EPCS 2008

The political economy of seigniorage^{*}

Ari Aisen International Monetary Fund 700 19th Street NW Washington, DC 20431 – U.S.A. aaisen@imf.org

Francisco José Veiga^{**} Universidade do Minho and NIPE Escola de Economia e Gestão P-4710-057 Braga - Portugal fjveiga@eeg.uminho.pt

Abstract

While most economists agree that seigniorage is one way governments finance deficits, there is less agreement about the political, institutional and economic reasons for relying on it. This paper investigates the main political and institutional determinants of seigniorage using panel data on about 100 countries, for the period 1960-1999. Estimates show that greater political instability leads to higher seigniorage, especially in developing, less democratic and socially-polarized countries, with high inflation, low access to domestic and external debt financing and with higher turnover of central bank presidents. One important policy implication of this study is the need to develop institutions conducive to greater political stability as a means to reduce the reliance on seigniorage financing of public deficits.

Keywords: Seigniorage, political instability, institutions.

JEL codes: E31, E63.

^{*} The authors acknowledge helpful comments from Christopher Bowdler, Juan Jauregui, Delfim Neto, Carlos Végh, Robert Flood, Paolo Mauro, Lant Pritchett, and various staff members from the International Monetary Fund. We also thank Reid Click for sharing his data on creditworthiness ratings. The views expressed in this paper are those of the authors and do not necessarily represent those of the IMF or IMF policy.

^{**} Corresponding author. Universidade do Minho, Escola de Economia e Gestão, P-4710-057 Braga, Portugal. Tel.: +351-253604534; Fax: +351-253676375; Email: fjveiga@eeg.uminho.pt.

1. Introduction

The purpose of this paper is to identify the main determinants of cross-country and cross-time differences in seigniorage - real revenues a government acquires by using newly issued money to buy goods and non-money assets.¹ This is a challenge not yet satisfactorily confronted by the economics profession for four reasons. First, several political and institutional variables used as explanatory variables in earlier studies were relatively poorer measures of political instability and of the institutional environment than those available in new datasets such as the Cross National Time Series Data Archive (CNTS), Database of Political Institutions (DPI), the Polity IV Database, State Failure Task Force (SFTF) database, and the Freedom House ratings. Second, our analysis is based on a richer and wider dataset, covering more countries and years than those used in previous studies, and includes a larger variety of alternative model specifications. Third, although Aisen and Veiga (2006) study the determinants of inflation using a similar dataset, one should not expect that variables affecting inflation should affect seigniorage in the exact same way, since the latter might be consistent with two different levels of the former in the presence of a well-defined Laffer curve. According to Easterly et al. (1995), studying inflation is different to studying seigniorage, especially for developing and high inflation countries. Accordingly, the correlation between inflation and seigniorage in our sample fluctuates significantly depending on the rate of inflation (see Table 1). While it is positive most of the time and for most of the countries, it declines with the level of inflation and becomes negative for inflation rates above 400 percent per year. Thus, it is misleading to assume that the determinants of inflation are necessary the same as those of seigniorage, which means that separate studies of these variables should be made. As an example, changes in inflation may result from supply-side shocks, such as

¹ Some studies, such as Buiter (2007), distinguish seigniorage (change in monetary base) from central bank revenue (interest earned by investing the resources obtained through the past issuance of base money). This distinction is useful to study central bank operations and monetary policy effectiveness. For the purposes of this paper, however, it suffices to broadly define seigniorage as revenues obtained by a consolidated government (treasury and central bank) from the issuance of base money.

fluctuations in oil prices, which do not directly affect seigniorage. Conversely, the structure of the economy, which affects the capacity to raise taxes and the reliance on seigniorage revenues, may not affect inflation in the same way. Fourth, our models are able to identify the circumstances under which the relationship between political instability and seigniorage is stronger, a central topic of our research and virtually absent from previous empirical studies on the determinants of seigniorage. While seigniorage seems to be a less attractive method of government financing for several countries, the truth is that it was still used to a greater extent in the 1990s than in the 1960s. Furthermore, seigniorage revenues are on average five times higher in developing countries than in industrial countries for the period 1960-1999. In the 1990s, average seigniorage revenues represented 14.65% of total government revenues for developing countries, compared to only 1.64% for industrial countries. Therefore, analyzing the determinants of seigniorage is an important endeavor, primarily for developing countries.

-- Insert Table 1 about here --

Relying upon the theoretical literature and using a dataset covering around 100 countries for the period 1960-1999, we estimate panel data models to investigate the main economic, political and institutional determinants of seigniorage. After controlling for the countries' economic structure and for several other variables that may affect seigniorage, we find that greater political instability leads to higher seigniorage levels, confirming previous results by Cukierman et al. (1992) and Click (1998).

This paper's major contribution to the literature is the identification of the circumstances under which the above-referred relationship is stronger. That is, we find that political instability has stronger effects on seigniorage levels in higher inflation than in moderate and low inflation countries, and also in developing than in industrial nations. In addition, this relationship is also stronger in countries with (i) higher social polarization; (ii) a

3

tradition of high political instability;² (iii) higher central bank president turnover (lower *de facto* central bank independence); (iv) lower indexes of economic freedom; (v) more authoritarian regimes; (vi) higher domestic debt levels as a percentage of GDP; (vii) lower access to international financing (expressed in poorer creditworthiness ratings); and, (viii) lower openness to international trade. It is also worth mentioning that, besides its effects on the relationship between political instability and seigniorage, social polarization is by itself a major determinant of seigniorage. Empirical results show quite clearly that higher degrees of social polarization (lower ethnic homogeneity) are associated with higher levels of seigniorage.

The paper is structured as follows. A survey of the empirical and theoretical literature on the relationship between seigniorage, political instability and institutions is presented in section 2. The dataset and the empirical models are described in section 3. Section 4 presents the empirical results, and section 5 concludes the paper.

2. The political economy of seigniorage

Most economists acknowledge that differences on the way countries conduct their fiscal policies are behind the variability of the seigniorage levels they sustain.³ But this explanation leads to a much deeper and fundamental question, which is why countries differ on the way they conduct fiscal policies (see Woo, 2003 and 2005). In particular, governments that are able to finance their expenditures through taxes or debt do not need to rely on seigniorage revenues. Several studies have explored the idea that structural features of a particular economy help determine its "taxable capacity". Chelliah et al. (1975), for example, provide evidence that countries with larger per capita non–export income, more open to trade

²Expressed in a high number of state failure events in the last 15 years, such as revolutionary wars, ethnic wars, regime crises, and genocides/politicides.

³ See Catão and Torrones (2005) for an empirical analysis on the relationship between fiscal deficits and inflation and Fischer et al. (2002) for a survey on modern hyper- and high inflations that includes results showing a positive relationship between fiscal deficits and seigniorage.

and with larger mining but smaller agricultural sectors have, on average, a higher "taxable capacity" or ease of collection. This result leads to the conclusion that the countries' ability to tax is technologically constrained by their stage of development and by the structure of their economies (e.g. size of the agricultural sector in GDP), and as tax collecting costs are high and tax evasion pervasive, countries might use seigniorage more frequently. But what if governments, independently of their countries' economic structures, find it optimal to finance expenditures using seigniorage rather than levying other taxes (e.g. taxes on output)? The Theory of Optimal Taxation (see Phelps, 1973; Végh, 1989; and Aizenman, 1992) rationalizes government behavior in many countries showing that it might be optimal for governments to rely on seigniorage if other taxes are highly distortionary. According to this theory, governments optimally equate the marginal cost of the inflation tax with that of output taxes, therefore minimizing the distortions to the economy when choosing the optimal combination of taxes to finance their expenditures. Edwards and Tabellini (1991) and Cukierman et al. (1992) fail to find evidence that this theory applies to developing countries. Click (1998) estimates a model using 90 countries, from 1971-90, and find that only 40 percent of the cross-country variation in seigniorage can be explained with the Theory of Optimal Taxation. The empirical failure of this theory to fully explain the cross-country differences in the use of seigniorage revenues motivated the use of theoretical and empirical models focusing on the role played by political and institutional variables.

Cukierman et al. (1992) develop a theoretical model whereby political instability and ideological polarization determine the equilibrium efficiency of the tax system and the resulting combination of tax revenues and seigniorage that governments use. Using a probit model to determine the likelihood of an incumbent government to remain in power, they show evidence that higher political instability and ideological polarization lead to higher seigniorage. In the empirical analysis of section 4, we employ alternative and more direct

5

measures of political instability, such as variables that count the exact number of cabinet changes, executive changes or government crises taking place in a particular year. Moreover, whereas they use a dummy variable for democratic regimes as a proxy for ideological polarization, we use the Polity Scale (ranged between -10 and +10) to measure the degree of democracy in different countries, and an ethnic homogeneity index as a proxy for the degree of social polarization.⁴

In line with Cukierman et al. (1992), we conjecture that economies with weaker institutions might be unable to build efficient tax systems leading them to use more frequently seigniorage as a source of revenue. In the next sections, in addition to the effects of political instability on seigniorage, we also estimate the effects of institutions such as democracy and economic freedom. Besides structural variables accounting for the taxing capacity of the economy and political and institutional variables affecting the use of seigniorage financing of fiscal deficits, we also consider, in line with Click (1998), variables that measure the ability of governments to finance transitory expenditures with domestic or external debt. To the extent that a government is able to finance its expenditure through debt, there is less need to rely on seigniorage.

Our main contribution to the literature is that our models not only identify the main political and economic determinants of seigniorage, but also reveal under which circumstances the effects of political instability on seigniorage are stronger. Our results indicate that the causal effect of political instability on seigniorage is stronger in developing and high inflation countries. In addition, it is also stronger in socially-polarized⁵, less

⁴ An additional shortcoming of the analysis in Cukierman et al. (1992) is the use of a cross-sectional dataset using averages from 1971 to 1982 for only 79 countries, while we use a panel dataset covering around 100 countries for the period 1960-99.

⁵ See Beetsma and Van Der Ploeg (1996), Bhattacharya, et al. (2005) and Albanesi (2007) for studies presenting evidence suggesting that inflation and income inequality are positively related. In Desai, et al. (2005) that relationship is conditional on the political structure. Woo (2005) finds that social polarization is associated with fiscal instability while generating incentives to engage in short-term policies leading to lower growth. Our findings indicate that the fiscal instability channel may also lead to higher seigniorage and inflation.

democratic, traditionally unstable, and highly indebted countries. Finally, political instability has greater effects on seigniorage in countries that have lower *de facto* central bank independence, lower economic freedom, lower creditworthiness ratings and lower openness to international trade. In our view, and to the best of our knowledge, there is no comprehensive study in the literature fully analyzing the relationship between political instability and seigniorage. As it will become clear in the following sections, this paper is an attempt to contribute in this direction.

3. Data and the empirical model

The dataset is composed of annual data on political, institutional and economic variables for the years 1960 to 1999. Although we collected data for 178 countries, missing values for several variables reduce the number of countries in our estimations to around 100. The sources of political and institutional data are: the *Cross National Time Series Data Archive* (CNTS); the *Polity IV* dataset;⁶ Gwartney and Lawson (2002);⁷ the *Database of Political Institutions* (DPI 3.0);⁸ the *State Failure Task Force* dataset (SFTF);⁹ and the *Freedom House* ratings.¹⁰ Economic data was collected from the World Bank's *World Development Indicators* (WDI) and *Global Development Network Growth Database* (GDN),¹¹ the International Monetary Fund's *International Financial Statistics* (IFS), the *Penn World Tables* (PWT 6.1),¹² *Euromoney* creditworthiness ratings,¹³ Cukierman, Webb, and Neyapti (1992),¹⁴ Dollar and Kraay (2002),¹⁵ and Levi-Yeyati and Sturzenegger (2003).¹⁶

⁶ Available on the Internet (http://www.cidcm.umd.edu/inscr/polity/index.htm).

⁷ Available on the Internet (http://www.freetheworld.com/release.html).

⁸ On this database, see Beck et al. (2001). Available on the Internet though Philip Keefer's page in the World Bank's site (http://www.worldbank.org/research/bios/pkeefer.htm).

⁹ Available on the Internet (http://www.cidcm.umd.edu/inscr/stfail/sfdata.htm).

¹⁰ Available on the Internet (http://www.freedomhouse.org/ratings/).

¹¹ Available on the Internet (http://www.worldbank.org/research/growth/GDNdata.htm).

¹² Available on the Internet (http://pwt.econ.upenn.edu/php_site/pwt_index.php).

To investigate the main political, institutional and economic determinants of seigniorage levels across countries and time, we estimate panel data models, controlling for countries' fixed effects. Seigniorage is defined in two alternative ways: (1) the change in reserve money (line 14a of IFS-IMF) as a percentage of nominal GDP (line 99b in IFS-IMF); (2) the change in reserve money (line 14a of IFS-IMF) as a percentage of government revenues (line 81 in IFS-IMF). Appendix A shows the number of observations, means and standard deviations of these seigniorage measures for all countries for which data is available.¹⁷

We hypothesize that seigniorage levels depend on the following explanatory variables:

- A set of variables representing political instability, polarization and institutions:
 - Cabinet Changes (CNTS), a proxy for political instability, counts the number of times in a year in which a new premier is named and/or 50% of the cabinet posts are occupied by new ministers. A positive coefficient is expected, as greater instability should lead to greater reliance on seigniorage revenues.

Why may the number of cabinet changes be a good indicator of political instability? First, in a country characterized by frequent changes in the composition of government, there are also frequent changes in macroeconomic policies, as new prime ministers or ministers of finance/economics do not necessarily share the views of their predecessors. Second, frequent cabinet changes shorten the horizon of

¹³ The data on the *Euromoney* creditworthiness index, raging from 0 to 100, from 1982 to 1999, was kindly provided by Reid Click.

¹⁴ Underlying data available on the Internet (http://www.tau.ac.il/~alexcuk/pdf/WebbPoltime2.xls).

¹⁵ Underlying data available on the Internet (http://siteresources.worldbank.org/INTRES/Resources/469232-

^{1107449512766/648083-1108140788422/}Growth_is_good_for_the_poor_data.zip)

¹⁶ Underlying data available on the Internet (http://www.utdt.edu/~fsturzen/base_2002.xls).

¹⁷ There is data on $\Delta RM/GDP$ for 144 countries and on $\Delta RM/GR$ for 122 countries. These are the seigniorage measures most commonly used in the literature. We performed all estimations for both measures but, to make our results more easily comparable to those of Cukierman et al. (1992), we report in most tables those obtained when using the change in reserve money as a percentage of government revenues. Two additional ways of measuring seigniorage, used by Cukierman et al. (1992), are the product of reserve money by the inflation rate divided by either GDP or government revenues. These authors have shown that these two additional alternative measures of seigniorage provide similar results for a cross-section of countries. Another alternative, used by Click (1998), is the change in the monetary base as a percentage of government spending.

the members of government, as they are not certain that they will keep their posts during an entire term. The higher the probability of being replaced, the greater will be the importance attributed to short-term objectives. Then, since the costs of future inflation are not fully internalized, it is difficult to resist the temptation to finance current expenditures with seigniorage revenues.

- *Ethnic Homogeneity Index* (SFTF): ranges from 0 to 1, with higher values indicating ethnic homogeneity, and equals the sum of the squared population fractions of the seven largest ethnic groups in a country. For each year, it takes the value of the index in the beginning of the respective decade. According to Woo (2003, 2005) higher social polarization, which can be proxied by ethnic heterogeneity, leads to higher polarization of preferences for different types of government spending and to public deficits. Thus, a negative coefficient is expected;
- *Polity Scale* (Polity IV): from strongly autocratic (-10) to strongly democratic (10).
 Although the economic theory is not conclusive, we anticipate that democracy is associated with lower reliance on seigniorage (negative coefficient);¹⁸
- A set of economic structural variables that reflect characteristics of the countries that may affect their capacity to control inflation:
 - Agriculture (% GDP): share of the value added of agriculture in GDP (WDI, WB).
 According to Chelliah, et. al (1975), a positive coefficient is expected. An alternative proxy for the structure of the economy is Urban Population (% of total), the urbanization ratio (WDI, WB), which according to Edwards and Tabellinni (1991) should have a negative sign;

¹⁸ Although ethnic homogeneity and the polity scale may also be related with political instability, we see them more as institutional variables than as indicators of political instability.

- Trade (% GDP): openness to trade (WDI, WB). Since it is associated with larger revenues of import duties, we expect that countries more open to trade rely less on seigniorage revenues (a negative coefficient is expected);¹⁹
- *Real GDP per capita* (PWT 6.1). Richer countries have more efficient tax systems and, thus, have a lesser need for seigniorage (negative coefficient expected);
- Variables accounting for economic performance and external shocks:
 - % Change in Terms of Trade (WDI, WB). Favorable evolution of terms of trade provides greater tax revenues (negative coefficient expected);
 - *Growth of real GDP* (WDI, WB). Higher growth rates are associated with increasing tax revenues, reducing the need for seigniorage (negative coefficient);
- Variables accounting for fixed effects of countries and time:
 - Country dummy variables;
 - o Dummy variables for each decade: 1960s, 1970s, 1980s and 1990s.

Appendix B presents the descriptive statistics for the above-described dependent and independent variables and for additional/alternative explanatory variables that appear in the tables shown in the paper.

The empirical model for seigniorage levels can be summarized as follows:

$$S_{it} = \alpha P I_{i,t-1} + \beta S P_{it} + \delta P S_{it} + \mathbf{E} \mathbf{c} \mathbf{o}_{it}^{'} \mathbf{\varphi} + \mathbf{E} \mathbf{c} \mathbf{P}_{it}^{'} \mathbf{\gamma} + \mathbf{v}_{i} + \varepsilon_{it} \quad , \ i = 1, \dots, N \quad t = 1, \dots, T_{i} \quad (1)$$

Where *S* is seigniorage, *PI* is a proxy for political instability, *SP* is a proxy for social polarization, *PS* is the *Polity Scale*, **Eco** is a vector of economic structural variables, **EcP** is a vector of variables accounting for economic performance and external shocks, v_i is the fixed effect of country *i*, and ε_{it} is the error term.

¹⁹ The outcome on seigniorage may be similar, even if more open countries are imposing lower tariffs. These countries may rely less on seigniorage in order to avoid the real appreciation of the home currency associated with higher inflation. We owe this rationale to an anonymous referee.

It is worth noting that seigniorage is not persistent (its first lag is never statistically significant when included as an explanatory variable) and that the error term of equation (1), ε_{it} , is not serially correlated. Fisher type unit root tests for panel data reject the null hypothesis that seigniorage is non-stationary in all countries.²⁰ Dickey Fuller and Augmented Dickey-Fuller tests performed on each individual country reject unit root behavior of seigniorage for all countries that have at least ten observations (in 15 countries, a drift term has to be included). These results, which are available upon request, are consistent with those of Click (2000), who rejected a unit root behavior of seigniorage in the four countries considered in his study (USA, UK, Brazil, and Argentina).

The proxy for political instability ($PI_{i,t-1}$) is lagged one period for two reasons. First, political instability may translate into higher seigniorage only after some time. Furthermore, if a cabinet change occurs in the end of one year, it is very likely to lead to higher seigniorage only in the following year. Second, since from Aisen and Veiga (2006) higher seigniorage leads to higher inflation, which may affect political instability, using the contemporaneous value of political instability could create simultaneity/endogeneity problems. Taking the first lag avoids these problems, as current seigniorage does not affect past political instability. Since current seigniorage can affect current economic growth, *Growth of GDP* is also lagged one period.²¹

4. Empirical Results

²¹ The contemporaneous values are used for the remaining explanatory variables, since they are taken as exogenous.

The first objective of our empirical analysis is to identify the main political, institutional and economic determinants of seigniorage levels across countries and time. Then, after finding strong support for our hypothesis that greater political instability leads to higher seigniorage, we try to determine under which circumstances or country characteristics this relationship is stronger. Finally, we perform a sensitivity analysis that checks whether or not the main results hold for alternative proxies of political instability, for an alternative definition of seigniorage, for a sample that only includes developing countries, when our main proxy for political instability (*Cabinet Changes*) is defined in a different way, for a cross section and for samples of 5-year and 10-year periods, when outliers are controlled for, and when instrumental variables are used to account for the possibility that some explanatory variables are endogenous.

a) Main determinants of seigniorage levels

The estimation results of the model described in the previous section, using a fixed effects specification,²² are shown in Table 2. The dependent variable is the change in reserve money as a percentage of government revenues, and all explanatory variables described in the previous section were included in the estimation reported in column 1. Results confirm the hypothesis that greater political instability leads to higher seigniorage levels, and show that the effects are sizeable: an additional cabinet change increases seigniorage as a percentage of government revenues by 4.15 percentage points. Higher values of the *Ethnic Homogeneity Index* (lower social polarization) are associated with lower use of seigniorage, which is consistent with the findings of Cukierman et al. (1992)²³ and Woo (2003), and with the

²² Hausmann tests indicate that the fixed effects specification is preferable to a random effects model, and the joint statistical significance of the country dummies implies that a fixed effects model is preferable to a simple pooled OLS model. These results are available from the authors upon request.

²³ Although Cukierman et al. (1992) refer to ideological polarization, the crucial factor in their model is the polarization of preferences for different types of government spending, which can also result from social polarization. Furthermore, higher social polarization is generally associated with higher ideological polarization.

theoretical model of Woo (2005). Democracy does not seem to affect seigniorage, as the *Polity Scale* is not statistically significant.²⁴ Regarding the economic variables, only *Agriculture (%GDP)*, *Real GDP per capita*, and *Growth of Real GDP(-1)* are statistically significant, with the expected signs. Finally, the coefficients on the decade dummy variables are all positive and statistically significant.

--- Insert Table 2 about here ----

Since *Trade (%GDP)* and *%Change in Terms of Trade* are not statistically significant in the first column, they are excluded from the model of column 2.²⁵ Results remain practically the same. Then, in column 3, *Agriculture (%GDP)* was replaced by an alternative proxy for the structure of the economy, *Urban Population (% of total)*, for which there is a higher number of observations. The negative coefficient conforms to the idea that greater urbanization ratios are associated with greater ease to collect taxes and, thus, with lower seigniorage (see Edwards and Tabellini, 1991). The only changes in results are that the *Ethnic Homogeneity Index* becomes highly statistically significant, and the coefficients of the decade dummies indicate that seigniorage increased until the 1980s and slightly decreased in the 1990s. Since this specification of column 3 increases the number of observations by 324 (or 16.3%) and the number of countries by 7 (or 7%) relative to that of column 2, it will be used as our reference model.

Results regarding political instability²⁶ conform to our expectations and are consistent with those found by Aisen and Veiga (2006) for inflation levels, and with those of Cukierman et. al (1992) using cross sectional data. Those concerning economic variables are consistent with the findings of previous studies, such as Chelliah et. al (1975), Edwards and Tabellini

²⁴ This is not surprising, as Aisen and Veiga (2006) found that democracy marginally affects inflation and the effect is very small.

²⁵ They are never statistically significant when included in the models of the following columns of Table 4 or in those of the following Tables. Wald tests allow for the exclusion of these variables from the model.

²⁶ The results obtained when using three alternative proxies of political instability also available in the Cross National Time Series Data Archive - *Government Crises, Executive Changes,* and the *Weighted Conflict Index* - are very similar. These results are not shown here, but are available from the authors upon request.

(1991), and Click (1998), indicating that larger agricultural sectors, lower urbanization ratios, lower GDP per capita levels, and slower economic growth are associated with greater reliance on seigniorage revenues.²⁷

The time-dimension of seigniorage is captured by the decade dummies (column 3) and by a quadratic trend (column 4). These indicate that seigniorage increased until the 1980s, and declined during the nineties. In fact, the estimated coefficients of *Trend* and *Trend*² indicate that seigniorage hit its peak in 1990, and declined afterwards. Although one would expect the increased independence of central banks in industrial countries to start reducing seigniorage sooner, several developing countries still had high inflation (or even hyperinflation) and seigniorage in the late 1980s and in the beginning of the 1990s.²⁸ It is also interesting to note that most explanatory variables, with the exception of *Cabinet Changes*, exhibit relatively low time-series variation within each country. In fact, while *Cabinet Changes* has an average coefficient of variation within countries of 1.48, those of the other explanatory variables are all below 0.25 (the lowest is 0.065 for the *Ethnic Homogeneity Index*, which varies vary little over time).

As mentioned above, the country dummy variables are always jointly statistically significant. They account for a considerable part of the adjusted R^2 of 0.22 reported in columns 3 and 4. Since a pooled OLS, without fixed effects, would only have an adjusted R^2 of 0.07, roughly 0.15 of the variation in seigniorage is not explained by independent variables listed. This also means that more work needs to be done in this topic in order to improve the explanatory power of our models.

The results of robustness tests based on the model of column 3 are shown in Table 3. Those reported in column 1 indicate that higher economic freedom is associated with lower

²⁷ The first three variables were not statistically significant in Aisen and Veiga (2006). That is, those structural variables help explain seigniorage but not inflation, supporting our assertion in the introduction that their determinants are not the same and that separate studies for inflation and seigniorage should be implemented.
²⁸ For example, Argentina had hyperinflation in 1989, Brazil in 1990 and 1994, Peru in 1990, etc.

reliance on seigniorage. A higher *Index of Economic Freedom*²⁹ is associated with smaller governments, stronger legal structure and security of property rights, access to sound money, greater freedom to exchange with foreigners, and more flexible regulations of credit, labor, and business. Since these are characteristics of more advanced economies with lesser need of seigniorage financing, the negative coefficient found conforms to our expectations. Revolutionary wars in the country and civil/ethnic conflicts in Border States (columns 2 and 3, respectively) lead to higher reliance on seigniorage. This result is intuitive, since these occurrences are associated with larger military spending, which may be at least partially seigniorage-financed. The model of column 4 indicates that fixed exchange rates³⁰ lead to lower seigniorage levels. A possible explanation is that fixed exchange rates constrain monetary policy to the defense of the fixed parity and, thus, make the collection of seigniorage revenues harder. The results of column 5 confirm Click's (1998) result that seigniorage will be higher when the international creditworthiness of the country is lower. That is, when external borrowing is less available (or costlier), the government has to rely more heavily on seigniorage revenues. Finally, the last two columns test the effects of financial depth, which Woo (2003) found to be positively related with fiscal deficits. Two proxies taken from the database of financial development and structure of Beck, et al. (2000) are used: the ratio of deposit money bank assets to central bank assets, and liquid liabilities as a percentage of GDP. Although both have the expected negative sign, indicating that countries

²⁹ Gwartney and Lawson's (2002) data on the *Index of Economic Freedom* starts in 1970 and has a 5-year frequency. In order to avoid missing values, straight line interpolation was used to generate annual data. Since *Access to Sound Money* is affected by seigniorage, we avoided eventual endogeneity problems by using a transformed index that excludes that area (Area III).

³⁰ The result reported in column 7 is for the 5-way classification system of *de facto* exchange rate regimes of Levy-Yeyati and Sturzenegger (2003). Results are the same when their 3-way classification system is used instead. Since their data starts only in 1974, the inclusion of this variable originates a large number of missing values. That is why it was not included in the models of the previous columns. When included, it is always statistically significant, with a negative sign.

with more developed financial markets are more capable of financing higher deficits without resorting to seigniorage, only the first of these variables is statistically significant.³¹

--- Insert Table 3 about here ---

Despite all the tests implemented, which involved regressing seigniorage on a vast array of potential determinants, robustness may still be a concern. As the empirical economic growth literature has shown (see Durlauf et al, 1995, and Sala-i-Martin et al., 2004) the parameter estimates obtained in growth regressions are often sensitive to the inclusion of other conditional variables. Unfortunately, to our knowledge, there are no studies of the robust determinants of seigniorage that can be used to guide the decision of which variables to include in our estimations.³² Nevertheless, considering the persistence of our main results across a vast array of alternative specifications, it might be safe to argue that they are robust.

b) Circumstances under which the effects of political instability on seigniorage are stronger

Although our results regarding the relationship between political instability and seigniorage are clear, it is possible that they are stronger in some circumstances or in countries with specific characteristics. Aisen and Veiga (2006) found that political instability affect inflation levels especially in high inflation and developing countries, whereas that relationship was practically nonexistent in low inflation and industrialized countries. In order

³¹ A series of additional robustness tests, whose results are not shown here, were also performed. First, the Freedom House ratings of *Political Rights* and *Civil Liberties* were used instead of the *Polity Scale*. None was statistically significant. The same result was obtained when using indicators of *Executive Constraints* (CNTS) and of *Checks and Balances* (DPI). Second, indicators of *Ideological Polarization* (DPI), *Ideological Orientation* (DPI) and *Religious Homogeneity* (SFTF) were added to the reference model, but were not statistically significant. Third, we also found that trading partners GDP growth (GDN), external debt (WDI), domestic debt (IFS), *de jure* central bank independence (CW), U.S. Treasury Bill rates (IFS), real effective exchange rates (WDI), current account balance (IFS), government revenues as a percentage of GDP (IFS), and dollarization ratios (share of dollar deposits) do not affect seigniorage in a statistically significant way. All results not shown in the paper are available from the authors upon request. Although the indicator of *Ideological Polarization* taken from the DPI was not statistically significant, we should not interpret this result as a rejection of the model of Cukierman et al. (1992) in which greater ideological polarization leads to higher seigniorage. Since this indicator only takes the values of 0, 1 or 2, it does not satisfactorily represent the wide differences in ideological polarization among countries. These may be better proxied by the indicators of social polarization used in this paper.

³² Implementing an analysis such as that of Sala-i-Martin et al. (2004) to determine the robust determinants of seigniorage is beyond the scope of this paper.

to check if the same happens with seigniorage, we performed estimations based in the model of column 3 of Table 2 in which *Cabinet Changes* was interacted with dummy variables accounting for annual inflation rates above and below 50% and for developing and industrial countries. Results, illustrated in Figure 1,³³ are consistent with those of Aisen and Veiga (2006). That is, greater political instability, expressed in a higher number of cabinet changes, leads to higher seigniorage levels only in high inflation and developing countries.

--- Insert Figure 1 about here ---

According to Woo (2003, 2005), social polarization, which can be proxied by income inequality and ethnic or religious heterogeneity/fractionalization, and the quality of institutions are important determinants of budget deficits. In highly polarized societies, the high heterogeneity of preferences may translate to political parties and interest groups lobbying for different types and amounts of government spending. Then, high polarization of interests may lead to higher seigniorage, in the presence of political instability.³⁴ The quality of institutions is also very important because more stringent and transparent budgetary procedures, independence of the central bank, and greater parliamentary influence in the budgetary process can reduce the government's ability to increase budget deficits and extract seigniorage revenues.

The hypothesis that the relationship between seigniorage and political instability is affected by social polarization is tested interacting *Cabinet Changes* with dummy variables for average Gini coefficients above and below 40,³⁵ for high and low ethnic homogeneity,³⁶ and for high and low religious homogeneity. Results clearly support the hypothesis that

³³ The coefficient obtained for *Cabinet Changes (Pol.Instability)* in Column 3 of Table 2 is shown in the first bar of Figure 1. The estimation results for the interactions of *Cabinet Changes* considered in Figure 1 are reported in Appendix C,

³⁴ In the model of Cukierman et al. (1992), this high polarization of interests results in higher seigniorage.

³⁵ The dummy *Gini*>40 takes the value of one for countries whose average Gini coefficient is above 40, and equals zero for the remaining countries. (*Gini* \leq 40) = 1 - (*Gini*>40).

³⁶ The dummy *Low Ethnic Homogeneity* takes the value of one for countries whose respective index is equal to or lower than the 25th percentile, and equals zero for the remaining countries. (*High Ethnic Homogeneity* = 1 - Low Ethnic Homogeneity). The same procedure was adopted for the religious homogeneity dummies.

political instability has stronger effects on seigniorage in countries with large social polarization (high income inequality and low ethnic or religious homogeneity). Finally, we test the hypothesis that political instability will have greater effects on seigniorage in countries that have traditionally been more unstable. Two dummy variables were created using the variable *Upheaval* from the SFTF, ³⁷ which indicates the sum of the maximum magnitude of events in the prior 15 years, including revolutionary wars, ethnic wars, regime crises, and genocides/politicides. Although both dummies turned out as statistically significant, the magnitude of the coefficients implies that the number of cabinet changes in the previous year (our proxy for political instability) has greater impact on seigniorage in traditionally unstable countries.³⁸

The hypothesis that institutions affect that relationship was tested interacting *Cabinet Changes* with dummy variables for high and low turnover rates of central bank presidents,³⁹ for high and low economic freedom,⁴⁰ and for *Polity Scale* below and above zero. The results, illustrated in the second and third bars of Figure 2,⁴¹ imply that greater political instability leads to higher seigniorage only when there is a high turnover rate of central bank presidents, that is, when the *de facto* independence of the central bank is low. When independence is high, seigniorage does not increase, as the government is no longer able to affect reserve money.⁴² Political instability also seems to affect seigniorage only in countries that have a

³⁷ *High Upheaval* equals one when the value of *Upheaval* is above 3, and equals zero otherwise. *Low Upheaval* = 1-*High Upheaval*.

³⁸ When *Cabinet Changes* is interacted with regional dummy variables, the positive effect of political instability on seigniorage is statistically significant only for Western Hemisphere (Latin American) and African countries. These results are not shown here, but are available upon request.

³⁹ Cukierman, Webb and Neyapti (1992) use this turnover rate as an indicator of *de facto* central bank independence. The dummy *High Turnover* takes the value of one when the turnover rate is above the sample median of 0.20, and is zero otherwise. *Low turnover* = 1 - High Turnover.

⁴⁰ The dummy variable *High Economic Freedom* takes the value of one when the *Index of Economic Freedom* is greater than 5, and equals zero otherwise (*Low Economic Freedom* = 1- *High Economic Freedom*). Again, we used a transformed index that excludes Area III (Access to Sound Money).

⁴¹ The estimation results for the interactions of *Cabinet Changes* considered in Figure 2 are reported in Appendix D,

⁴² It is worth noting that this result does not hold when the Cukierman, Webb and Neyapti (1992) legal index of Central Bank Independence is used instead of the turnover rate of presidents (that proxies *de facto*

low *Index of Economic Freedom*. This implies that the establishment of sounder and freer economic institutions is a way to reduce the impact of political instability on seigniorage. More democratic institutions also seem to matter, as the results indicate that political instability affects seigniorage less in democratic countries (*Polity Scale>0*) than in countries under authoritarian regimes (*Polity Scale* ≤ 0).

--- Insert Figure 2 about here ---

Click (1998) shows that when governments face greater constraints to issue domestic and/or external debt, they tend to resort more often to seigniorage revenues. We hypothesize that the effects of political instability on seigniorage levels also depend on the ratios of domestic debt to GDP and on the countries' creditworthiness. That is, when greater political instability leads to higher deficits, governments resort more often to seigniorage revenues to finance them when domestic or foreign borrowing is more difficult (or costlier). The results provide empirical support for the above-referred hypothesis, as a greater number of *Cabinet Changes* is associated with higher seigniorage only in countries that have *High Domestic Debt* ⁴³ or *Low Creditworthiness*.⁴⁴

Finally, we test the hypothesis that political instability will lead to greater seigniorage essentially in countries with lower trade openness ratios. Although we did not identify a direct relationship between openness and seigniorage in the estimations of Table 2, it is possible that openness to international trade affects the relationship between political instability and seigniorage. That is, in more open economies, the increase in government expenditures caused by political instability may be partially financed by higher taxes on trade, reducing the need to

independence). This may happen because what really matters for the conduct of monetary policy is the *de facto* independence and not what is written in the central bank law.

⁴³ *High Domestic Debt* (*H.Dom.Debt*) is a dummy variable that takes the value of one for the countries whose average ratio of domestic debt to GDP is above the countries' median ratio (13.28), and takes the value of zero otherwise. *Low Domestic Debt* = 1 - High Domestic Debt

⁴⁴ *High Creditworthiness (H.Creditworth.)* is a dummy variable that equals one for the countries whose average *Euromoney's* creditworthiness rating is above 60 (the 75th percentile of the country averages), and equals zero otherwise. *Low Creditworthiness=1- High Creditworthiness*.

resort to seigniorage financing. Results shown in the last two bars of Figure 2 are consistent with this hypothesis.⁴⁵

c) Sensitivity analysis

Three alternative indexes of political instability were constructed by applying the principal components analysis. The variables used to define each Political Instability Index were (all from the CNTS):⁴⁶

- P.I. Index 1: Assassinations, Cabinet Changes, Constitutional Changes, Coups, Executive Changes, Government Crises, and Revolutions;
- P.I. Index 2: Assassinations, Constitutional Changes, Coups, Government Crises, and Revolutions (same as in Woo, 2003);
- P.I. Index 3: Cabinet Changes, Executive Changes, and Government Crises.

Table 4 reports the results of estimations using these alternative indexes. They are very similar to those obtained for *Cabinet Changes*, reported in Table 2 and Appendix C. Thus, our results are not sensitive to the choice of the proxy for political instability. That is, for all variables used, political instability is positively related to seigniorage.

--- Insert Table 4 about here ---

Columns 1 to 3 of Table 5 report results obtained for an alternative definition of seigniorage: Change in Reserve Money as a percentage of GDP. In the models of columns 4 and 5 the sample contains only developing countries, and seigniorage is defined as in the previous tables. Finally, in the models of columns 6 to 8, a three-year moving average of *Cabinet Changes* was used instead of its annual values, in order to better capture eventual

⁴⁵. It is worth noting that the interactions of *Cabinet Changes* with *High Turnover* and with *High Domestic Debt* are only statistically significant at the 10% level.

⁴⁶ This technique for data reduction describes linear combinations of the variables that contain most of the information. It analyses the correlation matrix and the variables are standardized to have mean zero and standard deviation of 1 at the outset. Then, for each of the three groups of variables, the first component identified, the linear combination with greater explanatory power, was used as the political instability index.

persistent situations of political instability. In all cases, results are similar to those obtained in Tables 2 and Appendix C, meaning that our conclusions regarding the effects of political, institutional and economic variables on seigniorage levels remain practically the same.

--- Insert Table 5 about here --

Results for alternative data frequencies are shown in Table 6. In columns 1, 3 and 5 the reference model was estimated for a cross section of 108 countries and for panels of 10-year and 5-year averages. Results are still supportive of the hypothesis that political instability leads to greater seigniorage. Although the *Ethnic Homogeneity Index* is not statistically significant in the cross section (column 1), the results for the panel estimations provide evidence in favor of the view that social polarization leads to seigniorage. The *Index of Economic Freedom* was added in columns 2, 4 and 6. As happened in Column 1 of Table 3, this variable is highly statistically significant, with a negative sign, reinforcing the conclusion that greater economic freedom is associated with lower reliance on seigniorage revenues.

--- Insert Table 6 about here --

It is possible that outliers associated with high inflation and high seigniorage episodes affect the results of our regressions. This possibility is accounted for, using annual data, in columns 1 to 4 of Table 7. In column 1, all observations for which annual inflation was above 1000% were excluded. Then, in column 2, we only included the observations for which seigniorage (as a percentage of government revenues) was smaller or equal to its mean plus two standard deviations (\leq 156.76%). Results in both cases are very similar to those of the reference model. Then, we used two robust estimation procedures: least median of squares (LMS), in column 3; and, least absolute deviation (LAD), in column 4. In both cases, a greater number of cabinet changes is associated with higher seigniorage, but the *Ethnic Homogeneity Index* is not statistically significant when using LAD (column 4).

--- Insert Table 7 about here --

Finally, we estimated instrumental variables (IV) models in order to account for the possibility that some explanatory variables are endogenous. Dealing with inflation, Aisen and Veiga (2006), used the system Generalized Method of Moments (GMM-SYS) estimator for dynamic panel data models. But, since lagged seigniorage is never statistically significant when included in our estimations, we do not have a dynamic panel. Thus, in columns 5 and 6, we performed two-step feasible GMM and LIML (Limited Information Maximum Likelihood), respectively, with instrumental variables.⁴⁷ Results are consistent with the hypothesis that political instability and social polarization lead to greater reliance on seigniorage revenues.⁴⁸

5. Conclusions

The main purpose of this paper was to identify the major determinants of the crosscountry and cross-time variability of seigniorage. Using a dataset covering about 100 countries, from 1960-1999, and applying standard panel data techniques, we found that greater political instability and social polarization lead to higher seigniorage. These results are consistent with the findings of previous studies such as Cukierman et al. (1992), Click (1998) and Woo (2003, 2005).

Our major contribution to the literature is that, in addition to the above-referred results, we succeeded to comprehensively determine the circumstances under which political instability has a greater impact on seigniorage, an important topic that received little attention in previous studies. Our results indicate that the effects of political instability on seigniorage are stronger in high-inflation, developing, socially polarized, and traditionally more unstable

⁴⁷ These estimations were performed using the *ivreg2* command of Stata. Lagged values one and two periods of *Cabinet Changes* were used as instruments for that variable. Using geographical dummies and other variables as additional instruments does not significantly change the results. Orthogonality tests do not reject the exogeneity of the other explanatory variables. The option *cluster* was used in order to account for intra-country correlation.

⁴⁸ One should note that the estimated coefficients for *Cabinet Changes* get very large. This may be due to weak instruments. In fact, when good instruments are not available, it may be preferable not to perform instrumental variables estimations.

economies. Moreover, the same applies to countries with high turnover rates of central bank presidents (lower *de facto* central bank independence), with lower levels of economic freedom, that are less democratic, with higher domestic debt, with poorer creditworthiness ratings and with lower openness to international trade.

Although the results concerning political instability and institutional variables are similar to those of Aisen and Veiga's (2006) study of inflation, there are several differences regarding other explanatory variables, which support our assertion that the determinants of inflation and seigniorage are not exactly the same and that it is necessary to conduct separate studies for these variables. In fact, seigniorage does not seem to be affected by changes in oil prices or US Treasury Bill rates (which affect inflation), but is determined by structural variables that condition the government's ability to raise taxes, such as the size of the agricultural sector, the urbanization ratio, and the level of GDP per capita, which do not seem to affect inflation.

The results of this study have policy implications that greatly contribute to the policy debate in high inflation (seigniorage) and politically unstable economies. Our results show that countries adopting policies targeting greater political stability, lower income inequality, and institutional strengthening, such as new laws governing central bank independence, limit the negative effect of political instability on seigniorage, improving their chances of successfully lowering their dependence on seigniorage revenues to finance their governments' deficits. After some time, they should benefit from lower inflation and, consequently, higher growth and economic prosperity.

References

- Aisen, A., Veiga, F.J., 2006. Does Political Instability Lead to Higher Inflation? A panel data analysis. *Journal of Money, Credit and Banking* 38(5), 1379-1389.
- Aizenman, J., 1992. Competitive Externalities and the Optimal Seignoriage. Journal of Money, Credit and Banking 24(1), 61-71.
- Albanesi, S., 2007, Inflation and Inequality. Journal of Monetary Economics 54, 1088–1114.
- Beck, T., Clarke, G., Groff, A., Keefer, P., Walsh, P., 2001. New Tools in Comparative Political Economy: the Database of Political Institutions. *The World Bank Economic Review* 15(I), 165-176.
- Beck, T., Demirgüç-Kunt, A., Levine, R., 2000. A New Database on Financial Development and Structure. *World Bank Economic Review* 14, 597-605.
- Beetsma, R.M.W., Van Der Ploeg, F., 1996. Does Inequality Cause Inflation? The Political Economy of Inflation, Taxation, and Government Debt. *Public Choice* 87, 143-162.
- Bhattacharya, J., Bunzel, H., Haslag, J., 2005. The Non-monotonic Relationship Between Seigniorage and Inequality. *Canadian Journal of Economics* 38(2), 500-519.
- Buiter, W.H., 2007. Seigniorage. NBER Working Paper 12919.
- Catão, L., Torrones, M., 2005. Fiscal Deficits and Inflation. *Journal of Monetary Economics* 52, 529-554.
- Chelliah, R., Baas, H., Kelly, M., 1975. Tax Ratios and Tax Effort in Developing Countries 1969-1971. *IMF Staff Papers*, 22: 187-205.
- Click, R., 1998. Seigniorage in a Cross-Section of Countries. *Journal of Money, Credit and Banking* 30(2), 154-171.
- Click, R., 2000. Seigniorage and Conventional Taxation with Multiple Exogenous Shocks. Journal of Economic Dynamics & Control 24, 1447-1479.

- Cukierman, A., Edwards, S., Tabellini, G., 1992. Seignioriage and Political Instability. *American Economic Review* 82(3), 537-555.
- Cukierman, A., Webb, S., Neyapti, B., 1995. Measuring the Independence of Central Banks and Its Effect on Policy Outcomes. *The World Bank Economic Review* 6(3), 353-398.
- Desai, R.M., Olofsgard, A., Yousef, T.M., 2005. Inflation and Inequality: Does Political Structure Matter? *Economics Letters* 87,41-46.
- Dollar, D., Kraay, A., 2002. Growth is Good for the Poor. *Journal of Economic Growth* 7, 195-225.
- Durlauf, S., Johnson, P., Temple, J., 2005. Growth Econometrics. In: Aghion, P., Durlauf, S. (eds) *Handbook of Economic Growth*. North-Holland, Amsterdam.
- Easterly, W., Mauro, P., Schmidt-Hebbel, K., 1995. Money Demand and Seigniorage-Maximizing Inflation. *Journal of Money, Credit and Banking* 27(2), 583-603.
- Edwards, S., Tabellini, G., 1991. Explaining Fiscal Policy and Inflation in Developing Countries. *Journal of International Money and Finance* 10, S16-S48.
- Fischer, S., Sahay, R., Végh, C., 2002. Modern Hyper- and High Inflations. Journal of Economic Literature 40(3), 837-880.
- Gwartney, J., Lawson, R., 2002. Economic Freedom of the World 2002 Annual Report. Fraser Institute, Vancouver, B.C..
- Levy-Yeyati, E. and F. Sturzenegger, 2003. To Float or to Fix: Evidence on the Impact of Exchange Rate Regimes on Growth. *American Economic Review* 93(4), 1173-1193.
- Phelps, E., 1973. Inflation in the Theory of Public Finance. *Swedish Journal of Economics* 75, 67-82.
- Sala-i-Martin, X., Doppelhofer, G., Miller, R., 2004. Determinants of Long-Term Growth: A Bayesian Averaging of Classical Estimates (BACE) Approach. *American Economic Review* 94, 813-835.

- Végh, C., 1989. Government Spending and Inflationary Finance: A Public Finance Approach. *IMF Staff Papers* 36, 657-77.
- Woo, J., 2003. Economic, Political, and Institutional Determinants of Public Deficits. *Journal of Public Economics* 87, 387-426.
- Woo, J., 2005. Social Polarization, Fiscal Instability, and Growth. *European Economic Review* 49, 1451-1477.

Sample	Observations	Correlation
All	3171	0.214
Inflation < 10%	1967	0.102
Inflation <100%	3083	0.305
Inflation >100%	88	0.132
Inflation >200%	43	0.058
Inflation >300%	34	0.0001
Inflation >400%	28	-0.007
Inflation >500%	26	-0.038
Inflation >1000%	18	-0.139

Table 1: Correlation between Inflation and Seigniorage

Notes:

- Inflation is the annual inflation rate (IFS line 64x)
- Seigniorage is the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81).

Seigniorage	1	2	3	4
Cabinet Changes (-1)	4.149	3.688	4.282	4.309
	(2.52)**	(2.45)***	(3.01)***	(2.99)***
Ethnic Homogeneity Index	-22.776	-22.419	-24.054	-24.747
	(-1.78)*	(-1.86)*	(-2.65)***	(-2.78)***
Polity Scale	.380	.379	.300	.306
-	(1.44)	(1.55)	(1.45)	(1.50)
Agriculture (% GDP)	1.748	1.594		
-	(3.62)***	(3.57)***		
Urban population (% of total)			486	565
			(-2.39)**	(-2.58)***
Trade (%GDP)	.013		× /	
	(.20)			
Real GDP per capita	001	001	002	002
1 1	(-3.77)***	(-4.23)***	(-5.32)***	(-5.11)***
% Change in Terms of Trade	.89e-07	. ,	× /	
-	(1.32)			
Growth of Real GDP (-1)	467	432	664	655
	(-2.97)***	(-3.05)***	(-3.85)***	(-3.87)***
Dummy1970s	10.247	8.779	7.088	. ,
	(3.88)***	(4.09)***	(3.83)***	
Dummy1980s	18.575	16.998	13.448	
-	(3.97)***	(4.17)***	(3.85)***	
Dummy1990s	19.476	17.651	12.367	
2	(3.34)***	(3.56)***	(2.80)***	
Trend				1.622
				(4.67)***
Trend ²				026
				(-4.06)***
# Observations	1836	1982	2306	2306
# Countries	97	101	108	108
Adjusted R ²	.25	.25	.22	.22
Adjusted R ² (without fixed effects)			.07	.07

Table 2: Results for Seigniorage

Notes: - Panel regressions with fixed effects of countries and a constant. T-statistics based on heteroskedastic consistent standard errors are in parenthesis.

Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%;

- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81).

Seigniorage	1	2	3	4	5	6	7
Cabinet Changes (-1)	4.638	4.372	4.299	5.686	5.965	3.150	1.253
Ethnic Homogeneity Index	(2.62)*** -56.688 (-3.22)***	(3.07)*** -23.074 (-2.62)***	(3.03)*** -23.869 (-2.68)***	(2.59)*** -86.308 (-1.89)*	(2.78)*** -74.736 (-3.29)***	(2.76)*** -22.404 (-2.15)**	(1.51) -6.727 (63)
Polity Scale	.529 (1.74)*	.266 (1.35)	.313 (1.49)	.550 (1.32)	.148	.121 (.49)	.178 (1.18)
Urban population (% of total)	573 (-2.19)**	430 (-2.29)**	548 (-2.46)**	-1.144 (-2.52)**	654 (-1.64)	502 (-2.21)**	033 (22)
Real GDP per capita		002 (-5.15)***	001 (-5.62)***	001 (-1.13)	.001 (1.41)	001 (-1.94)*	001 (-4.11)***
Growth of Real GDP (-1)	568 (-2.89)***	617 (-3.88)***	616 (-3.85)***	701 (-3.03)***	624 (-2.97)***	510 (-3.43)***	380 (-2.72)***
Index of Economic Freedom	-9.381 (-5.27)***	()	()	()	()	()	
Revolutionary war		12.561 (1.86)*					
Civil/ethnic conflicts in border states		~ /	5.530 (1.99)**				
Exchange Rate Regime				-2.416 (-2.91)***			
Creditworthiness					309 (-2.40)**		
Deposit Money Bank Assets / Central Bank Assets					. ,	-32.155 (-1.95)*	
Liquid Liabilities (% GDP)							-3.325 (41)
# Observations	1758	2295	2293	1433	1168	2182	1688
# Countries	93	108	108	101	106	107	94
Adjusted R ²	.24	.22	.22	.20	.34	.25	.25

Table 3: Additional Determinants of Seigniorage

Notes: - Panel regressions with country fixed effects. T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%;

Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);
Models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space.

	Politic	al Instability]	Index 1	Politic	al Instability [Index 2	Politic	Political Instability Inde		
Seigniorage	1	2	3	4	5	6	7	8	9	
Political Instability Index (-1)	1.642			1.105			2.274			
	(3.04)***			(1.67)*			(3.34)***			
[Political Instability Index*		9.430			7.430			14.618		
$(Inflation \ge 50\%)](-1)$		(3.38)***			(2.62)***			(3.53)***		
[Political Instability Index *		.056			470			.438		
(Inflation < 50%)](-1)		(.14)			(86)			(1.23)		
[Political Instability Index *			2.117			1.211			3.978	
(Develop. Countries)] (-1)			(3.05)***			(1.63)*			(3.50)***	
[Political Instability Index *			061			.247			237	
(Industrial Countries)] (-1)			(17)			(.35)			(-1.24)	
Ethnic Homogeneity Index	-29.887	-29.735	-29.699	-30.688	-30.818	-30.614	-29.388	-27.612	-28.425	
	(-3.21)***	(-3.29)***	(-3.17)***	(-3.30)**	(-3.38)***	(-3.29)***	(-3.20)***	(-3.13)***	(-3.08)***	
Polity Scale	.353	.361	.350	.374	.382	.374	.318	.311	.286	
	(1.69)*	(1.76)*	(1.68)*	(1.77)*	(1.80)*	(1.77)*	(1.52)	(1.56)	(1.38)	
Urban population (% of total)	483	435	468	519	512	517	466	363	419	
	(-2.38)**	(-2.19)**	(-2.32)**	(-2.52)**	(-2.47)**	(-2.51)**	(-2.34)**	(-1.97)**	(-2.16)**	
Real GDP per capita	002	001	002	002	002	002	002	001	002	
	(-4.96)***	(-4.86)***	(-5.02)***	(-5.01)***	(-5.01)***	(-5.04)***	(-4.90)***	(-4.61)***	(-5.01)***	
Growth of Real GDP (-1)	627	467	606	658	570	656	636	437	582	
	(-3.75)***	(-2.97)***	(-3.67)***	(-3.93)***	(-3.52)***	(-3.93)***	(-3.79)***	(-2.77)***	(-3.55)***	
# Observations	2300	2300	2300	2306	2306	2306	2300	2300	2300	
# Countries	108	108	108	108	108	108	108	108	108	
Adjusted R ²	.22	.24	.22	.21	.23	.21	.22	.25	.22	

Table 4: Results for indexes of political instability generated by Principal Components Analysis

Notes: - Panel regressions controlling for country fixed effects. Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81). Models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space. T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%.

- Variables used in the Principal Components Analysis to define each Political Instability Index (all variables were taken from the CNTS):

- P.I. Index 1: Assassinations, Cabinet Changes, Constitutional Changes, Coups, Executive Changes, Government Crises, and Revolutions;

- P.I. Index 2: Assassinations, Constitutional Changes, Coups, Government Crises, and Revolutions;

- P.I. Index 3: Cabinet Changes, Executive Changes, and Government Crises.

	Δ Rese	erve Money (%	6GDP)	Developing Δ RMoney	g Countries (%GovRev)	3-Year M ∆ Reserve	1A of Cabine Money (%Go	t Changes vRevenues)
	1	2	3	4	5	6	7	8
Cabinet Changes (-1)	.202 (2.00)**			6.076 (3.03)***		9.467 (3.29)***		
[Cabinet changes * (Inflation \geq 50%)] (-1)		2.019 (3.41)***			52.191 (2.99)***	、 ,	51.331 (2.95)***	
[Cabinet changes * (Inflation < 50%)] (-1)		046 (50)			7.575 (2.39)**		4.252 (2.06)**	
[Cabinet changes * (Devel. Countries)] (-1)		(.276 (2.11)**		()			15.067 (3.61)***
[Cabinet changes * (Ind. Countries)] (-1)			029					-2.817 (-3.77)***
Ethnic Homogeneity Index	-3.982 (-3.64)***	-3.621 (-3.51)***	-3.987 (-3.63)***	-25.868 (-2.56)**	-25.541 (-2.39)**	-26.390 (-2.81)***	-24.714 (-2.60)***	-25.903 (-2.70)***
Polity Scale	.032	.037 (2.17)**	.032	.450	.507	.308	.364	.284
Urban population (% of total)	-0.15	015	015	548 (-2.10)**	653 (-2.41)**	486 (-2.53)**	546 (-2.60)***	472 (-2.51)**
Real GDP per capita	0002 (-5.85)***	0001 (-5 48)***	0002 (-5.81)***	002 (-4 64)***	001 (-2.43)**	002 (-5.09)***	001 (-3.75)***	002 (-5.10)***
Growth of Real GDP (-1)	043 (-3.68)***	037 (-3.07)***	043 (-3.62)***	713 (-3.69)***	532 (-3.17)***	655 (-3.86)***	450 (-3.01)***	629 (-3.77)***
# Observations # Countries	3040 122	2908 122	3040 122	1674 89	1547 88	2282 108	2179 107	2282 108
Adjusted R ²	.24	.27	.25	.19	.24	.22	.27	.23

Table 5: Additional Sensitivity Analysis

Notes: - Panel regressions with fixed effects. T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%;

- Models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space;

- The sample and the definition of seigniorage used (the dependent variable) are indicated in the first row.

	Cross	Section	10 – yea	r periods	5 – year periods		
Seigniorage	1	2	3	4	5	6	
Cabinet Changes (-1)	13.909	13.857	12.059	16.132	8.021	8.415	
	(1.73)*	(1.70)*	(2.14)**	(1.98)**	(2.74)***	(2.14)**	
Ethnic Homogeneity Index	-2.800	-4.978	-8.937	-14.330	-6.887	-12.871	
	(52)	(89)	(-1.86)*	(-2.69)***	(-2.20)**	(-3.24)***	
Polity Scale	539	423	213	243	268	266	
	(-2.23)**	(-1.82)*	(-1.23)	(-1.05)	(-2.00)**	(-1.42)	
Urban population (% of total)	.246	.171	.266	.127	.221	.094	
	(1.94)*	(1.43)	(3.13)***	(1.47)	(3.51)***	(1.36)	
Real GDP per capita	001 (-2.84)***		001 (-5.14)***		001 (-5.82)***		
Growth of Real GDP (-1)	.142	.471	-1.300	-1.567	-1.134	-1.047	
	(.38)	(.90)	(-1.56)	(-1.32)	(-1.94)*	(-1.46)	
Index of Economic Freedom		-7.198 (-2.63)**		-7.148 (-4.27)***		-6.656 (-4.49)***	
# Observations	108	94	282	219	548	416	
# Countries	108	94	96	87	108	94	
Adjusted R ²	.14	.21	.15	.18	.13	.14	

Table 6: Results for cross-section and period averages

Notes: - Cross section regressions estimated in columns 1 and 2 (including a constant);

- Panel regressions controlling for country fixed effects in columns 3 to 6. Models estimated with a constant and period dummies. Their estimated coefficients are not shown in order to economize space.
- T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%;
- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);
- In the cross-section regressions of columns 1 and 2, there are no lagged values of *Cabinet Changes* and *Growth* of *Real GDP* available. Thus, their average values for the entire sample period were used. In the other columns, the first lag is the average over the previous period.

	Inf≤1000	Seig≤ (Mean+2SD)	LMS	LAD	IV GMM	IV LIML
Seigniorage	1	2	3	4	5	6
Cabinet changes (-1)	3.436	1.284	1.903	1.148	41.135	39.256
	(2.97)***	(2.23)**	(7.04)***	(2.86)***	(1.91)*	(1.79)*
Ethnic Homogeneity Index	-25.853	-17.043	-5.340	.821	-12.812	-11.837
	(-2.76)***	(-2.40)**	(-8.30)***	(.86)	(-1.86)*	(-1.66)*
Polity Scale	.037	.142	.378	167	195	199
	(.19)	(1.25)	(13.9)***	(-4.13)***	(99)	(-1.02)
Urban population (% of total)	115	010	029	.081	.297	.313
	(76)	(12)	(-3.02)***	(5.49)***	(2.32)**	(2.38)**
Real GDP per capita	001	001	001	001	001	001
	(-4.08)***	(-7.08)***	(-15.5)***	(-11.0)***	(-2.33)**	(-2.38)**
Growth of Real GDP (-1)	293	323	.208	068	564	531
	(-2.62)***	(-3.58)***	(6.43)***	(-1.42)	(-2.48)**	(-2.27)**
# Observations	2150	2293	2306	2306	2293	2293
# Countries	107	108	108	108	108	108
Adjusted R ²	.18	.25	.02	.05	.13	.10

Table 7: Controlling for Outliers and Instrumental Variables Estimations

Notes:- In Columns 1 and 2, panel regressions controlling for country fixed effects were performed on the observations that complied with the conditions shown in the first row. Least Median of Squares estimation (LMS) was performed on the full sample in Column 3, and Least Absolute Deviation (LAD) in Column 4. Finally, instrumental variables estimations were performed in columns 5 and 6, using 2-step feasible Generalized Method of Moments (IV-GMM) and Limited Information Maximum Likelihood (LIML), respectively;

- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);

- All models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space;
- T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%;
- The IV estimations of columns 5 and 6 were implemented using the command *ivreg2* of Stata. Lagged values one and two periods of *Cabinet Changes* were used as instruments of that variable. Orthogonality tests do not reject the exogeneity of the other explanatory variables. The option *cluster* was used in order to account for intra-country correlation.

Figure 1: Interactions of Political Instability

Notes:

- The grey bars show estimated coefficients of panel regressions: see Column 3 of Table 2 for the coefficient of "Pol.Instability" (*Cabinet changes*), and Table A.3, in the Appendix, for the remaining coefficients (each pair, separated by vertical lines, corresponds to a separate estimation).
- 2-standard error bands are shown on top of the bars.
- In the horizontal axis, "H." stands for *High*, and "L." stands for *Low*.
- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);
- The proxy used for political instability was Cabinet Changes (CNTS).

Figure 2: More Interactions of Political Instability

Notes:

- The grey bars show estimated coefficients of panel regressions: see Column 3 of Table 2 for the coefficient of "Pol.Instability" (*Cabinet changes*), and Table A.4, in the Appendix, for the remaining coefficients (each pair, separated by vertical lines, corresponds to a separate estimation).
- 2-standard error bands are shown on top of the bars.
- In the horizontal axis, "H." stands for *High*, and "L." stands for *Low*.
- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);
- The proxy used for political instability was Cabinet Changes (CNTS).

Appendix A: Seigniorage Across Countries

	Obs	Mean	StDev		Obs	Mean	StDev		Obs	Mean	StDev
ALGERIA				CHINA, P.R.	: MAI	NLAND		GREECE			
∆RM/GDP	31	.033	.018	∆RM/GDP	13	.063	.026	∆RM/GDP	39	.024	.013
ANTIGUA AND	BAR	BUDA		ΔRM/GR	13	.474	.250	ΔRM/GR	37	.120	.065
∆RM/GDP	22	.013	.035	CHINA, P.R.	: HONG	KONG		GRENADA			
ARGENTINA				∆RM/GDP	8	.007	.005	∆RM/GDP	26	.017	.027
∆RM/GDP	38	.060	.078	COLOMBIA				ΔRM/GR	12	.087	.114
ΔRM/GR	18	1.203	1.287	ARM/GDP	37	.019	.009	GUATEMALA			
ARMENIA				ΔRM/GR	5	.059	.094	ARM/GDP	39	.010	.011
ARM/GDP	5	.026	.026	CONGO, DEM	. REP	. OF		ARM/GR	38	.117	.137
AUSTRALIA	-			ARM/GDP	29	.056	.141	GUINEA-BIS	SAU	• ·	
ARM/GDP	39	004	007	ARM/GR	30	.000	1 983	ARM/GDP	10	010	007
ADM/CD	30	.004	.007	CONCO PED		015 0F	1.905	ADM/CD	10	.010	214
ALIGEDIA	50	.022	.050	ADM/CDD	20	000	012	CUVANA	0	.450	.214
AUSINIA	20	0.0 5	002	COCERN DICN	50	.000	.012	GUIANA	20	050	0.0.5
ARM/GDP	20	.005	.002	CUSIA RICA	2.0	000	0.2.4	ARM/GDP	20	.030	.095
ARM/GR	37	.020	.013	ARM/GDP	39	.020	.024	ARM/ GR	57	.139	.259
BAHAMAS				ARM/GR	29	.230	.189	HALTI		045	
ARM/GDP	23	.004	.004	COTE D IVO	IRE			ARM/GDP	39	.015	.021
∆RM/GR	30	.022	.043	∆RM/GDP	36	.010	.013	∆RM/GR	32	.231	.359
BAHRAIN				CROATIA				HONDURAS			
∆RM/GDP	24	.008	.022	∆RM/GR	5	.057	.043	∆RM/GDP	39	.011	.012
∆RM/GR	24	.031	.073	CYPRUS				∆RM/GR	39	.074	.074
BANGLADESH				∆RM/GDP	39	.023	.026	HUNGARY			
∆RM/GDP	25	.009	.008	∆RM/GR	33	.127	.138	∆RM/GDP	13	.025	.045
BARBADOS				CZECH REPU	BLIC			∆RM/GR	13	.052	.088
∆RM/GDP	32	.009	.014	∆RM/GDP	5	.035	.036	ICELAND			
ΔRM/GR	25	.035	.047	∆RM/GR	5	.114	.114	ΔRM/GDP	39	.019	.016
BELARUS				DENMARK				ΔRM/GR	31	.084	.073
ARM/GDP	4	.042	.014	ARM/GDP	39	.00	.012	TNDTA			
ARM/GR	4	134	047	ARM/GR	36	.015	.029	ARM/GDP	38	014	006
BELGTIM	-	• 10 1	.017	DOMINICA	00	.010	.025	ARM/GB	38	132	.000
ADM/CDD	30	005	0.05	APM/CDD	22	015	053	TNDONESTA	50	.102	.045
ADM/GDF	36	.005	.005	DOMINICAN I	22 סדומיםם	.ULJ	.055	INDONESIA	33	016	010
ARM/GR	20	.019	.022	DOMINICAN I	ALFUD	015	010	ARM/GDP	20	.010	.010
BELIZE	0.0	010	010	ARM/GDP	39	.015	.010	ARM/GR	29	.081	.056
ARM/GDP	22	.010	.012	ARM/GR	39	• 1 1 1	• 127	I RAN	~ .		
ΔRM/GR	19	.041	.052	ECUADOR	2.0	010	01.0	ARM/GDP	34	.032	.026
BENIN				ΔRM/GDP	39	.018	.010	ΔRM/GR	23	.199	.162
ΔRM/GDP	36	.008	.018	∆RM/GR	39	.147	.084	IRELAND			
BHUTAN				EGYPT				ΔRM/GDP	39	.008	.014
∆RM/GDP	15	.035	.053	∆RM/GDP	39	.039	.031	∆RM/GR	39	.028	.060
∆RM/GR	13	.184	.294	∆RM/GR	20	.129	.062	ISRAEL			
BOLIVIA				EL SALVADO	R			∆RM/GDP	38	.086	.121
∆RM/GDP	39	.026	.031	∆RM/GDP	39	.013	.018	∆RM/GR	38	.173	.208
$\Delta RM/GR$	35	.481	1.076	EQUATORIAL	GUIN	EA		ITALY			
BOTSWANA				∆RM/GDP	12	.001	.059	∆RM/GDP	36	.007	.003
∆RM/GDP	22	.005	.011	ESTONIA				∆RM/GR	36	.040	.028
∆RM/GR	20	.012	.030	∆RM/GDP	7	.039	.034	JAMAICA			
BRAZIL				∆RM/GR	6	.159	.147	ΔRM/GDP	39	.021	.021
ARM/GDP	39	.036	.027	ETHTOPTA				JAPAN			
ARM/GR	3.5	.247	.187	ARM/GDP	38	.013	.017	ARM/GDP	39	.009	.006
BIILGARTA	00	•== •		ARM/GR	33	112	124	ARM/GR	34	084	062
APM/CDD	7	068	036	FT.TT	00		• 12 1	TORDAN	51	.001	.002
ADM/CD	7	.000	.050		35	000	015		30	044	043
DUDKINA DAG	,	.001	.0001	ADM/GDF	20	.000	.013	ADM/GDF	20	.044	.043
BURKINA FAS		010	010	ARM/ GR	29	.039	.070	ARM/ GR	30	.225	.203
ARM/GDP	35	.010	.012	FINLAND	2.0	0.0.0		KAZAKHSTAN	-	115	1.61
ΔRM/GR	26	.096	.109	ARM/GDP	39	.002	.002	ΔRM/GR	5	.115	.161
BURUNDI				∆RM/GR	37	.008	.011	KENYA			
∆RM/GDP	34	.007	.010	FRANCE				∆RM/GDP	32	.014	.014
CAMEROON				∆RM/GDP	39	.004	.004	∆RM/GR	28	.061	.059
∆RM/GDP	35	.005	.008	∆RM/GR	38	.017	.021	KOREA			
∆RM/GR	20	.021	.058	GABON				∆RM/GDP	39	.014	.013
CANADA				∆RM/GDP	37	.005	.010	∆RM/GR	39	.100	.099
∆RM/GDP	39	.003	.002	GAMBIA				KUWAIT			
ΔRM/GR	35	.021	.013	ARM/GDP	30	.016	.029	∆RM/GDP	35	.002	.019
CENTRAL AFR	ICAN	REP		ARM/GR	2.6	.083	.176	ARM/GR	.31	.005	.044
ARM/GDP	37	.011	.018	GERMANY	20			KYRGYZ REPI	JBT.TC		
CHAD	57	• • • + +	.010	VBW/CDD	20	004	002	VBW/GDD	, ССПТС С	015	007
	20	010	020		20	.004	.002		2 2	.010	.007
	∠0 1 7	.010	.020	UKPI/GK	30	.019	.011		יחר p	עסטי. יייים א	.043
∆KM/GR	⊥ /	.089	.232	GHANA	~ ~	0.0.4	0.0.0	LAU PEOPLE	S DEI	M.KEP	000
CHILE		2	. –	ΔRM/GDP	38	.024	.020	ARM/GDP	9	.014	.009
∆RM/GDP	39	.069	.077	∆RM/GR	34	.245	.272	LATVIA			
∆RM/GR	38	.283	.281					∆RM/GDP	5	.016	.012
								ARM/GR	4	.048	.037

Appendix A (cont.): Seigniorage Across Counti

	Obs	Mean	StDev		Obs	Mean	StDev		Obs	Mean	StDev
LEBANON				NORWAY				SUDAN			
∆RM/GR	4	.406	.224	∆RM/GDP	39	.005	.005	∆RM/GDP	38	.035	.031
LESOTHO				ΔRM/GR	37	.020	.016	SURINAME			
∆RM/GDP	18	.019	.024	OMAN				∆RM/GDP	31	.069	.074
ARM/GR	17	.050	.065	ARM/GDP	28	.009	.013	SWAZILAND			
I.TRYA	- /			ARM/GR	27	.024	.033	ARM/GDP	23	016	027
ARM/GDP	33	.027	.033	PAKISTAN				ARM/GR	24	.057	.105
T.TTHIIANTA	00	.02/	.000	ARM/GDP	, <u>२</u> 9	019	010	SWEDEN	21	.007	• ± 0 0
ARM/GDP	5	020	011	ARM/GR	39	126	069	ARM/GDP	39	005	011
ADM/CD	5	.020	.019	DADIIA NEW	CUINEZ	• 120	.005	APM/CP	30	.005	034
	J	.005	.040	ADM/CDD	901NEF	005	0.2.4		л Л	.015	.034
LUALMBOURG	25	000	015	ADM/GDF	20	.005	126	SWIIZERLAN	20	000	015
ARM/GDP	30	.003	.015	ARM/ GR	20	.020	.120	ARM/GDP	39	.009	.015
ARM/GR	ZI	.015	.053	PARAGUAY	20	010	010	ARM/GR	39	.110	• 1 / 2
MADAGASCAR				ARM/GDP	, 39	.018	.010	SYRIAN ARA	B REP	OBTIC	
ARM/GDP	36	.011	.013	ΔRM/GR	34	• 1777	.094	ARM/GDP	34	.050	.039
∆RM/GR	21	.112	.153	PERU				∆RM/GR	21	.176	.106
MALAWI				∆RM/GDP	9 39	.034	.029	TANZANIA			
∆RM/GDP	33	.014	.023	∆RM/GR	38	.282	.300	∆RM/GR	31	.135	.083
MALAYSIA				PHILIPPINE	S			THAILAND			
∆RM/GDP	38	.018	.020	∆RM/GDP	39	.010	.007	∆RM/GDP	39	.010	.004
$\Delta RM/GR$	39	.063	.142	∆RM/GR	39	.074	.054	∆RM/GR	39	.068	.029
MALDIVES				POLAND				TOGO			
∆RM/GR	20	.248	.350	∆RM/GDP	18	.050	.059	∆RM/GDP	35	.011	.033
MALI				∆RM/GR	9	.067	.088	TONGA			
ARM/GDP	36	.013	.018	PORTUGAL				ARM/GDP	12	.012	.074
, МАТ.ТА				ARM/GDP	39	.014	.021	TRINIDAD A	ND TO	BAGO	
ARM/GDP	38	059	091	ARM/GR	27	075	142	ARM/GDP	38	008	016
ARM/GR	36	157	268	OATAR	_ /	• • • •	• ± • □	ARM/GR	30	023	054
	00	• ± 0 /	.200	ARM/GDP	> 31	005	006		00	.020	.001
	31	006	020	ROMANTA	51	.005	.000	TONIDIA VDW/CDD	30	010	000
ADM/GDF	10	.000	126		10	0.21	0.2 5	ADM/GDF	25	.010	.000
ARM/GR	12	.034	.120	ARM/GDP	. 19	.031	.035	ARM/GR	20	.041	.020
MAURITIUS	2.0	015	000	ARM/GR	23	.076	.084	TURKEY	1.0	0.01	0.0.0
ARM/GDP	39	.015	.028	RUSSIA		4.05		ARM/GDP	12	.031	.006
∆RM/GR	32	.090	.148	ΔRM/GR	4	.185	.077	∆RM/GR	29	.179	.052
MEXICO				RWANDA				UGANDA			
∆RM/GDP	39	.022	.024	∆RM/GDP	934	.006	.008	∆RM/GDP	24	.018	.013
∆RM/GR	27	.235	.220	∆RM/GR	20	.124	.120	∆RM/GR	22	.367	.395
MOLDOVA				SAUDI ARAB	SIA			UKRAINE			
∆RM/GDP	6	.077	.075	∆RM/GDP	35	.009	.015	∆RM/GDP	5	.074	.072
MONGOLIA				SENEGAL				UNITED ARA	B EMI	RATES	
∆RM/GDP	6	.039	.022	∆RM/GDP	36	.005	.014	∆RM/GDP	23	.009	.013
∆RM/GR	5	.197	.118	SEYCHELLES				∆RM/GR	16	4.215	8.255
MOROCCO				∆RM/GDP	27	.014	.037	UNITED KIN	GDOM		
ARM/GDP	39	.015	.009	ΔRM/GR	21	.040	.098	∆RM/GDP	39	.004	.005
ARM/GR	31	.071	.042	STERRA LEC	NE			ARM/GR	36	.013	.015
MOZAMBIOUE				ARM/GDP	35	.023	.026	UNITED STA	TES		
ARM/GDP	11	074	049	ARM/GR	37	.268	.362	ARM/GDP	39	003	001
MVANMAD	11	.074	.045	SINGAPORE	01	.200	.002	APM/CP	36	021	001
	30	0.20	049		25	016	012		50	.021	.005
ADM / CD	20	•020	.040 51 <i>C</i>		35	.010	.012	ADM (UDV	30	040	000
ALM/GK	55		. JIO			.000	.057		29 22	.U49 067	・UZダ 17に
	7	000	005	SLUVAK KEP	ODTIC.	000	0.00		23	.20/	.1/3
ARM/GDP	/	.006	.005	ARM/GDP	5	.020	.022	VANUA'I'U		0.1.5	0 A E
ARM/GR	3	.016	.023	SLOVENIA	-	010	0.00	ARM/GDP	14	.012	.017
NEPAL .				ΔRM/GDP	° 5	.010	.003	VENEZUELA			
∆RM/GDP	39	.014	.008	∆RM/GR	6	.023	.007	ΔRM/GDP	39	.015	.016
∆RM/GR	37	.223	.149	SOUTH AFRI	CA			∆RM/GR	38	.066	.071
NETHERLANDS	3			∆RM/GDP	9 39	.007	.015	YEMEN, REP	UBLIC	OF	
∆RM/GDP	39	.004	.003	ΔRM/GR	39	.027	.022	∆RM/GDP	7	.050	.048
$\Delta RM/GR$	13	.004	.006	SPAIN				∆RM/GR	8	.261	.298
NETHERLANDS	ANT	ILLES		∆RM/GDP	9 39	.011	.004	ZAMBIA			
∆RM/GR	23	.066	.178	ΔRM/GR	37	.078	.040	∆RM/GDP	30	.019	.022
NEW ZEALAND	0			SRI LANKA				ΔRM/GR	29	.087	.105
∆RM/GDP	39	.001	.008	ARM/GDP	39	.012	.009	ZIMBABWE			
ARM/GR	37	.006	.029	ARM/GR	39	.063	.051	ARM/GDP	21	.010	.007
NTCARACIIA	57	.000		ST. KITTO	AND NE	EVTS	.001	ARM/CP	1 8	.042	026
VDW/UDD	20	050	001	VDW/CDD DI. VIIID	או שאוי 10 ו	016	036	DIVIT/ GR	τO	.042	.020
ADM / OD	20	.UJ0 255	-UJL 270		10	.UIU 057	050				
UKPI/GK NTCED	29	.200	. 3 / 0	ARM/GK	τU	.057	.031				
NIGEK	20	004	010	ST. LUCIA		010	01.4	RM: Reserv	e Mon	ey (IMF	-IFS-14
∆RM/GDP	36	.004	.010	∆RM/GDP	22	.012	.014	GDP: Nomin	al GD	P (IMF-	IFS-99b
NIGERIA				ST. VINCEN	IT & GF	RENS.		GR: Govern	ment	Revenue	s (IMF-
∆RM/GDP	35	.014	.016	∆RM/GDP	22	.015	.034	IFS-81)		
∆RM/GR	34	.136	.168	∆RM/GR	20	.049	.121				

Appendix B: Descriptive Statistics

Variables	Obs.	Mean	Std.Dev.	Min.	Max.	Source
Dependent:						
∆ Reserve Money (% Govern	ment R	evenues)				
	3172	14.41	71.18	-380.78	3108.74	IFS-IFM
Δ Reserve Money (%GDP)	4376	1.87	3.62	-29.40	65.53	IFS-IFM
Explanatory:						
	4055	00 50	1.6 4.5	0 1 0	50.01	
Agriculture (% GDP)	4255	22.52	16.45	0.13	78.01	WDI-WB
Cabinet Changes	566/	.44	.60	0	5	CNTS
Change in Terms of Trade	3978	220801	1.5e+7	-6.3e+	/ 9.8e+8	WDI-WB
Civil/ethnic conflicts in	borde	r states				
	4957	.87	1.14	0	6	SFTF
Creditworthiness	1988	48.13	25.00	2.01	100	Euromoney
Deposit Money Bank Assets	/ Cen	tral Banl	k Assets			
	4973	0.78	0.22	-0.11	1.34	BDKL
Domestic Debt (%GDP)	1163	200.57	2588.54	0.12	52345.17	IFS-IMF
Ethnic Homogeneity Index	4869	.58	.28	0	1	SFTF
Exchange Rate Regime	3345	4.06	1.28	1	5	LYS
Executive Changes	5701	.19	.46	0	4	CNTS
Gini Coefficient	693	37.49	10.64	16.63	74.33	DK
Govern. Revenues (%GDP)	2561	19.51	9.64	0	50.57	WDI-WB
Government Crises	5572	.17	.52	0	7	CNTS
Growth of Real GDP	4725	3.73	7.44	-84.12	181.14	WDI-WB
Growth of Real GDPpc	4982	2.03	6.72	-41.91	77.69	PWT-6.1
Index of Economic Freedom	2958	5.52	1.10	2.75	8.99	GL
Inflation (Annual Rate)	4820	40.90	455.16	-36.74	23773.1	IFS-IFM
Liquid Liabilities (%GDP)	3572	0.39	0.28	0	2.22	BDKL
Polity Scale	5344	.08	7.62	-10	10	Polity IV
Real GDP per capita	5075	5936.76	6111.80	281.25	44008.5	PWT-6.1
Religious Homogen, Index	4670	. 67	.26	0	1	SFTF
Revolutionary war	5431	. 09	.29	0	1	SFTF
Trade (%GDP)	4815	70 06	46 37	0	439 59	WDI-WB
Turnover Rate Governors	1990	.24	.20	0 0	1.08	CWN
Upheaval	6000	5 63	11 88	0	61 5	SFTF
Urban population (%total)	6688	43 90	24 25	1 75	100	WDT-WR
orsan popuración (ococar)	0000	10.90	21.20	±•75	T 0 0	

Notes:

IFS-IMF: International Financial Statistics - International Monetary Fund; WDI-WB: World Development Indicators - World Bank; CNTS: Cross-National Time Series database; BDKL: Beck, Demirgüç-Kunt and Levine (2000); SFTF - State Failure Task Force database; LYS: Levi-Yeyati and Sturzenegger (2003); DK: Dollar and Kraay (2002); PWT-6.1: Penn World Tables (Mark 6.1); GL: Gwartney and Lawson (2002); CWN: based on Cukierman, Webb and Neyapti (1992).

Seigniorage	1	2	3	4	5	6
[Cabinet changes * (Inflation \geq 50%)] (-1)	31.560 (2.95)***					
[Cabinet changes * (Inflation < 50%)] (-1)	1.096 (1.08)					
[Cabinet changes * (Dev. Countries)] (-1)		6.270 (3.12)***				
[Cabinet changes * (Ind. Countries)] (-1)		478 (98)				
[Cabinet changes * (Gini > 40)] (-1)			5.753 (2.60)***			
[Cabinet changes * $(Gini \le 40)$] (-1)			117 (22)			
[Cabinet changes * (Low Ethnic Homogeneity)] (-1)				12.714 (2.24)**		
[Cabinet changes * (High Ethnic Homogeneity)] (-1)				2.423 (2.06)**		
[Cabinet changes * (Low Religious Homog.)] (-1)					8.940 (1.78)*	
[Cabinet changes * (High Religious Homog.)] (-1)					3.203 (2.34)**	
[Cabinet changes * (High Upheaval)] (-1)						7.610 (2.14)**
[Cabinet changes * (Low Upheaval)] (-1)						2.685 (2.86)***
Ethnic Homogeneity Index	-23.214 (-2.59)***	-24.193 (-2.64)***	-25.843 (-2.90)***	-19.759 (-2.01)**	-22.867 (-2.44)**	-24.289 (-2.69)***
Polity Scale	.336 (1.64)	.295 (1.43)	.120 (.70)	.261 (1.28)	.305 (1.46)	.322 (1.57)
Urban population (% of total)	546 (-2.44)***	482 (-2.38)**	093 (87)	460 (-2.36)**	497 (-2.39)**	460 (-2.30)**
Real GDP per capita	001 (-4.48)***	002 (-5.32)***	001 (-5.75)***	002 (-5.31)***	002 (-5.03)***	002 (-5.19)***
Growth of Real GDP (-1)	521 (-3.09)***	640 (-3.73)***	421 (-3.47)***	644 (-3.80)***	660 (-3.72)***	647 (-3.78)***
# Observations # Countries Adjusted R ²	2247 107 .25	2306 108 .22	2250 105 .33	2306 108 .22	2284 107 .22	2306 108 .22

Appendix C: Interactions of Cabinet Changes

Notes: - Panel regressions controlling for country fixed effects;

- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);

- Models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space;

- T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%.

Seigniorage	1	2	3	4	5	6
[Cabinet changes * (High Turnover)] (-1)	4.735 (1.95)*					
[Cabinet changes * (Low Turnover)] (-1)	383 (55)					
[Cabinet changes * (Low Econ. Freedom)] (-1)		15.460 (3.53)***				
[Cabinet changes * (High Econ. Freedom)] (-1)		274 (29)				
[Cabinet changes * (Polity Scale ≤ 0)] (-1)			7.774 (2.40)**			
[Cabinet changes * (Polity Scale > 0)] (-1)			2.166 (1.74)*			
[Cabinet changes * (High Domestic Debt)] (-1)				7.766 (1.85)*		
[Cabinet changes * (Low Domestic Debt)] (-1)				-1.495 (-1.43)		
[Cabinet changes * (Low Creditworthiness)] (-1)					5.382 (3.08)***	
[Cabinet changes * (High Creditworthiness)] (-1)					476 (-1.13)	
[Cabinet changes * (Low Openness] (-1)						4.580 (2.86)***
[Cabinet changes * (High Openness)] (-1)						2.481 (1.59)
Ethnic Homogeneity Index	-32.133 (-3.24)***	-29.650 (-2.93)***	-24.808 (-2.72)***	-18.016 (-2.11)**	-25.416 (-2.85)***	-24.931 (-2.73)***
Polity Scale	.205 (1.05)	.347 (1.52)	.487 (2.09)**	.294 (1.49)	.155 (.88)	.319 (1.53)
Urban population (% of total)	065 (32)	413 (-1.92)*	471 (-2.36)**	330 (-1.49)	095 (89)	498 (-2.45)**
Real GDP per capita	001 (-3.35)***	002 (-4.56)***	002 (-5.36)***	002 (-5.24)***	001 (-6.03)***	002 (-5.26)***
Growth of Real GDP (-1)	348 (-2.48)**	631 (-3.38)***	615 (-3.71)***	574 (-2.97)***	421 (-3.45)***	659 (-3.78)***
# Observations	1852	2082	2063	1788	2282	2297
# Countries Adjusted R ²	102 .21	105 .23	102 .24	104 .16	108 .32	108 .22

Appendix D: More Interactions of Cabinet Changes

Notes: - Panel regressions controlling for country fixed effects;

- Seigniorage, the dependent variable, was defined as the change in reserve money (IFS, line 14a) as a percentage of government revenues (IFS line 81);

- Models estimated with a constant and 3 decade dummies (1970s, 1980s, and 1990s). Their estimated coefficients are not shown in order to economize space;

- T-statistics based on heteroskedastic consistent standard errors are in parenthesis. Significance level at which the null hypothesis is rejected: ***, 1%; **, 5%, and *, 10%.