIV) was the sum of gray matter, white matter, and
CSF volumes and relative volumes were obtained by
dividing absolute volumes by ICV.

Regions of Interest
Cortical STG was outlined manually using the 3D

Slicer Software (http://www.slicer.org/) in the realigned
images. To define STG (right and left hemispheres), we
used the same methods and landmarks previously used to
outline this region of interest.37 Briefly, the anterior limit
of STG was identified as the first slice showing the white
matter tract (temporal stem) connecting the temporal lobe
with the base of the brain. The posterior boundary of
STG was defined as the slice where the fibbers of the crux
of the fornix last appeared (Fig. 1). Two raters, blind to
study hypothesis, and blind to diagnostic group, mea-
sured both STG for all subjects with an interrater

FIGURE 1. Superior temporal gyrus manual segmentation.
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reliability >0.90. A relative measure of STG was
computed as the ratio between STG volume and total
gray matter volume. Asymmetry index of STG was
computed according to the following expression: (L�R)/
0.5 (L+R), where L and R refer to left and right
hemispheres.

Data Analysis
All volumetric data met the criteria for the use of

parametric tests, including normality (Kolmogorov-Smir-
nov and Shapiro-Wilk tests) and variance homogeneity
(Levene test). A repeated-measure analysis of variance
was used to determine STG volume differences between
the WS and control subjects. Thus, diagnosis (WS and
controls) was used as the between-subject factor and
hemispheric side (left vs. right) as the within factor. If a
main effect for group was found, then a Student t test was
used to test the mean difference between groups. A P
value less than 0.05 was assumed to denote a significant
difference. Spearman rank correlations were used to
correlate brain volumes with neurocognitive measures in
WS and controls separately, because of the non-normality
of the neurocognitive measures.

RESULTS
There was no significant group differences with

respect to sociodemographic characteristics, including age
[t(18)= � 0.153, P>0.05], and socioeconomic status–-
Graffar index (Z= � 0.932; P>0.05), although they
differ in level of education (Z= � 2.160, P=0.031)
(data shown in Table 1).

Overall Intracranial Volumes
Table 2 shows TIV for WS, revealing an absolute

reduction of 17.7% compared with the normal control
group. Indeed, WS subjects show absolute values of gray
matter [t(18)= � 3.297, P<0.01], white matter
[t(18)= � 3.060, P<0.01], and CSF [t(18)= � 4.183,
P<0.01] volumes that were significantly reduced com-

pared with controls. As a consequence, TIV was
significantly reduced in the clinical group
[t(18)= � 4.359, P<0.001].

When relative volume was estimated (ie, ratio
between tissue volume and TIV), no significant differences
were found for white matter volume [t(18)= � 0.709,
P>0.05, effect size= � 1.37]. However, gray matter
volume [t(18)=2.222, P<0.05, effect size= � 1.47] was
significantly increased and CSF volume [t(18)= � 2.622,
P<0.05, effect size= � 1.87] (Table 2) was significantly
reduced.

Figure 2 shows the main results obtained for STG,
in right and left hemispheres. Repeated-measures analysis
of variance of absolute volumes revealed a significant
difference, showing main effect of side (left vs. right)
[F(1,18)=4.983, P=0.039)], diagnosis [F(1,18)=6.301,
P=0.022)], and an interaction between side and diag-
nosis [F(1,18)=14.992, P=0.001)]. Follow-up t test
showed that absolute STG volumes were significantly
reduced in WS, when comparing with control group, both
in the right hemisphere [t(18)= � 2.845, P<0.05, effect
size= � 1.34] and in the left hemisphere
[t(18)= � 2.117, P<0.05, effect size= � 1.52]. How-
ever, when relative volumes of STG were computed (ratio
between STG volume and total gray matter volume), a
marginal side effect [F(1,18)=4.627, P=0.045)] and an
interaction between side and diagnosis was found
[F(1,18)=15.436, P=0.013)]. No diagnosis effect was
found [F(1,18)=0.215, P=0.648)]. Indeed, t tests
yielded no statistical significant difference between the 2
groups, for either right hemisphere [t(18)=0.031,
P=0.976, effect size= � 0.11] or left hemisphere
[t(18)= � 0.918, P=0.371, effect size= � 0.37] (Fig.
2B).

We next analyzed the cortical asymmetry between
left-right STG (Table 3). WS subjects demonstrate a lack
of asymmetry, compared with the normal left>right
STG asymmetry observed in the control group
[t(17)= � 5.219, P<0.001].

Correlational analysis between neurocognitive per-
formance and neuroanatomic measures revealed a statis-
tically positive correlation between verbal IQ and left
STG volume (rsp=0.706, P<0.05) in the control group
(Figs. 3A, B and Table 4). Of note, in the WS group, left
STG volume was not correlated with verbal IQ
(rsp=0.085, P=0.815) or any other neurocognitive
measure.

DISCUSSION
The present study confirms an overall reduction in

brain volumes in WS patients, including also a reduction
in overall gray matter, white matter, and CSF compared
with controls. Most importantly, this reduction was
found to be disproportionate. That is, when relative
volumes were computed, the WS patients showed a gray
matter volume increase, in parallel with a decrease in CSF
volumes. In contrast to neurodegenerative disorders, in
which brain parenchyma atrophy is associated with

TABLE 1. Sociodemographic Characteristics

WS (N=10) Control Group (N=10)

M (SD) Range M (SD) Range

Age 18.60 (5.87) 11-29 19.00 (5.81) 11-29
Full scale IQ 48.60 (6.92) 40-61 113.22

(11.41)
90-124

MdnAQ3 Mdn
Level of
education

9 6-9 12 6-15

Socioecono-
mical
status
(Graffar
index)

3 1-4 3 1-4

Sex
Male 5 50% 5 50%
Female 5 50% 5 50%

IQ indicates intelligence quotient; WS, Williams syndrome.

Cog Behav Neurol � Volume 00, Number 00, ’’ 2008 MRI Study in Williams Syndrome
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increased CSF spaces,38 a reduction in CSF volume in WS
subjects was found, compared with normal controls. That
is, our data seem to point to the fact that TIV reduction in
WS may be explained mainly by white matter and CSF

volume reduction. These results are in accordance with
previous reports by Reiss and colleagues,11,12 but also
with other studies providing indirect evidence of a relative
increase in gray matter volume, including reports of
regional increases in cortical thickness.21

The volumetric changes of gray and white matter
evident in WS are likely to reflect their distinct develop-
mental trajectories from normal development. Decreases
in cortical gray matter densities are observed in adoles-
cence and adulthood, being more prominent in dorsal
cortical regions.39,40 Conversely, white matter volume
increases linearly with age.39,41–43 Furthermore, better
cognitive performance has been associated with a
coherent and myelinated white matter circuitry, particu-
larly in prefrontal cortex.41

Our findings in WS are also interesting in light of
findings that demonstrate that brain processes like
synaptic pruning and myelinization occur concomitantly
in the developing brain, resulting in a gray matter
decrease (or cortical thickness reduction) and white
matter increases.40 These brain processes also shape
cognitive development44 and are likely altered in WS.

We also note that preservation of STG in WS
patients, reported in the current study, differs from the
relative increase of STG (if computed in a ratio of STG/
total brain volume) reported by Reiss and coworkers.12

These authors interpreted their findings as possibly
explaining the dissociate neurodevelopmental profile of
WS patients, namely the relative sparing of music and
language processing. However, this notion of spared
language abilities was further challenged and subsequent
studies demonstrated that linguistic function in WS is not
only delayed in acquisition, but also impaired in
adolescence/adulthood45–47 suggesting that verbal and
nonverbal abilities are equally impaired in WS.48 Indeed,
abnormal grammatical (syntactical and morphosyntac-
tic), lexico-semantic, and pragmatic processes were found
in this syndrome.6,7,49 Also, pragmatic and communica-

TABLE 2. Absolute and Relative Volumes of Gray Matter, White Matter, and Cerebrospinal
Fluid in WS and Control Group

WS (N=10) Control Group (N=10)

Volume (mL) M SD M SD t (18) P

TIV 1186.717 130.652 1441.322 130.588 � 4.359 P<0.001
Gray matter
Absolute 655.702 70.121 746.370 51.423 � 3.297 P<0.01
Relative* 553.772 39.512 519.339 28.990 2.222 P<0.05
White matter
Absolute 396.809 77.357 494.177 64.374 � 3.060 P<0.01
Relative* 332.804 36.244 341.915 18.314 � 0.709 P=0.487
CSF
Absolute 134.204 22.595 200.774 44.975 � 4.183 P<0.01
Relative* 113.424 17.291 138.747 25.168 � 2.622 P<0.05

*� 10� 3.
CSF indicates cerebrospinal fluid; TIV, total intracranial volume; WS, Williams syndrome.

FIGURE 2. A, STG absolute volumes (right and left) in WS and
control group. B, Adjusted STG to gray matter volume (left
and right) in WS and control group; *P&<0.05. STG indicates
superior temporal gyrus; WS, Williams syndrome.
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tional difficulties have been described, with WS patients
showing impairments in conversation skills, namely,
production of a ‘‘cocktail party speech,’’ discourse
incoherence, stereotyped conversation, and difficulties at
initiating and developing conversational rapport (eg,
understanding the emotional and cognitive states of the
interlocutor). This is evident both within a conversation
context and during structured tasks (eg, interpreting
metaphoric and nonliteral language and during narrative
tasks).5,50–53 Moreover, these deficits are corroborated by
parents reports, who indicate impairments in all dimen-
sions of language.48,51

Also, the reduction of STG absolute volumes
observed in this study is consistent with linguistic deficits
found in this cohort of WS subjects.5,53 In fact, the
explanation for the discrepancy between our neuroana-
tomic results and those previously reported12 might be
reflected in the neuropsychologic differences in the
populations under study. Indeed, in contrast with other
studies,15 in our cohort of WS patients, general cognitive
deficits paralleled impaired linguistic/narrative perfor-
mance.5

Interestingly, the positive correlation between left
cortical STG volumes with verbal IQ found in normal
subjects was not present in WS subjects. This fact
reinforces the view that STG decreased volumes found
in WS subjects may underlie their language impairments.

Additional studies (eg, with functional MRI) are, how-
ever, needed to establish the functional impairment of this
brain structure in WS.

Another finding of interest in the current study is
the lack of normal asymmetry in STG in our WS patients.
More specifically, subjects with left hemispheric dom-
inance and normal psychomotor development are known
to exhibit a high asymmetry degree, characterized by
left>right STG volume.54,55 Interestingly, this asymme-
try was not observed in our cohort of WS subjects, which
is consistent with reports of an elevated bilateral
symmetry24 and a lack of asymmetry in left planum
temporale in WS.22 Histologic studies also provide
evidence of this lack of asymmetry in WS.56,57 Impor-
tantly, atypical patterns of structural and functional
asymmetries were also shown in patients suffering from
neurodevelopmental disorders such as schizophrenia37,58

and dyslexia.59,60 In schizophrenic patients, the leftward
asymmetry is much reduced due possibly to a relatively
larger right planum temporale than normal controls.61

Structural and functional asymmetries are charac-
teristic of biologic systems and are associated with
lateralization and cognitive skills, even in invertebrates.62

Thus, the lack of asymmetry observed in this clinical
population is additional evidence to suggest that struc-
tural alterations in STG morphology are likely associated

TABLE 3. STG Left-Right Asymmetry Degree in WS and Control Group

WS Group (N=10) Control Group (N=9)

M SD M SD t (17) P

Left-right asymmetry in STG 0.988 0.317 1.050 0.175 � 5.219 P<0.001

STG indicates superior temporal gyrus; WS, Williams syndrome

FIGURE 3. Scatter dot of verbal IQ and left STG volume (A) and right STG volume (B). IQ indicates intelligence quotient; STG,
superior temporal gyrus.
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with abnormal brain development and language impair-
ments.

In conclusion, the present study reveals that
absolute STG volume, though not relative STG volume,
is reduced in WS, a finding associated with impaired
verbal IQ. In parallel, we also found a loss of the normal
left>right asymmetry in STG in WS patients that was
not evident in normal controls. These findings, taken
together, strongly suggest that abnormal development of
STG underlies the cognitive and linguistic phenotype of
WS. Also, these data support the need to consider
language and speech therapy in the multidisciplinary
intervention approaches with these patients, namely
intervention in the area of pragmatics, grammar, and
also the design of specific intervention strategies to
improve prelinguistic development.47,63

Future studies are needed to more closely evaluate
the implications of structural and functional brain
anomalies in WS, coupled with possible genetic variations
that have further implications for both structural and
functional brain anomalies in this disorder.
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