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ABSTRACT 

 
The Role of Protein Interactions with Novel Starch Based Polymeric Implant Materials on 

Determining the Correspondent Host Responses  
 

The importance of cell-protein-surface interactions is commonly accepted as a key step for the successful 

application of any biomaterial. Immediately upon contact with physiological fluids many proteins adsorb to 

the implant surface, subsequently promoting nearby cells to indirectly interact with the material. Either in 

in vivo or in vitro conditions, cells are known not to interact with biospecies-free surfaces. Along with a 

number of other interfacial processes, the amount, type and conformation of adsorbed proteins regulate the 

bio-integration of an implant, thus defining its final outcome: integration or rejection. 

The paradigm of cell material interactions, which considers that protein adsorption as the first event 

following contact and determines the later interactions of the cell, could be central to the design of new 

strategies for biocompatibility and tissue engineering. Many authors consider protein adsorption as a 

material/surface dependent phenomenon and many attempts have been made in order to achieve perfect 

compromise between materials and biocompatibility by means of manipulating protein behaviour at 

interfaces. From a functional point of view, it is accepted that qualitative and quantitative assessment of the 

affinity of proteins to surfaces is essential to evaluate cell mechanisms upon attachment to the surfaces and 

thus develop improvements in the properties of implanted materials.  

The materials investigated in this research have already been utilised for a range of applications in the 

biomedical field. Blends of corn starch with cellulose acetate (SCA), ethylene vinyl alcohol (SEVA-C) and 

polycaprolactone (SPCL); hydroxyapatite reinforced SCA (SCA+10%HA); and poly[D,L-lactic acid] 

(PDLLA) were studied. Starch based biomaterials (SBB) and PDLLA have shown to exhibit an in vitro and 

in vivo biocompatible behaviour. Although several cell studies were previously conducted, the adsorption 

behaviour of biomolecules relevant for the cell-biomaterial interactions had yet to be understood.  

For that, the PhD work plan that culminated in this thesis was conducted to determine different aspects, 

directly related with surface-protein and surface-protein-cell issues: (i) to investigate protein distribution 

onto the surface of starch based polymers; (ii) to analyse the effect of surface chemistry in the adsorption of 

proteins; (iii) to assess the kinetics and adsorption isotherms of clinically relevant proteins; (iv) to explore 

protein competition, exchange and desorption from the surfaces; (v) to evaluate the influence of proteins-

surface systems in cell adhesion, proliferation and morphology; and finally, (vi) to investigate protein 

behaviour onto the surface of implanted materials. 

In the initial evaluation of protein adsorption onto SBB surfaces, single, binary and complex protein 

solutions were used. The distribution of the molecules was found to depend on the surface studied 

regardless of the protein specie. In single protein systems a preference for fibronectin and vitronectin 

adsorption in comparison to albumin was demonstrated, the laters adsorption potential was further 

decreased in competitive conditions. SPCL presented the highest protein adsorption levels. For the studied 

serum concentrations all the surfaces generally indicated good vitronectin adsorption. In the second part of 
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this study, the effect of proteins on modulating leukocyte adhesion showed short and long-term effects in 

cell adhesion developed by vitronectin and albumin, respectively.  

The effect of oxygen-based plasma treatment on the different surfaces and the influence of proteins 

adsorption on modulating bone-cells behaviour were studied. Both SBB and PDLLA surface properties 

were affected by the selected surface modification technique, which increased albumin and fibronectin 

adsorption onto treated PDLLA. The crucial role of adsorbed proteins in mediating the response of 

osteogenic cells to the treated PDLLA surface was demonstrated. Regarding SBB surfaces, the absence of 

pre-incubated proteins showed to improve osteoblast-like cells proliferation onto plasma treated SPCL. 

Moreover, the pre-adsorbed proteins primarily defined MG63 cells morphology on SEVA-C surfaces, 

while on SPCL it was mainly affected by the plasma treatment. 

The correlation between the surface characteristics and protein adsorption isotherms from unitary and 

complex protein systems was investigated onto starch based materials. Albumin adsorption on SBB was 

affected by the material composition as well as by the concentration of the protein solution, preferentially 

adsorbing onto SCA and SPCL. Fibronectin adsorption reached higher values on SEVA-C and SPCL. 

There was no effect on the adsorption of albumin and fibronectin onto SPCL in competitive conditions. In 

the presence of albumin, fibronectin adsorption was reduced on SCA, while the opposite situation was 

observed for SEVA-C. Fibronectin demonstrated a different adsorption activity for the different materials 

as assessed by single and competitive adsorption with albumin. 

The adsorption/desorption study of plasma proteins on SBB surfaces was performed by multiloop Dynamic 

Contact Angle (DCA). In this study, the analysis of the hysteresis, advancing and receding wetting tensions 

indicated that adsorbed proteins could desorb more readily on SCA and SPCL than on SEVA-C. In the later 

case, stronger interactions such as hydrophobic forces were established, which could indicate the 

rearrangement of protein conformation. 

The physicochemical relationship between different biological molecules and SEVA-C was investigated in 

vivo. Results indicated that albumin and vitronectin were absent from the immediate tissue-implant 

interface and diffused into the bulk of the material. In contrast, fibronectin adsorption presented multilayer 

patterns that displaced fibrinogen from SEVA-C surfaces.  

In general, the adsorptive potential of albumin, fibronectin and vitronectin was characterized and SPCL 

surfaces showed increased adsorption levels for both unitary and complex protein systems. Protein 

distribution and desorption profiles were obtained and SEVA-C showed the lowest desorption ability. In 

vitro cell studies showed that PDLLA and SPCL were highly sensitive to the surface modification, and that 

cell response to SEVA-C was highly modulated by pre-adsorbed molecules. Finally, in vivo studies 

provided further insights into the dynamics established between different proteins and SEVA-C material.  
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RESUMO 

 
Estudo do Efeito da Interacção de Proteínas com Novos Biomateriais à Base de Amido de 

Milho e da Respectiva Influência na Determinação da Resposta Biológica   
 

A importância atribuída à interacção entre células, proteínas e superfícies é geralmente considerada como 

um passo fundamental para a aplicação bem sucedida de qualquer biomaterial. Após o contacto com fluidos 

fisiológicos, muitas proteínas adsorvem às superfícies implantadas, induzindo a interacção indirecta das 

células com o material. Nas condições in vivo e in vitro é sabido que as células, geralmente, não interagem 

com as superfícies implantadas na ausência de biomoléculas. À semelhança de outros processos de 

interface, a quantidade, tipo e conformação das proteínas adsorvidas regulam a biointegração de um 

implante, definindo, assim, o seu resultado final: integração ou rejeição.  

O paradigma das interacções entre células e superfícies, que considera a adsorção de proteínas o primeiro 

acontecimento  depois da existência de contacto e que determina os processos celulares consequentes, pode 

ser fulcral para o desenvolvimento de novas estratégias de biocompatibilidade e engenharia de tecidos. A 

adsorção de proteínas é considerada por muitos autores como um fenómeno dependente do 

material/superfície. Diversos estudos foram desenvolvidos com o intuito de atingir um compromisso 

perfeito entre material e biocompatibilidade através da manipulação do comportamento das proteínas nas 

superfícies. Do ponto de vista funcional, o estudo qualitativo e quantitativo da afinidade de proteínas a 

superfícies é essencial na avaliação dos mecanismos posteriores às interacções célula-superfície 

permitindo, deste modo, melhorar as propriedades de biomateriais implantados. Os materiais utilizados 

neste trabalho foram estudados para diversas aplicações na área da biomedicina, designadamente, misturas 

de amido de milho com acetato de celulose (SCA) etileno álcool-vinílico (SEVA-C) e policaprolactona 

(SPCL); SCA com hidroxiapatite (SCA+10%HA); e poli-D,L-ácido láctico (PDLLA). Os materiais à base 

de amido de milho e o PDLLA demonstraram, tanto in vivo com in vitro, um comportamento 

biocompatível. Embora vários estudos de biologia celular tenham sido efectuados, o efeito da adsorção de 

biomoléculas com relevância clínica nas interacções entre células e superfícies ainda não é totalmente 

conhecido.  

Neste contexto, foi delineado um plano de trabalhos, que deu origem a esta tese, com o objectivo de avaliar 

diferentes aspectos da interacção entre proteínas, células e superfícies dos materiais, nomeadamente: (i) a 

distribuição de proteínas nas superfícies em estudo, (ii) o efeito da química de superfícies na adsorção 

proteíca, (iii) a cinética de adsorção de proteínas, (iv) aspectos de competição, troca e desadsorção de 

biomoléculas, (v) a influência das proteínas na adesão, proliferação e morfologia celulares, e finalmente, 

(vi) o comportamento de moléculas na interface implante-tecido.  

Numa fase inicial da avaliação da adsorção de proteínas foram utilizadas soluções proteicas simples, 

binárias e complexas. Concluiu-se que a distribuição das moléculas depende da superfície em estudo, e não 

do tipo de proteínas utilizadas. Em sistemas proteicos simples verificou-se a preferência pela adsorção da 

fibronectina e vitronectina em comparação com a albumina, cujo potencial de adsorção diminui em 

condições competitivas. Os níveis mais altos de adsorção de proteínas foram obtidos pelo SPCL. Todas as 
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superfícies demonstraram, em termos gerais, uma boa adsorção de vitronectina nas concentrações de soro 

estudadas. Numa segunda fase deste estudo, a influência das proteínas na adesão de leucócitos apresentou 

efeitos a curto e a longo prazo na adesão celular desenvolvidas, respectivamente, pela vitronectina e 

albumina.  

Foi ainda estudado o efeito do tratamento por plasma de oxigénio nas diferentes superfícies e a influência 

da adsorção de proteínas no comportamento das células do osso. As propriedades do PDLLA e dos 

materiais à base de amido de milho foram modificadas pela técnica seleccionada, resultando no aumento de 

adsorção de albumina e de fibronectina nas superfícies de PDLLA. Demonstrou-se também a função 

essencial das proteínas adsorvidas na resposta celular ao PDLLA modificado por plasma. Relativamente 

aos materiais à base de amido de milho, a ausência de proteínas pré-adsorvidas melhorou a proliferação de 

osteoblastos nas superfícies de SPCL modificadas. Além disso, as proteínas pré-adsorvidas influenciaram a 

morfologia das células MG63 nas superfícies de SEVA-C, enquanto que no SPCL as maiores alterações 

resultaram do tratamento por plasma. A relação entre as características das superfícies dos materiais à base 

de amido de milho e a adsorção de proteína foi estudada usando soluções proteícas simples e complexas. A 

adsorção de albumina foi influenciada pela composição dos materiais e pela concentração da solução 

proteíca, adsorvendo preferencialmente às superfícies de SCA e de SPCL.  Por outro lado, a adsorção de 

fibronectina atingiu valores mais elevados na superfície de SEVA-C e de SPCL. Em condições 

competitivas nenhum efeito foi observado na adsorção da albumina e fibronectina ao SPCL. Na presença 

da albumina, a afinidade da fibronectina ao SCA diminuiu, enquanto que o contrário foi observado para o 

SEVA-C. Verificou-se que o comportamento da fibronectina na presença de albumina em condições 

competitivas difere do demonstrado em sistemas unitários. 

A adsorção/desadsorção de proteínas do plasma sanguíneo aos materiais à base de amido de milho foi 

estudada utilizando a técnica de Ângulo de Contacto Dinâmico. Neste estudo, a análise da histerese e das 

tensões de molhabilidade indicou que a desadsorção das proteínas é mais rápida nas superfícies de SCA e 

de SPCL do que nas de SEVA-C. Neste último material, estabeleceram-se interacções mais fortes (ligações 

hidrofóbicas), o que pode indicar o rearranjo da conformação proteíca. A relação físico-química entre as 

diferentes biomoléculas e as misturas poliméricas de SEVA-C foi estudada in vivo. Os resultados obtidos 

demonstraram a ausência de albumina e vitronectina na interface tecido-implante e a sua difusão no interior 

do material. Por outro lado, a fibronectina adsorveu em padrões de multicamadas, deslocando o 

fibrinogénio da superfície dos materiais implantados. 

Em termos gerais, o potencial de adsorção da albumina, fibronectina e vitronectina foi caracterizado. Nas 

superfícies de SPCL observaram-se os níveis mais elevados de adsorção utilizando sistemas proteicos 

unitários ou complexos. A distribuição das proteínas e os perfis de adsorção foram estudados e verificou-se 

que a mistura de SEVA-C apresenta menor capacidade de desadsorção. No que respeita aos estudos 

celulares, concluiu-se que o PDLLA e o SPCL foram os materiais mais afectados pelo tratamento por 

plasma e que o SEVA-C foi o material mais influenciado pela pré-adsorção de proteínas. Por último, os 

estudos in vivo permitiram aprofundar os conhecimentos sobre a dinâmica estabelecida entre diferentes 

proteínas e o SEVA-C. 
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INTRODUCTION TO THE THESIS FORMAT 
 
 

This thesis is divided in four sections containing nine chapters: Section 1 (Chapter I), Section 2 (Chapter 

II), Section 3 (Chapter III to VIII) and Section 4 (Chapter IX). According to the tradition of the 3B’s 

Research Group, the thesis format is based on papers. Section 3 includes 6 Chapters of experimental data, 

each consisting of a paper published or submitted to an International Journals with referee. The contents of 

each chapter are summarized bellow. 
 

SECTION 1 (Chapter I) 
Chapter I is based on a book chapter written in review style. It gives a comprehensive overview on the 

process of protein adsorption: from one protein systems to the complex multi-protein environment, tracing 

protein dynamics, instability, practical details, techniques, limitations and the success of adsorption 

manipulation on the control of cell response.   
 

SECTION 2 (Chapter II) 
Chapter II presents the options selected to accomplish the proposed work plan. This Section includes a 

concise and explicit description of the techniques and methodologies used for the characterization of the 

studied biodegradable materials; for the in vitro analysis of protein and cell interactions; and for the in vivo 

assessment of protein adsorption. 
 

SECTION 3 (Chapters III to VIII) consists of six chapters of experimental work.  

Chapter III presents immunostaining studies performed to assess potential effects of the surface properties 

on the adsorption and competition of human proteins. The effect of proteins preadsorption in cell response 

was assessed by the co-culture of lymphocytes and monocytes/macrophages onto starch based biomaterials 

(SBB). 

Chapter IV and V, focuses on the effect of oxygen-based radio frequency glow discharge (rfGD) on 

protein adsorption onto the surface of starch based biomaterials and poly(D,L-lactic acid), respectively. 

Moreover, it described the response of bone related cells to pre-adsorbed proteins. 

Chapter VI explores the kinetics of protein adsorption onto starch based biomaterials. Langmuir and 

Freundlich empirical models were applied and the competition of proteins in binary solutions was 

investigated using fluorimetry and laser scanning confocal microscopy (LSCM).  

The further investigation of the fundamentals of protein adsorption, adsorption/desorption experiments and 

the study of protein orientation are presented in Chapter VII. The interactions between molecules and SBB 

surfaces were studied by dynamic contact angle (DCA) and LSCM using different proteins and competitive 

systems.  

In Chapter VIII, the in vivo protein adsorption onto SEVA-C (polymeric blend of corn starch with ethylene 

vinyl alcohol) was assessed. The screening of different proteins and their diffusion potential was analysed. 
 

SECTION 4 (Chapter IX) contains the general conclusions regarding the overall work carried out 

under the scope of this thesis, as well as some final remarks. 
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CHAPTER I 
 

INTRODUCTION: 
PROTEIN AND CELL INTERACTIONS WITH BIODEGRADABLE SYSTEMS* 

 

 

1. SURFACES, SOLUTIONS, PROTEINS AND CELLS: THE FOUR KEY ELEMENTS 
Whenever a protein solution contacts with a solid surface, molecules spontaneously accumulate at the 

solid-liquid interface. In the last decades, protein adsorption was reported by several authors1-5 as the 

initial step following the contact of an artificial surface with blood. This phenomena was early related 

to the initiation of thrombosis by foreign surfaces;6 and its dynamic and complexity initially indicated 

from Watson and Sodersquist observations7 as from Vroman effect concept.8 Protein adsorption was 

earlier found to alter the sorbent surface and in many cases also the properties of the adsorbed 

molecules.9 More specifically, the adsorption of a certain protein to a surface is often accompanied by 

a change in its structure or three-dimensional rearrangements. The interaction protein-surface has been 

of major concerning on a number of fields such as medicine,10-12 pharmacology13,14 and 

biotechnology15-17 once several biological processes depend upon protein adsorption onto biosurfaces.  

During the last years of research in the biomaterials field, predicting, controlling and manipulating 

protein adsorption onto biomaterial surfaces has been one of the main aspirations. New experimental 

techniques were developed and the design of theoretical and descriptive models cold in some cases be 

achieved.  

The definition of what is desirable or undesirable regarding protein adsorption is evidently related to 

the application one is dealing with. In turn, this same application success is intimately defined by the 

biological reactivity starting from the surrounding environment: the fluid composition and the cellular 

profile. 

In the biomaterials field, the performance of several devices depends on different aspects of the 

protein adsorption phenomena that affect cell response and determine the implant performance (see 

Figure 1). On the other hand, controlling the adsorption of proteins from aqueous solutions or from the 

blood serum is only viable by means of a complete understanding of its specific properties, 

organization and dynamic protein-interface mechanisms. In turn, this demands for a detailed 

characterization of the biomaterials surface composition and molecular structure, since the primary 

interactions between a biomaterial surface and the biological environment occur in the atomic level 

and in a very thin interface of less than 1 nm in thickness.18  

                                                        
*This chapter is based on the following publication: 
C. M. Alves, R. L. Reis, “Protein and cell interactions with biodegradable systems”; in Biodegradable Systems in Tissue Engineering and 
Regenerative Medicine, Eds. R. L. Reis, J. S. Roman, CRC Press, Boca Raton, (2004), 399-427. 
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Early on, under this perspective, the opinion of the authors was already the need for plenty of 

information to complete a protein adsorption study. Empirical answers were to be achieved:19 what is 

the classical protein adsorption isotherm? What is the adsorbed amount as function of time? What is 

the protein orientation/three dimensional (3D) conformation? Protein mixtures: how proteins compete 

with one another? Do proteins desorb or exchange? How the surface does changes all this? How 

surface-protein systems modulate cell response? 
 

 
Figure 1. Schematic representation of the interaction between surfaces, proteins and cells. Legend: proteins and surface 

before (1) and after (2) interacting; the proximal cells (3) by means of interacting with the surface/protein layer, initiates 

signalling mechanisms (4) which can lead in the end to a cell covering or to a cell resistant surface (5). 

 
In this review chapter a comprehensive overview on the process of protein adsorption is presented: 

from one protein systems to the complex multi-protein environment, tracing protein dynamics, 

instability, practical details, limitations and the success of adsorption manipulation on the control of 

cell response. Finally, the interface surface-protein is considered and presented in terms of its 

relevance to understand the biological performance of biodegradable materials. Furthermore, 

complexity, concerns and potential problematic issues are also described. 

 

 

2. THE IMPORTANCE OF SURFACE PROPERTIES  
Polymers are macromolecules composed of many small monomers added to each forming linear, 

branched or crosslinked structures.20 Many of the most popular natural origin polymers are 

polysaccharide-, protein- or polynucleotide-based structures. These are manly distinguished by their 

degradation rates. In the biomedical field, the control and rate of degradation is critical for the 

assigned function.  

The human body is a hostile environment for implanted polymers, due to the reactivity that fluids and 

biological surfaces develop.19,21 The surface and to a later extent, the bulk of the material will undergo 

significant changes starting from time zero of implantation.19,22-24 Biodegradable materials are 

susceptible of incorporating ions and compounds from the surrounding environment but also to send to 

TIME 

1 2 3 4 5 
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solution products of the degradation.23 Material surface can easily alter the phenotypic expression of 

bone related cells. Namely molecular weight, polydispersity, wettability and cristallinity can perturb 

normal cell bioprocesses.25,26 On the other hand, local tissue response initiate surface erosion 

mechanisms originating degradation by-products, which can affect the pH of the neighbouring 

surrounding.27 The entire environment that is settled around the implanted device will affect the 

overall cell response conditioning tissue activity and, finally, the recover of the patients health 

condition.28,29  

On of the most well-know examples of applications of biodegradable systems in clinical situations, is 

on the field of bone-related substitution.30-32 Bone is known to phase between formation and 

resorption, a turnover process of osteoblast-osteoclast interactive cycles.33,34 This balanced 

synchronism involving these two mechanisms is controlled and extremely important for bone normal 

development. Several pathologic condition bioprocesses arise simply from disturb of normal bone 

homeostasis.35-37 When biodegradable biomaterials are implanted its rate of resorption or degradation 

must go together with bone formation and moreover, the decrease in the mechanical properties of the 

device are required to protect the bone tissue by a simultaneously reducing of its strength.38 In other 

words, a balance between rigidity, strength and elasticity of bone and material properties is to be 

scaled.39-41  

Protein adsorption will obviously have a profound effect on the biostability and interfacial properties 

of the implanted surface, including surface tension, water affinity or even surface charge and 

structure.42-44 More important is the study of the opposite effect. Protein adsorption to surfaces is 

currently known to directly depend on general physicochemical surface properties such as:9,45-49 

wettability, chemical composition, roughness and surface charge energy and tension. Their effect and 

modification onto protein adsorption and later cell behaviour have been extensively analyzed,50-54 with 

many researchers persisting on the study of different surface stimuli to optimize the short-term and 

long-term performance of biomaterials.  

The strategy of surface modification of different biomaterials has been adopted over the years in order 

to alter the area of the biomaterial that first comes in contact with the biological environment. Surface 

modifications methodologies have been used in a variety of applications for preventing or improving 

adsorption of proteins and adhesion of cells to biomaterial surfaces.46,55-64  

Hydrophobicity and hydrophilicity of the surfaces have been extensively exploited. For instances, 

studies with chitosan56 show that an increase in hydrophobicity for values of around 100º of water 

contact angle lead to increased protein adsorption regarding the more hydrophilic non-modified 

surfaces. In this case, hydrophobic interactions govern the protein adsorption and the majority of blood 

proteins form proteinaceous layers over the surfaces.10,46,56 On the other hand, very hydrophilic 

surfaces also favour high biocompatibility due to the preferential adsorption of albumin which firmly 

binds in high concentration.10,46 Albumin being highly concentrated and diffusive over the solution 
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medium reaches the surface and binds, leading to thrombogenicity lowering effect.65 In opposition,54,66 

other authors state that strongly hydrophobic or hydrophilic surfaces present a very low ability for 

protein adsorption.  

Other group of authors state10,67-69 that the higher water content or higher water uptake ability and 

minimal interface energy could minimize protein-material interactions and thus decrease the 

thrombogenic effect. In disagreement, Andrade work70 showed that hydroxymethacrylate and 

methylmethaclylate formulations of high water content presented increased thrombogenicity. Recent 

studies71,72 with biodegradable poly(D,L-Lactic Acid) showed a relation between contact angle and 

surface energy with protein adsorption: preferential albumin and fibronectin was adsorbed onto 

surfaces of improved hydrophilicity and surface energy.   

Polymer surface dynamics and relaxation on a solution environment is exhibited for interfacial free 

energy minimization: polar components tend to dominate.73,74 The contact protein-surface is function 

of the chemistry of the polymer in equilibrium with the water and its ions, and with the protein 

chemical properties. By contacting a surface, protein dynamics takes place in response to the 

characteristics found in the interface.75 Surface physic-chemical characteristics such as the surface free 

energy and electric charge do also affect protein adsorption.76-78 

 

 
3. PROTEINS, ADSORPTION AND KINETICS  
The process of protein adsorption onto a solid surface is considered for years as a complex type of 

interactions of physical and chemical origin that is established between surface, solvent and 

proteins.73,79-89 Characterizing the complexity of  protein covered surfaces is required,90 demanding 

advances in surface science instrumentation together with new material science and molecular biology 

technologies. Finally, a full understanding of the properties of the proteins in study is fundamental for 

reaching the complexity of the adsorption phenomena. 

 
3.1. Assessing protein adsorption       
The success of protein adsorption studies depends directly on the selected techniques of analysis. 

Surface science models for application in biological systems are not fully developed. If that was the 

case, ideally one would be provided with an understanding of how the surface chemistry and structure 

of a material can be used to control the biological reactivity of a cell interacting with such a surface. 

To accomplish this goal, understanding cell reactivity and characterizing the complexity of protein 

covered surfaces is clearly required.90 
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In the last quart of century, advances in surface science instrumentation together with new material 

science and molecular biology technologies greatly improved the ability for characterizing interfaces 

of biological importance. Nevertheless, the majority of the popular techniques are only an 

approximation of the ideal non-artefact generating characterization tool. Single protein solutions are 

generally emphasized over the complex protein mixtures when it comes to the simplicity of the study 

that must be performed.  

The analysis of the amount of proteins that adsorb onto a specific interface must be performed by 

means of applying highly accurate methods once the amount of adsorbed proteins in function of the 

surface area is typically very low.15  

Techniques that give information about the adsorption process and nature of the protein layer are 

summarized on Table 1, together with respective references for allowing the reader to obtain further 

detailed information. Several techniques have been used to quantify adsorbed proteins but the 

preferred strategy is always to combine different techniques in one study allowing for complementing 

and adding new information. In the literature several overviews19,90-92 relate the analysis methods with 

the variable in study, simultaneously presenting limits and advantages, highlighting new approaches, 

techniques and models.  

The most traditional technique used over the years for analysis of protein adsorption is the solute 

depletion technique.19 In this case, adsorption is determined as the difference between final and initial 

protein amount following the contact and incubation protein-surface. If the obtained result 

approximates zero, an adsorption rate near to 100% was achieved.19 This methodology is coupled to 

other protein detection methods such as: immunoassays,123 colorimetric140 and fluorescence141 

techniques that can also be used for total protein quantification. Simultaneously, radiolabelling has 

been frequently used142-144 for determining protein adsorption concentration. This methodology as 

practical limitations including the easy alteration of the protein affinity for the surface following 

radiolabelling.145 For the understanding of the complexity of the molecular aspects of protein 

adsorption and denaturing, computational chemistry is becoming a very attractive technique.146,147 Real 

biomaterials surfaces are still not fully represented but the contribution given so far by this 

methodologies, may influence the way we look for these phenomena.147 The authors believe there will 

be a great future for such type of methodologies. Techniques and their applicability will be further 

explored along this chapter while related to topics such as competitive protein adsorption onto a 

particular surface. 
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Table 1. Methodologies and techniques used to study different aspects of protein adsorption onto surfaces compiled from 

references [93-139]. 

 

Method Obtained Information Refs. 

Solute Depletion Adsorbed amount of proteins 93, 94 

Direct Weighing Adsorbed amount of proteins 95, 96 

Surface Plasmon Ressonance (SPR) Rate of adsorption and thickness of adsorbed layer 97-99 

Ellipsometry Thickness of adsorbed layer 100-103 

X-Ray Photoelectron  

Spectroscopy (XPS) 
Adsorption amount 104, 105 

Radiolabelling Adsorption quantification 106, 107 

Matrix-Assisted Laser Desorption/Ionization 

Time-of-Flight Mass Spectrometry (MALDI-

TOFMS) and MALDI-MS 

Protein adsorption distribution, quantification, 

composition and conformation 
108-110 

Circular Dichroism (CD) Spectroscopy Conformation 111, 112 

Atomic Force Microscopy (AFM) Visualization of Conformation 113-115 

Confocal Microscopy Detection and conformation of protein adsorption 116, 117 

Fourier Transform Infrared Attenuated Total 

Internal Reflection (FTIR-ATR) 
Conformation of adsorption 118-122 

Immunoassays 
Detection and conformation of adsorbed proteins. 

Adsorption patterns 
123-126 

Microcalorimetry Enthalpic changes 127 

Raman Spectroscopy Protein Conformation 126 

Elution method coupled to SDS Electrophoresis Qualitative analysis of protein composition 93, 128, 129 

Time-of-Flight Secondary Ion Mass 

Spectrometry (ToF SIMS) 
Molecular structure 130 

Scanning Probe Microscopy (SPM) Spatial resolution 131 

Near Edge X-Ray Absorption Fine Structure 

(NEXAFS) 
Chemical Specificity 132, 133 

Total Internal Reflection 

Fluorescence (TIRF) 

Protein adsorption kinetics, competition, conformation 

and lateral mobility 
134-136 

Axisymmetric Drop Shape  

Analysis-Profile (ADSA-P) 
Chronological determination of protein adsorption 137-139 
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3.2. Proteins in definition         
Chemically, proteins are unbranched co-polymers of twenty-two different aminoacids of varying 

hydrophobicity. Some of the R groups of aminoacids are acidic or basic conferring to the protein 

molecules an ambivalent character (see Figure 2), and due to their differences in polarity, proteins are 

rendered surface-active macromolecules of amphiphilic properties.19,80,148-151 Aminoacids are linked by 

polycondensation, head to tail, from carboxyl group to amino group through the formation of an amine 

linkage designated peptide bond.151 

 

 

 

 

 

 
 

Figure 2. The amino acid monomer structure. R, represents the side chain different in each amino acid. 

The primary structure of proteins is the polypeptide chain or amino acid sequence. It is important to 

state that all the information needed for the protein molecule to achieve its architecture is contained 

within its amino acid sequence.19,151 The formation of hydrogen bonds between peptide units, results in 

the well-known α-helix or β-sheet, two different non-compact types of secondary structure.19,150,152 By 

means of ionic interactions, salt-bridges, hydrophobic interactions, hydrogen bonding and covalent 

bonds create a more compact structure, assigned tertiary structure.19,150,152 The final possible 

association is between two polypeptides of organized primary, secondary and tertiary structures, 

giving rise to the quaternary structure of proteins.19,148-152 Whereas the primary structure of a protein is 

determined by covalently linked amino acids residues, other organizational levels are mainly 

determined by non-covalent forces.152  

Any protein adsorption study can not be useful without first fully understanding the properties of the 

surfaces or specially while ignoring the properties of the proteins playing the game. Some of the well-

studied proteins in the biomaterials field are:153-155 serum albumin, fibronectin and vitronectin.  

Albumin is the most abundant protein in the human blood serum and due to its concentration and 

ability to bind other molecules is seriously considered as a model protein also in terms of protein 

competition.156-158 More specifically, albumin primary role is the transport of fatty acids, but also, the 

maintenance of colloidal osmotic blood pressure and detoxification.156-160 Human serum albumin is a 

heart-shaped and monomeric protein composed by 585 amino acids that compose a total of 66 400 Da 

of molecular weight.157,160 

Most of the proteins contain short carbohydrate sequences and are therefore, called glycoproteins.19,151 

Fibronectin (FN) is a large glycoprotein formed by two disulfide bounded polypeptides that can be 
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found in blood plasma and other fluids on its soluble form but also as structural protein on solid 

tissues.161-163 FN is an extended molecule folded in globular domains of particular functions and linear 

arrangement of repeating units of amino acids, know as type I, II and III.164,165 Several research 

studies166-170 have proved the influence of this molecule in interacting with integrin and non-integrin 

cell surface receptors, through which, cell adhesion, migration, proliferation and differentiation are 

affected. In central location of the chain, type II repeats were identified to include both arginine-

glycine-aspartic acid (RGD) motif and the proline-histidine-serine-arginine-asparagine (PHSRN) 

synergistic sequence.164,171 

Vitronectin (VN), also found in plasma and ECM is a multifunctional glycoprotein of approximately 

75 kDa, which comprises the important RGD peptide that is known for mediating attachment and 

spreading of cells.172 On the other hand, by binding to plasminogen activation inhibitor-1,173 this 

protein can potentially regulate the proteolytic degradation of the extracellular matrix, and is also 

involved in the immune response and clot formation.108,174 

 
3.3. Adsorption and desorption kinetics    
In an adsorption study several parameters are always to be considered. In Figure 3 a simplistic 

schematic representation of several factors affecting the phenomena of protein adsorption are plotted 

regarding the tri-element situation: surface-solution-protein. On what concerns to surface 

characteristics some of the fundamental aspects are:19,148,175-178 surface hydrophobic nature, topography, 

heterogeneity, surface composition, chemistry, interfacial dynamics and surface stability in water. On 

the other hand, protein characteristics as the isoelectric point, charge distribution, three-dimensional 

conformation and stability, the distribution and nature of hydrophobic domains and the ability to bind 

low molecular weight species need to be considered.19,178 The pH, ionic strength, ionic compounds, the 

buffer nature, the presence of low molecular weight species and also the solutions temperature, 

pressure or hydrodynamic flow are decisive in terms of the final protein-surface interactions.19,178-181 

The adsorption of proteins at interfaces has been shown to be a complex phenomenon that includes the 

diffusion of the protein species through an aqueous medium and its collision and interaction at the 

interface,182 where the major driving factor is the ensuing entropy gain.152 Several papers147,148,152,183-188 

are available in the bibliography were models of the thermodynamics of adsorption isotherms are 

described.  
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Figure 3. Simplistic cartoon representing some of the solution, protein and surface factors that affect the protein adsorption 

event. 

 

Over the last two decades, several authors proposed models to explain the adsorption phenomena. 

Examples are Beissinger and Leonard,189 Soderquist and Walton,190 and Lundström and Elwing.191 The 

complexity of this last model already includes the concepts of:191 adsorption constant (ka), desorption 

constant (kd,) conformational changes and exchange constants, (ke) and (kc), respectively. According to 

Norde,152 the process of adsorption kinetics is typically divided in five steps: transport to the surface; 

adsorption; time-dependent re-arrangement; desorption or exchange; and diffusion away from the 

surface. Measuring the interaction protein/surface is one of the major goals in this field translating the 

affinity of a certain protein to a surface. In 1986, Horbett and Brash182 proposed that this affinity 

phenomenon could be deduced from kinetic observations under diffusion limit, which would directly 

lead to the sticking coefficient. According to the authors, the sticking coefficient reflects the number 

of collisions that lead to adsorption being a function of the molecular interactions between the protein 

and the surface.182,192 The study of the sticking coefficient has been intimately discussed with another 

concept, the elastic barrier. 182,192 Within this concept, a certain protein in solution and approaching the 

surface has probability Ф to adsorb and 1-Ф to be reflected. Also considered, is the random walk of 

this particle, or in other words the journey performed by the molecule in the proximity of the 

surface.182,192 

Different studies145,193 have been reporting the difficulties and practical limitations of the estimation of 

protein adsorption onto polymeric surfaces. One of the prerequisite for the analysis of the biological 

reactivity of a material is the kinetic association constant of high information value over the early 

adsorption times.193 The difficulty for achieving this quantitative element regards the complexity of the 

determination of the adsorbed proteins over the first seconds of adsorption. In this case, several 

techniques can be used, but the most successful one as been reported to be ellipsometry.54,102,194-197 

Also, the steric hindrance and mass transport considerations hinder the accurate determination of 
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ka.19,47,193,198 The interaction of the water components with the surface generates potential adsorption 

sites and the balance between protein concentration, surface area and volume for diffusion make 

experiments a difficult issue to control. Other of the difficulties is when surfaces became in contact 

with the air, the protein layer will denature by conformational changes, which explains the air 

avoiding need of the techniques and models developed on the scope of the kinetics studies.43 A 

spontaneous structural arrangement is expected when a protein molecule in solution touches a solid 

surface. Binding and orientation of proteins is one of the most studied topics of the protein adsorption 

issue.199 

Desorption of proteins from surfaces has been reported to be nonexistent or very slow, which in other 

words means: irreversible, partially reversible,152,200 and also reversible process.201 pH changes and 

ionic strength can completely remove molecules from surfaces, which are often used for protein 

adsorption analysis methods, as two dimensional (2D) electrophoresis.19,91,202,203 New ionic strength 

conditions allow for bound proteins to be eluted from the surface into the solution  in a more 

pronounced way for hydrophilic surfaces than for hydrophobic ones.19,152,178,200,204-206 The discussion of 

desorption mechanisms cannot be dissociated from two other concepts: exchange and protein 

competition, both characterized as a high speed interfacial phenomena.196,207-210  

 

 

4. EXCHANGE AND COMPETITION OF PROTEINS: BLOOD PLASMA AND COMPLEX 

SOLUTIONS 
The complexity of the issue protein adsorption was very well reviewed by Andrade et al.211 using a 

axis concept which ranges from relatively simple proteins to the very complex ones following the 

multi-component protein solutions such as blood plasma and tears. 

By means of simply performing single protein adsorption studies neither the complexity of blood 

bioenvironment nor the biocompatible potential of biomaterial surfaces can be assessed.97,212 When it 

comes to the adsorption from blood, plasma surfaces are enriched on a number of protein species. The 

limited number of adsorption sites per unit area drives to a selection process regulated by the intrinsic 

ability of some plasma proteins for preferential adsorption in opposition to others.91,135,213,214 In this 

sense, competition phenomena can only be measured by means of studying multi-protein solutions, 

such as blood plasma97,123,215,216 or mixtures of plasma proteins.97,109,123,217  

Essentially, all the biological fluids are multi-protein systems. Blood plasma was firstly studied by 

Vroman and Adams in 1969.218 Proteins were suggested to adsorb sequentially starting from the 

abundant low molecular weight ones, like serum albumin, and ending, for longer time periods and 

after species exchange, with kininogen as preferentially adsorbed onto the formed layer.218 These 

experimental findings gave rise to the so called Vroman effect.8,219-225 More specifically after the 

contact of blood or plasma with crystal and glass modified surfaces, the absorbate composition 
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changes with time as a result of the consecutive replacement of the adsorbed proteins. In the early 

stages smaller and higher concentrated protein species will reach easily the surface for adsorption 

being later exchanged by higher surface activity ones and less concentrated proteins. According to 

their observations, Vroman and Adams8,222,223,226-228 proposed the following sequence of adsorption onto 

blood contacting surfaces: albumin, immunoglobulins, fibrinogen, fibronectin, high molecular weight 

kininogen, and factor XII.  

The effect of concentration coupled to the residence time was found to modulate the amount and 

composition of the protein layer.97,217 Although these observations became generalized for several 

proteins and surfaces, systems were observed to be excluded from this concept.229,230 Both, the degree 

of dilution230 and the type of surface231 affect the kinetics and sequence of exchange, thus influencing 

the absorbate composition. Besides residence time and surface properties, the protein nature, unfolding 

rate, diffusion constants, surface affinity or ability for irreversible binding will determine the 

conformational change and interaction with the surface to achieve the most favourable energetic 

state.135,230,232 

Considering this, competition and exchange of proteins cannot be understood as separate mechanisms. 

It is frequently observed that proteins desorb into solution at a very low rate, in opposition to the 

situation were new or other protein species are present.135 In the early 80s, Jennisen proposed a 

molecular explanation for these observations.233 Proteins adsorb forming multiple contact points with 

the surface, which are unlikely to disappear at the same time in accordance to the observed low 

spontaneous desorption rate. If other more active proteins start adsorbing in this newly created free 

spaces, eventually the old protein will be replaced by the establishment of contact points between the 

new protein and the surface (Figure 4). Thus the increasing desorption rate could be promoted by 

protein exchange.233 

Protein competition is expected to happen simultaneously to the adsorption of the molecules to a 

presented surface. Competition between proteins is conditioned by several parameters207,234 such as 

diffusion coefficient, molecular mass, polarity or electrical charge of the proteins in a determined 

evolving fluid. Surface properties are known to greatly affect adsorption of single protein 

systems.156,205 

Although inappropriate for simulating the bioenvironment complexity, attempts1,19 have been made to 

find general rules for relating adsorption from single protein solutions, to the adsorption in competitive 

environment. Still in this context and on the biotechnological level, the development of new 

techniques to evaluate complex protein solutions in contact with the material surfaces is becoming 

urgent. 
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Figure 4. Simplistic cartoon representing the exchange and competition of proteins from the earliest to the later stages. 

Concentrated small proteins with higher diffusion constants   and lower concentrated proteins with higher dimension and 

binding affinity   are symbolized as previously indicated. 
 

Exchange reaction models have been proposed for the analysis of complex protein solutions.231 and 

several techniques have been adapted for this application. The most common ones are radiolabeling,235-

237 fluorescence238 and ellipsometry.239,240 More recently, methodologies such as surface plasmon 

resonance97 and X-ray photoelectron spectroscopy (XPS) coupled to surface matrix-assisted laser 

desorption/ionization (MALDI) mass spectroscopy109,241 have been applied. Methodologies based in 

antibody-specific binding properties, as the enzyme linked immunoassay (ELISA) system have been 

also selected and applied by several authors.123,242-244 

Norde and Lyklema showed that the stability/rearrangement ability of the proteins strongly affects 

preferential adsorption of less stable proteins in favour of the most stable ones.204 

Lassen and Malmsten217 have shown in 1997 that human serum albumin (HSA), immunoglobulin 

(IgG) and fibrinogen (Fbg) extensively adsorbed onto both hydrophilic surfaces of different charges, 

but negatively charged ones evidenced simultaneously, slower adsorption kinetics, and HSA exchange 

under the presence of other proteins. Regarding protein competition, Fbg was predominantly adsorbed 

on both these surfaces while for a third hydrophobic surface IgG and albumin dominated the protein 

layer.217 Earlier on, the same authors demonstrated the ability of albumin for blocking other proteins 

adsorption on the presence of hydrophobic polymer surfaces due to irreversible adsorption associated 
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to conformational changes of albumin.245 On another study,236 adsorption of collagen was reduced in 

the presence of albumin and to dramatically decrease with the increase of surface hydrophobicity.236 

The use of antibodies to label human proteins allows for obtaining reproducible and useful for 

understanding protein adsorption on biodegradable surfaces (Figure 5).123 Immunoassays are aimed to 

detect a specific target protein (Figure 5A 2), using blocking proteins (Figure 5A 3) for minimizing 

the non/specific binding of the primary antibody (Figure 5A 4) to the surface (Figure 5A 1). To this 

anti-target protein antibody, specifically binds the secondary, which in turn binds Alkaline 

Phosphatase (ALP). In the presence of the substrate, enzyme catalysis takes place and a different 

colour is produced on the surface (Figure 5A –step 5, 6, 7, 8 and 9, respectively). On Figure 5B, labels 

1 and 2 show colour production and absence, respectively, onto the surface of a starch and cellulose 

acetate (SCA) polymeric blend reinforced with hydroxyapatite. Antibody labelling technique has been 

used with different polymeric blends of starch with cellulose acetate (SCA), ethylene vinyl alcohol 

(SEVA-C) and polycaprolactone (SPCL).123 Besides the synthetic phase being different for each 

material, the percentage of starch is also variable: 50% for SCA and SEVA-C and 30% for SPCL 

starch based blends. Single, binary and serum diluted solutions were prepared using human sources 

and the proportion of the proteins in the human blood serum was considered.156 Results allowed to 

observe that after 24 hours, fibronectin (FN) and vitronectin (VN) adsorbed in higher amounts than the 

more concentrated HSA.123 When studying binary systems, FN in the presence of HSA was found to 

adsorb less than albumin on the SEVA-C surface, in opposition to the observations obtained for single 

protein solutions. Both, the chemistry of the material and the presence of other proteins was found to 

be determinant for the final adsorbed layer. When diluted human blood serum was used as the protein 

source, differences in protein adsorbate after 24 hours of incubation were observed.123 As a general 

trend, the competitive potential of albumin to adsorb onto starch-based surfaces was decreased.123 This 

can be related to the lower activity, size, higher concentration of this protein and also with the 

residence time.97,156-158,217 In agreement, vitronectin, and to some extent, fibronectin were the most 

highly adsorbed proteins independently of the surface used. In terms of polymeric blend types of it 

was also found that corn starch with polycaprolactone presented the highest protein adsorption levels 

independently of the protein specie.  

These results show the influence of the polymer nature and the protein specie onto the final adsorbate 

layer.123 Furthermore, these results agree with earlier performed experiments of Fabrizius-Homan and 

Cooper,236 which showed that following the contact of polymeric surfaces with diluted serum, 

plasmatic proteins do adsorb but a significant enrichment of vitronectin is observed in the surface.  
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Figure 5. The immunoassay methodology in a simplistic sequence cartoon (A) simulating a lateral view and the final result 

for a starch based material surface previously coated with human fibronectin and labelled with anti-FN (B).  

 

 

5. PROTEIN RECOGNITION AND CELL ADHESION MECHANISMS 
The recognition that cellular functions at the implant-interface are determinant for the degree of 

success of a biomedical device, the clinical use of a material, which allows for predicting and to 

develop beneficial reactions from the implants surrounding cells and tissue, can be easily understood.  

In the early 90s, Ratner246 envisioned and described for the first time the “next generation of 

biomaterials” as engineered surfaces deliberated to invoke specific cell responses. Furthermore, this 

concept would include materials able to compensate the complex medical condition of the injured 

patient, simultaneously improving the healing process.246  

For the design of biomaterial devices, normal cell mechanisms such as adhesion, migration, 

proliferation and differentiation of the specific cell populations involved are clearly required to be 

understood.247 

Anchorage dependent cells such as fibroblasts, osteoblasts or endothelial cells are so designated due to 

the need of establishing adhesion mechanisms for normal cell functioning as development, 

organization and maintenance of tissues.248,249 Following attachment, an intracellular cascade of events 

will be developed leading to the regular phenotype and genotype of the specific cell lineage, including 

spreading, differentiation, secretion, extracellular matrix (ECM) production and migration. Adhesive 

cells use extracellular matrix proteins to attach and to migrate on substrates.  
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The primary mode of adhesion and migration is performed by means of integrins, cell transmembranar 

receptors composed by α and β units that recognize the well-studied RGD peptides.250-253 Integrins 

proteins are expressed in several cell types including bone and in bone cells culture.254 RGD adhesive 

sequences, so designated due to its ability to bind a specific ligand,255 are know to be present in several 

ECM proteins including, bone sialoprotein, collagen, fibronectin, osteopontin, thrombospondin and 

vitronectin.256-259 Following the receptor-sequence interaction, integrins cluster together and organize 

into focal adhesion complexes with mechanical and chemical activity of cell anchoring, generating an 

intracellular cascade of multiple signalling events.253,260-262 This subsequently regulates cell migration, 

proliferation, phenotype, genotype, and thus, cell differentiation.253,260,263-265 In this context, the 

behaviour of anchorage-dependent cells seems to depend on the availability/exposition of these 

adhesion sequences, which in turn is affected by the protein tree-dimensional conformation. Adhesion 

of a cell to the underlying substratum can be controlled by increasing the ligand density, the affinity of 

the binding receptor-ligand or by the amount of adhesion receptors expressed on the exterior surface 

of the cell phospholipids membrane.266 Several integrins need other peptidic sequences for efficient 

binding. For instances, α5β1 integrin involved in the control of osteoblast and myoblast cells 

proliferation and differentiation267,268 only binds to RGD segment on the 10th type III repeat of 

fibronectin in the presence of the PHSRN motif to which binding is performed with 9th type III repeat. 

Adhesion strength is significantly increased by this synergistic association.269,270 

Intimately connected to the adhesion of cells is the process by which cell movement is triggered.271-273 

Cell migration is a complex dynamic mechanism achieved by the cell transition of cytoplasmic 

generated forces into tractional forces that will pull the cell itself across the substrate.274,275 Traction is 

provided by the interaction between integrins, cell adhesion surface receptors, and specific ligands 

covalently immobilized on the biomaterial surface.252,276,277 Following these interaction receptor-ligand, 

several intracellular processes take place, namely cytoskeleton organization, signalling, force 

generation, cell body displacement and rupture of the bonding receptor-ligand in the surface area 

opposite to migration direction.278-281 This is, migrating cells while protruding and stabilizing leading 

edges, release the early formed complexes at the rear of the cell.282 The extent or strength of the 

adhesion between the cell and the underlying extracellular matrix is critical in determining the 

efficiency of cell migration.266,276 Experimental work developed by Dee et al.272 studied the dependence 

of random migration, also designated as haptokinesis onto RGDS and RDGS peptides which include 

adhesive and non-adhesive domains, respectively. Results showed significant reduction of migration 

and enhanced proliferation of osteoblasts over RGDS segments as compared to RDGS-modified 

surfaces.272 Thus, the correlation between migration and proliferation, and the contribution of both 

processes on the surface colonization by osteoblastic cells was shown. It is rather important to realize 

that migration has an important function in processes as embryogenesis, inflammation and 
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tumurogenesis,274 and in the colonization of newly body contacting surfaces as the desired migration 

of bone related cells to the implanted bone prosthesis.272  
 

 

6. SELECTIVE PROTEIN ADSORPTION: STRATEGIES FOR CONTROLLING AND 

MODULATING CELL AND TISSUE RESPONSE  
Several literature sources5,9,283 describe the problematic of the non-specific bioadhesion like protein 

adsorption, as the main cause of biomaterials failure due to uncontrolled accumulation of biological 

material at the interface. Controlling this non-specific phenomenon have been reflecting the 

manipulation of the chemical, physical and biochemical properties of an implant surface. Underneath 

the biomaterials scope, is widely recognized that the first interaction between biomedical devices and 

the biological environment occurs at the interface, which plays an important role in the biomaterials 

design. Attempts have been made147,284-288 in order to control the adsorption of proteins mainly by 

means of surface modification methodologies as the use of polysaccharides, phospholipids, proteins, 

fragments and grafting of polymer molecules to the surface of the materials.  

For the control of protein adsorption and biomaterials design, surface treatments, different protein 

species, their concentration and physical properties of the aqueous environment (blood or tears) are to 

be considered. Moreover, the chemistry and physics of the surface and the application time scale of the 

device play important roles. 

Designing surfaces to control and predict protein adsorption is not a new topic. In this context, during 

the last 20 years, researchers have conducted experimental and theoretical work211,289,290 that resulted in 

a lot of information but low molecular-based comprehension. The understanding of submolecular 

events of proteins adsorption is fundamental and the emerging of even more powerful characterization 

techniques is becoming urgent.147 
 

6.1. Proteins and peptide sequences     
The identification and recognition of the value of adhesive sequences (such as RGD and PHSRN) 

motivated bio-inspired surface modification techniques as the incorporation of short peptides onto 

adequate surfaces, which are generally non-adhesive. The ultimate gold of these protein-mimetic 

surfaces is the reduction of non-specific protein adsorption for obtaining functional surfaces.291  

In the last years, several groups have been studying, both in vitro and in vivo, different surfaces 

incorporated with cell adhesion peptides on the binding properties, attachment, proliferation, 

differentiation, migration, morphology, and spreading of cell lines and primary cultures.199,277,292-298 

These approaches offer advantages over the use of entire molecules that include:299-301 antigenicity 

decrease, biocompatibility increase by removing domains able of starting adverse reactions as 

complement activation domains, fibrinogen, collagen and heparin binding domains. Simultaneously, 

recombinant fragments allow for conferring specific characteristics for enhancing the immobilization 
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of proteins improving their activity and finally the ratio efficiency/financial cost increases.302 On the 

other hand, according to Akiyama et al.,303 the use of small segments instead of higher dimension 

fragments increases the possibility of defect in activity due to conformational changes, and also 

represent lack of integrin specificity.  
 

Table 2. Different protein peptide domains and peptide combinations found to control cell response (*used as negative 

controls), compiled from references 247, 272, 276, 302, 304-309. 

 

Peptide and Aminoacid Composition Type of Domain Observed Cellular Effect Refs. 

RGD (arginine-glycine-aspartic acid) Adhesive 

Neonatal rat calvarial osteoblasts presented 

enhanced attachment, spreading and 

cytoskeleton organization. The formation of 

mineralized matrix was stimulated 

304 

YIGSRG (tyrosine-isoleucine-glycine-serine-

arginine-glycine) 
Adhesive 

Enhanced bovine endothelial cells 

proliferation and motility  
247 

CRGD (cysteine-arginine-glycine-aspartic acid), 

CREDV (cysteine-arginine-glutamate-aspartic acid -

valine), and CCRRGDWLC (cysteine-cysteine-

arginine-arginine-glycine- aspartic acid -tryptophan-

leucine-cysteine) 

Adhesive 

CCRRGDWLC enhanced human vascular 

endothelial cells adhesion and mouse 

fibroblasts adhered best to 

CREDV 

305 

RGDS (RGD-serine) Adhesive enhanced mouse fibroblast cells proliferation 306 

RGDS (RGD-serine) and RDGS* (arginine-aspartic 

acid-glycine-serine) 

Adhesive and  

Non-adhesive* 

Reduction of haptokinesis of neonatal rat 

calvarial osteoblasts decreased on adhesive 

peptide presence 

272 

GRGDSPC (glycine-RGD-serine-proline-cysteine) 

and GRGESPC (glycine-arginine-glycine-glutamic 

acid-serine-proline-cysteine) 

Adhesive and  

Non-adhesive* 

Mouse melanoma cells migration persistence 

time decreased for increasing adhesiveness  
276 

RGD and PHSRN (proline-histidina-serina-arginina-

asparagine) 

Both Adhesive and 

PHSRN is a FN synergy 

site 

Macrophage adhesion, activation and foreign 

body giant cells formation (FBGC) 
307 

RGD, PHSRN and PRRARV (praline-arginine-

arginine-alanine-arginine-valine) 

All adhesive 

and PRRARV is a FN 

C-terminal heparin-

binding domain 

RGD and PHSRN promoted FBGC in 

opposition to PRRARV  
308 

RGDS, YIGSR, VAPG (valine-alanine-proline-

glycine), VGVAPG (valine- glycine-VAPG), 

KQAGDV (lysine-glutamine-alanine-glycine-

aspartic acid-valine), and RGES (arginine-glycine-

glutamic acid-serine) 

All adhesive 

and RGES non-

adhesive* 

Adhesion of SHR smooth muscle cells 

increased for all adhesion peptides 
309 

RGD, PHSRN and PRRARV (praline-arginine-

arginine-alanine-arginine-valine) 

All adhesive 

and PRRARV is a FN 

C-terminal heparin-

binding domain 

RGD and PHSRN promoted FBGC in 

opposition to PRRARV  
308 

FNIII7-10 (FN fragment compassing RGD and 

PHSRN domains) 
Both adhesive 

Murine immature osteoblast like cells 

adhered via α5β1 integrins, spread, 

displayed cytoskeleton reorganization and 

assembled robust focal adhesions 

302 
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The use of complete proteins instead of small peptide segments or sequences envisions the study of in 

vivo biology by simulating the molecular structures presented by nature. Several studies reveal the 

cellular effect of pre-adsorbing different proteins onto polymer surfaces (Table 2). Fibronectin was 

soon considered the archetypal cell-adhesive protein259,310 and a regulator of cell behavior,165,311 

generating research interest in studying the effect of this molecule over different polymeric surfaces 

and in terms of cell adhesion and spreading,262,312-319 migration,271,320,321 proliferation267,322 and signalling 

pathways.261,262 Besides fibronectin, other proteins such as fibrinogen316,323-326, albumin243,324,327,328 and 

collagens317,329,330 have also been extensively studied.  

 

6.2. Protein-resistant surfaces   
In the case of blood-contacting biomaterials, the adsorption of plasma proteins is known to occur 

within seconds of exposure and to trigger numerous adverse effects: coagulation, platelet adhesion and 

activation, complement activation, and immunological reactions like thrombosis331-335. By 

compromising the normal homeostasis of the particular bioenvironment, the implant can be subjected 

to biological reactions some how similar to body response to virus attack response but an increased 

scale. Depending on its composition, the protein layer can trigger adverse biological mechanisms: 

certain concentration of platelet adhesive proteins, such as fibrinogen and fibronectin, develops mural 

aggregates and thrombus. Thrombus formation may block smaller diameter vascular grafts and 

embolisation leading further on to more serious complications. Besides hemocompatibility-related 

devices, on ophthalmic applications the adsorption of tear proteins is associated with lens fouling. 

Similarly, the applicability and usage of lenses becomes limited and determinant of patient 

discomfort.336 Also undesirable is the protein adsorption effect on accelerating clearing of bare 

liposomes by the reticuloendothelial system.337 

The pre-existing know-how on thrombogenesis, foreign body-response and interfacial protein 

behaviour as natural biological mechanisms of body defence allowed for the development of 

approaches for its prevention: protein resistant surfaces. 

To obtain a non-fouling surface, the combined forces of attraction, such as van de Waals, electrostatic, 

entropic and hydrogen-bonding forces protein-surface need to be smaller than the entropic and 

hydrodynamic repulsion due to thermal motions of the flexible molecular chains and solvent 

molecules.  

Recent work338-340 showed how the ability of a polymer layer in reducing protein adsorption, either 

kinetically and thermodynamically largely depends on the surface coverage of grafted polymer and in 

the interaction of these segments and the surface. When the polymer chains are attracted to the surface, 

proteins in the surroundings are subject of a strong steric repulsion and also competition for the 

surface between proteins and polymer chains will take place. Both these aspects explain why surfaces 
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that attract the polymer show lower protein adsorption than surfaces that do not, although an 

equilibrium is needed for assuring the formation of an efficient long range steric barrier for proteins.284 

Such type of surfaces can be achieved by means of immobilizing neutral and hydrophilic polymers 

such as poly(ethylene oxide) (PEO).341-343 In fact, early and recent studies of protein resistant surfaces 

haves been mainly motivated with PEO and its low molecular weight equivalent, and poly(ethylene 

glycol) (PEG; Mw < 10000).344-346 The interactions between PEO and proteins have been widely 

investigated and modelled. Poly(ethylene oxide) is a neutral polymer soluble in aqueous media 

because of the formation of hydrogen bonds with the water. Within this system description PEO is a 

simple polymer while comprising monomers that exist in a single start and a complex polymer due to 

the number of different interconverting states in which the monomer can exist.337 

PEO polymers exhibit the minimum of interfacial free energy considering water soluble polymers. 

Both polymers are hydrophilic presenting unique properties and molecular conformation in water, 

exhibit high surface mobility and steric stabilization.345,347-349 In opposition, these polymers are also 

soluble in organic solvents, a result of their hydrophobicity. This conjugation is a distinguishable 

property fundamental for these polymers excellent biocompatibility. The mechanisms responsible for 

protein adsorption reduction and eliminating non-specific adsorption are not fully understood. 

According to several authors,49,350 PEO surface density and molecular weight are the decisive 

characteristics that enable these polymers for protein resistance. In the literature several techniques are 

described as adequate to generate PEO rich surfaces: physical coating, chemical coupling and graft 

copolymerization,321,336,347,351-353 by which several types of surfaces have been modified on the scope of 

different biomedical application.56,328,336,347,354-357 

Other polymers have been indicated in the literature as low protein interacting surfaces: 2-

methacryloyloxyethyl phosphorylcholine358,359 and other methacrylates with phosphorylcholine 

group,360 poly(L-lysine)-graft-poly(ethylene glycol),361 poly(acrylamide), poly(N,N-

dimethylacrylamide), poly(vinyl alcohol), ethylene-vinyl alcohol copolymer.349 The effect of coupling 

proteins, protein residues and other molecules has also been described.362,363 Examples are albumin,364 

hirudin,365 thrombomodulin,366 He+ ion implanted collagen356 and variable saccharides as maltose, 

maltoheptaose and oligomaltose.362,363 By means of using substrates able to resist to cells adhesion, 

likewise PEG hydrogels are considered for years,342 coupled to cell selective ligands allow for binding 

a specific cell type. On this knowledge, non-adhesive scaffolds have been incorporated with ligands 

for selective cell adhesion.367-370 Hubbell and co-workers used fibronectin-derived REDV (arginine-

glutamine-aspartic acid-valine) peptides onto non-cell adhesive biomaterials showing the exclusive 

adhesion of endothelial cells and resistance to fibroblasts, smooth muscle cells and platelets.371 Also, 

Mann et al.309,372 proved to successfully photopolymerise TGFβ-1 (transforming growth factor beta-1) 

to hydrogel surfaces leaded to improved material mechanical properties and collagen synthesis 

increase, thus improving cell biological activities for certain biomaterial applications.  It is recognized 
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that the adhesion and proliferation of different types of cells on polymeric materials depend on 

different surface characteristics.373 It has been demonstrated that cell adhesion occurred preferentially 

to water wettable substrates.374 Starch based blends (with ethylene vinyl alcohol (50/50 wt%) - SEVA-

C, with cellulose acetate (50/50 wt%) - SCA, and with polycaprolactone (30/70 wt%) – SPCL) have 

been surface modified in order to enhance cell adhesion and proliferation on their surfaces. Two 

different methods have been used – chemical surface modification by potassium permanganate/nitric 

acid system375 and surface modification by UV-irradiation.376 In general, both surface treatments have 

resulted in higher oxygen content (XPS) and as a consequence in lower water contact angle values. 

This resulted in an increase of the number of human osteosarcoma cell SaOs-2 onto the modified 

surfaces, especially higher for the blend with polycaprolactone. 

 

 

7. FUTURE DIRECTIONS AND CONCLUDING REMARKS 
The interdisciplinarity of protein adsorption studies defines a complex field of research, where the 

drawbacks of current applied techniques limit the perfect understanding of the sensitive protein 

adsorption microenvironment. Efforts, mainly carried out in the last decades accomplished the present 

know-how where several voids are still to be filled. Nevertheless, these works allowed for reaching a 

point where surface manipulation for different biomedical applications cannot typically go further 

before studying the characteristics of the protein adsorbate. This also explains the development and 

motivation for applying protein related molecules to different surfaces. These types of studies are 

carried out in several of the most prominent groups that work on the biomaterials field.  

After detecting what is desirable or undesirable in terms of the proteins behaviour over biomaterial 

surfaces, the motivation for its control is now the state of the art and the goal in this field. The idea is 

not to disregard cells or cellular structures but, aim exactly for directing cell phenotype and implant 

success improvement. In this sense, there is still a gap between the protein adsorption behaviour 

observed in in vitro situations and the respective correlation with what happens in the in vivo 

bioenvironment.   
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CHAPTER II 
 

MATERIALS AND METHODS 
 

 

1. TESTED MATERIALS 

1.1. Starch Based Biomaterials and HA composites 
. Starch-based Biomaterials (SBB) have been investigated for a range of applications in the field of 

Tissue Engineering including scaffolding,1, 2 bone3 and drug delivery systems.4 The in vitro 

biocompatibility5 and in vivo host response6 of starch-based biomaterials has been assessed and 

correlated with protein adsorption behaviour.  

Starch-based biomaterials (SBB) were the main materials used as interfaces to analyze protein 

adsorption. Three different polymeric blends of corn starch with synthetic polymers were selected in 

order to combine the best properties of each one of the materials.  

The materials used in this study were biodegradable polymeric blends of corn starch with (i) cellulose 

acetate, 50/50 wt% (SCA), (ii) ethylene vinyl alcohol copolymer, 50/50 wt% (SEVA-C) and (iii) 

polycaprolactone, and 30/70 wt% (SPCL). Moreover (iv) SCA reinforced with 10% (wt%) of 

hydroxyapatite (HA, Plasma Biotal, UK) was prepared using twin-screw extrusion (SCA-10%HA). 

Blended materials and HA composites were processed in the facilities of the Department of Polymer 

Engineering, University of Minho. Using conventional injection moulding technology samples were 

processed into circular discs (∅ 1cm). Furthermore, SEVA-C was also processed into rectangular-

shaped blocks 13 x 10 x 7 mm3. Before implantation, the edges of the SEVA-C blocks were trimmed 

and samples were rolled for 1 week in glass flasks to round machined edges and reduce the magnitude 

of edge effects. More details in the processing conditions and properties of starch-based thermoplastic 

blends can be found in references 7-9.  

Samples were sterilised by ethylene oxide (EtO) as previously described,8 washed, and all subsequent 

experimental procedures were performed under sterile or clean conditions.  

 

1.2. Poly(D,L-Lactic Acid)   
Poly[D,L-lactic acid] (PDLLA) was modified, characterized and studied in terms of protein 

adsorption and cell behaviour. Moreover, being the gold standard for biodegradables in biomedical 

applications PDLLA was used as a biodegradable control material.  

Poly[D,L-lactic acid] with an approximate molecular weight (MW) of 91000 g/mol was supplied by 

Birmingham Polymers, Inc. (USA). PDLLA films were fabricated under clean conditions using 

acetone (EM Science, Germany) as solvent. The polymer used had an inherent viscosity of 0.67dL/g 

and was dissolved in acetone at a ratio of about 1:23 or 1.64g/37mL. The polymer solution was cast 
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directly over 1.5cm diameter glass coverslips (PGC Scientifics, USA) Solvent evaporation was 

achieved after 24 hours in controlled atmosphere (0ºC). 

After solvent evaporation, circular PDLLA film samples (∅ 1.5cm) attached to the glass coverslips 

were obtained. These films were kept under vacuum for further drying until use. The films were 

sterilized by UV radiation (8 hours) in a tissue culture hood prior to use. 

 

 

2. MODIFICATION AND CHARACTERIZATION OF THE SURFACES 

 

2.1. Oxygen-based Plasma Treatment 
Plasma surface modification methodologies have been used for biomaterials in a variety of 

applications attempting to improve surface functionalities, like the modulation of proteins10 and the 

cellular response.11 Surface modification of SBB and PDLLA samples was carried out using oxygen-

based plasma treatment under previously optimized conditions. 

Surfaces were modified by means of oxygen (O2) gas plasma in a Radio Frequency Glow Discharge 

(rfGD) chamber (Harrick Scientific Corporation, USA). For the treatment, the plasma reactor chamber 

was stabilized at vacuum to approximately 3.8x10-3psi. O2 was injected into chamber at a pressure of 

15psi for 30sec followed by a waiting period of 30sec before plasma treatment. Plasma treatment was 

initiated for 180sec using a power of 100W and pulsed frequency of 13.5MHz. Time-related changes 

of treated surfaces were minimized by using the samples within the following 48 hours. 

 

2.2. Surface Characterization: chemical and microscopy analysis 

2.2.1. X-Ray Photoelectron Spectroscopy (XPS) 

X-Ray Photoelectron Spectroscopy (XPS) measurements were performed for a detailed analysis of the 

chemical composition of the treated and non-treated surfaces. The experiments were carried out using 

a Kratos Axis-Ultra (Kratos Analytical Inc., USA) with monochromatic Al x-ray source. X-rays 

energy was 1486.6eV and base pressure around 2.9x10-11psi. Triplicates were prepared and results 

collected from 5 different points of the surface of SCA samples. 

 

2.2.2. Fourier Transform Infra Red Spectroscopy (FTIR) 

Spectra were obtained by Attenuated Total Reflection (ATR) using a Nicolet Spectrometer (Nicolet 

Instrument Coorporation, USA). Each spectrum was recorded with a total of 32 scans and 4.0 

resolution after 20sec of vacuum for chamber stabilization. Original and treated surfaces were 

analyzed in triplicates in the range 400cm-1 to 4000cm-1. Before obtaining the surface spectra, a 

background of the equipment was performed. 
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2.2.3. Water Contact Angle  

Contact angle measurements were used to investigate the wettability of the original and rfGD modified 

SBB and PDLLA samples. The relative hydrophilicity of treated and untreated surfaces was assessed. 

The sessile drop method was selected and data acquired using a Video Contact Angle 2000 System 

(AST Products, Inc., USA). Ultra-pure water (Pierce, USA) was used to analyse the wettability of the 

surfaces. Each side of water drops was recorded and averaged; 9 drops and 3 samples per condition 

were used. Measurements were recorded 10sec after liquid contact with the surface. 

 

2.2.4. Surface Energy and Adhesion Tension of Water 

The determination of surface energy (γ) of the original and plasma treated SBB and PDLLA samples 

was based on the Owens and Went method12 that discerns between a polar (γp) and a disperse or 

nonpolar (γd) component of the surface energy. Water and diiodomethane (Sigma, USA) were used as 

test liquids for the determination of the surface energy. Reported surface tension values for water and 

diiodomethane are 72.8 and 50.8dyn/cm at 20ºC, respectively.13 Furthermore, in this study polar and 

disperse parts of water were considered to be 51.0dyn/cm and 21.8dyn/cm and for diiodomethane 

0.0dyn/cm and 50.8dyn/cm, respectively.13 

According to Janocha et al.,14 the measurement of the adhesion tension of water is an adequate 

alternative methodology to the calculation of the surface energy of solid surfaces due to its higher 

experimental or less assumption-based nature. The contact angle ϑ of water on the surfaces was 

measured and multiplied by the surface tension γl of water (72.8mN/m) to obtain the adhesion tension.  

Both the adhesion tension of water and surface energy were based on a sessile drop method. Drop 

contact angles were measured 10sec after contact with the surface; 9 drops and 3 samples per 

condition were used.  

 

2.2.5. Scanning Electron Microscopy (SEM) 

Sample morphology was analysed by means of SEM. Surfaces were sputter coated (Med-010 Sputter 

Coater by Balzers-Union, USA) to provide a thin Au-Pd layer and examination was performed using a 

scanning electron microscope (Leica, UK). Triplicates were prepared for all original and plasma 

treated surfaces. 

 

 

3. IN VITRO PROTEIN ADSORPTION 

3.1. Studied Proteins 
Protein adsorption was investigated in unitary and complex protein systems. The objective was to 

analyze protein-surface interactions in competitive conditions that mimic the physiological conditions 
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(Table 1). The relative amounts of these biomolecules in the human body provided for the data to be 

related to the analysis of the in vivo biological response to implanted surfaces. 

A full understanding of the properties of the proteins in study is fundamental for reaching the 

complexity of the adsorption phenomena. In this study proteins were selected for investigation based 

on their relevance in the biomedical field and their specific properties. The adsorption of albumin, 

fibronectin, vitronectin and fibrinogen was studied. Albumin is a model molecule in protein adsorption 

studies due to its high concentration in physiological fluids like blood plasma and interstitial space15 

and to the ability to "passivate" biomaterial surfaces, reducing inflammatory and thrombogenic 

processes.16 Members of the family of substrate adhesion molecules fibronectin17, 18 and vitronectin,19 

were studied for their relevance in physiological processes such as the modulation of the immune 

system and tissue remodelling. These proteins are components of the extracellular matrix (ECM) and 

their integrin-binding sequences are responsible for modulating cell adhesion and migration. Finally, 

fibrinogen was selected considering its prominent role in multi-component processes such as the FBR 

in which fibrinogen is believed to adsorb immediately to the implanted materials.20, 21 

 

Table 1. Typical concentration of serum albumin, fibronectin, vitronectin and fibrinogen in the human plasma. 
 

Proteins 
Typical Concentration in Human 

Plasma (mg/mL)22, 23 

Human Serum Albumin (HSA) 35.0 

Human Fibronectin (HFn) 0.4 

Human Vitronectin (HVn) 0.3 

Human Fibrinogen (HFbg) 0.2 

 
The protein adsorption and desorption was investigated using Human serum albumin (HSA), human 

fibronectin (HFn), human vitronectin (HVn) and human fibrinogen (HFbg), obtained from Sigma 

(UK). Human vitronectin was reconstituted to a final concentration of 2µg/mL in tissue-culture-grade 

water and sterilized by filtration. The studies with bone-related cells were performed with proteins 

from a bovine source: serum albumin (BSA), plasma fibronectin (Fn), vitronectin (Vn) and fetal 

bovine serum (FBS), obtained from Pierce (USA), Sigma (USA), Calbiochem (USA) and Atlanta 

Biologicals (USA), respectively. The saline solution was supplied by Baxter (USA). Single and 

complex protein solutions were prepared in saline solution (pH 7.4). 

 
3.2. Single and Complex Protein Systems 
In the in vitro investigation of protein-surface interactions as well as in the study of cell behaviour, 

single and complex protein solutions were prepared. Initially, different dilutions of the protein 

solutions were prepared. In the final stages of the work protein solutions were studied to 0.1 and 0.2% 
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of their concentration in the human blood plasma. The different unitary protein systems studied were 

the following:  

i.  1000, 70 and 35µg/mL of HSA,  

ii.  1000, 350, 175, 140, 105, 70 and 35µg/mL of BSA,  

iii.  1.0, 0.8 and 0.4µg/mL of HFn,  

iv.  100, 4.0µg/mL of Fn,  

v.  0.6 and 0.3µg/mL of HVn,  

vi.  3.0 and 0.7µg/mL of Vn,  

vii.  0.6µg/mL of HFbg. 

 

Besides single protein solutions, competitive systems were studied. Binary solutions were prepared to 

final concentrations of: (i) 1000µg/mL of HSA and 1µg/mL Fn, and (ii) 70µg/mL of HSA with 

0.8µg/mL Fn. In addition, a ternary system was prepared by combining (iii) 350µg/mL of BSA with 

4µg/mL of Fn and 3µg/mL of Vn.  

Moreover, the complex in vivo environment was also studied using human blood serum and human 

blood plasma. For serum separation, whole blood was collected from healthy un-medicated adult 

donors, coagulated and centrifuged at 2500rpm during 5min at 4ºC. Protein solutions of different 

concentrations were prepared by diluting complete serum in phosphate buffered saline (PBS) solution: 

0.2%, 1%, 10% and 20% (V/V). In brief, whole blood was collected from healthy un-medicated, adult 

volunteers, anticoagulated with 0.002% of heparin and centrifuged at 2500rpm for 5min at 4ºC. 

Human blood plasma and serum were collected and stored at 0ºC. Human blood plasma solutions were 

prepared at 0.2% (V/V) in PBS solution. Finally, 1% (V/V) of Fetal Bovine Serum (FBS) was also 

used to mimic complex protein environments. 

 

3.3. Labelling of Proteins with Fluorescent Probes 
A commercially available BSA-Alexa Fluor 488 conjugate was used as the model of adsorption 

studies and also to control the experiments with HSA and HFn labelled according to the 

manufacturer’s specifications (Molecular Probes, Netherlands). For all studies, Alexa Fluor® 488 and 

Alexa Fluor® 555 Protein Labelling Kits (Molecular Probes, The Netherlands) were used to 

fluorescently label human serum albumin and human fibronectin. The labelling procedure was 

conducted following the manufacturer’s instructions.24, 25 Protein solutions at a concentration of 

2mg/mL in standard phosphate buffer saline were mixed with 50µL of sodium bicarbonate solution 

and allowed to react with Alexa-Fluor dye for 1h at room temperature. After reaction, labelled proteins 

were separated from unincorporated dye using Bio-Rad BioGel P-30 fine size exclusion purification 

chromatography.  
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The determination of the molar extinction coefficient of HSA and HFn were determined using the 

Beer’s Law equation: 
 

  

! 

"percent c L = A  
 

Where ε is the extinction coefficient, c is the molar concentration, L is the light path length and A is 

the absorbance at 280nm of 1% (W/V) solutions measured in a 1cm path length. The molar extinction 

coefficient (εmolar) of the protein is determined using the molecular weight of the protein (Protein MW) 

according to Equation 2: 
 

  

! 

("molar) 10 = ("percent) x (Protein MW) 
The concentration of HSA-Alexa Fluor 488 was calculated by the following equation: 
 

  

! 

Protein[ ] (M) =
A280 - A494  x 0.11( )[ ] x dilution factor

"  
 

Where A280 and A494 are the absorbance of the conjugate solution at 280nm and 494nm in a 1cm path 

length, respectively, ε is the molar extinction coefficient of the protein (cm-1M-1) and 0.11 is a 

correction factor to account for absorption of the dye at 280nm. The concentration of HFn-Alexa Fluor 

555 was determined using Equation 3, replacing A494 by A555 and 0.11 by the correction factor 0.08.  
 

UV-visible spectra of protein-dye conjugates (Bio-Tek Instruments, KC4™ Data Analysis Software, 

USA) were used to determine the degree of labelling according to the following equation: 
 

  

! 

moles dye per mole protein =  
A294 x dilution factor

71, 000 x protein concentration (M)  
 

Where, 71,000cm-1M-1 is the approximate molar extinction coefficient of the Alexa Fluor 488 dye at 

494nm.  

The degree of labelling of HFn with Alexa Fluor 555 was determined using Equation 4, replacing A494 

by A555 and 71,000 cm-1M-1 by the value 150,000 cm-1M-1, which is the approximate molar extinction 

coefficient of the Alexa Fluor 555 dye at 555nm. The degree of labelling of HSA and HFn with Alexa 

Fluor Probes was determined: 4.0 and 2.9, respectively. Labelled proteins were stored at 4ºC and used 

within 1 week of preparation. 
 

3.4. Protein Incubation Assays: the immersion and the drop methods 

3.4.1. Immersion method 

In the immersion method, proteins were adsorbed to starch-based surfaces by transferring each sample 

to polypropylene tubes and immersing them in 2mL of the prepared solution. The experimental 

procedure was performed in sterile conditions. Samples were incubated in static conditions at 37ºC. 

Incubation periods ranged from 15min to 7h in the case of Fluorimetry and Laser scanning confocal 

(1) 

(2) 

(3) 

(4) 
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microscopy (LSCM) analysis; incubation during 24h was also performed for immunostaining studies. 

Batches of samples were also immersed in PBS solution without proteins to be used as control 

surfaces. Tissue Culture Polystyrene Coverslips (TCPS) were used as the control surfaces (Sarstedt, 

UK). For immunostaining studies, samples were fixed after 7 or 24h in 4% formaldehyde for 5min, 

immersed in PBS and kept at 2 to 8ºC. Care was taken in order to prevent drying of the protein coated 

surfaces before further analysis. 
 

3.4.2. Drop method 

Using the Drop methodology, proteins and controls were incubated with characterized samples for 

15min at 37ºC as described elsewhere.26 According to this methodology, 300 µl of protein solutions 

were pipetted onto the surfaces and incubation was performed in a sterile humidified incubator. 

Nonadherent proteins were removed and samples were washed twice using saline solution. 

Unintended protein loss from other sources was controlled by means of using positive displacement 

pipettes, capillaries and pistons purchased from Gilson Medical Electronics S. A. (France).  

 The final volume of the recovered solutions was the same for all samples. Batches of samples were 

also immersed in PBS solution without proteins to be used as control surfaces. Glass coverslips (PGC 

Scientifics, USA) were used as the control surfaces.  
 

 

4. IN VITRO ANALYSIS OF PROTEIN-SURFACE INTERACTIONS 
The process of protein adsorption onto a solid surface is considered for years as a complex type of 

interactions of physical and chemical origin that is established between surface, solvent and proteins.27 

Characterizing the complexity of protein covered surfaces is required28demanding advances in surface 

science instrumentation. The success of protein adsorption studies depends directly on the selected 

techniques of analysis.  

 

4.1. Colorimetric Assay 
Protein adsorption onto the surface of PDLLA films was assessed by coupling a depletion method 

with a protein assay as follows: after incubation, 100µl aliquot of the initial and removed solution 

were mixed with 150µl of BCA assay (Pierce, USA) working reagent in a 96 well plate and incubated 

at 37ªC for 120min. Each protein concentration was calibrated using a standard curve. The degree of 

adsorption was determined by subtracting the residual protein from the initial added protein. Batches 

of samples were also immersed in PBS solution without proteins to be used as control surfaces. Glass 

coverslips were used as control surfaces and control polymer surfaces were prepared using incubation 

in saline solution. 
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4.2. Fluorimetry  
A commercially available BSA-Alexa Fluor 488 conjugate was used as the model in adsorption 

studies and also to control the experiments with HSA and HFn that were fluorescently labelled 

according to manufacturer’s specifications. For all studies, Human Serum Albumin was labelled with 

Alexa Fluor 488 and Human Fibronectin was labelled with Alexa Fluor 555. Samples were incubated 

as described for the analysis of protein adsorption. For each time point, fluorescence measurements 

were taken according to the conjugate spectroscopic properties using a Microplate Fluorescence 

Reader (Version FLx800T, Bio-Tek Instruments, USA). Measurements were automated for top probe 

detection, using one or two filter sets (488 and 555nm) to assess labelled biomolecule kinetics and 

competitive adsorption. Acquired data was analyzed using KCJunior Software (Version 1.31.5, Bio-

Tek Instruments, USA). Fluorimetry results were calibrated by assessing other contributions to the 

total fluorescence intensity. Background fluorescence was subtracted and the emission of SBB 

surfaces at different wavelengths was analyzed. Briefly, the different surfaces were incubated in 

protein-free PBS solution and the fluorescence intensities measured over time were corrected to rule 

out artifactual effects, such as normal absorption interferences from the polymer materials. TCPS was 

used as the control surfaces (Sarstedt, UK) 

The data of protein adsorption was presented as arithmetic means/standard deviations of the mean 

(mean/SD). Standard curves were prepared for the different protein types and for each time point, 

fluorescence was converted in protein concentration. 
 

4.3. Dynamic Contact Angle (DCA) 

4.3.1. Theoretical Principles 

DCA measurements were performed based on the Wilhelmy plate method.29 Wilhelmy-balance 

tensiometry was performed using a computer-controlled instrument (Camtel CDCA 100F, Royston, 

UK). The theoretical principles of this methodology are described in the literature.30, 31 Briefly, a plate 

was immersed and emersed from a liquid and the forces acting in the specimen were recorded by an 

electrobalance. According to the procedure, the balance was reset to zero and linear regression was 

performed to the immersion depth zero. This provided for the elimination of the weight of the sample 

and the buoyancy forces.  

 

The relation between force and surface tension can be represented by the following equation:  
 

! 

F

L
= "l# cos$

 
 

where F is the force acting on the sample in mN, γlv the surface tension of the liquid and θ is either the 

advancing (θ adv) or receding (θ rec) contact angle.  

(5) 
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Finally, contact angle hysteresis is the difference between advancing and receding contact angles. This 

parameter is affected by the distribution of chemistries on the surface with different properties and 

thus is a measure of the homogeneity of the surface. 

 

4.3.2. Adsorption and Desorption Studies 

Adsorption and desorption studies were performed running multiloop DCA at 22ºC. The 

immersion/emersion speed was a constant at 0.060mm/sec and the immersion depth was 2mm. In all 

experiments, a single hysteresis loop lasted 3min and therefore a complete 60-loop-experiment ran for 

approximately 3h. The duration of the experiments and subsequently the number of DCA cycles were 

selected based on previous studies with starch-based biomaterials, showing that HSA and HFn 

adsorption plateaux were completed in approximately 90 minutes after incubation of the samples.   

Prior to the evaluation of the effect of the different protein conditions on the advancing (adv), receding 

(rec), dynamic contact angles (DCAs), ultra-pure water and PBS solution were studied. The effect of 

the different proteins and human blood plasma on the advDCAs and recDCAs of SCA, SEVA-C and 

SPCL was investigated and hysteresis (H) calculated. In the adsorption study, experiments were 

performed using each protein solution for 60 loops. In contrast, 30-loop-desorption studies were 

performed in protein-free buffer (desorption phase) directly after the 30-loop experiment of the 

adsorption phase. 

 

4.4. Immunostaining of Adsorbed Proteins 

4.4.1. Alkaline phosphatase (ALP) procedure 

Samples and control surfaces were removed from PBS solution and coated for 20min with rabbit 

serum (1:10 dilution, Serotec, UK) in order to block non-specific binding. Monoclonal mouse anti-

human HSA, Fn or Vn antibodies (Dako, Germany) were used as primary antibodies in the 

immunostaining procedure; all were diluted to 1:1000. Discs were washed then coated with 

biotinylated rabbit anti-mouse immunoglobulins (IgG, Dako, Germany) diluted to 1:200. Both primary 

and secondary antibody solutions were diluted in PBS with 1% BSA and incubated with discs for 

30min. The detection of proteins adsorbed onto starch-based surfaces was processed using the 

alkaline-phosphatase protocol. The incubation of alkaline phosphatase (Vector, UK) and alkaline 

phosphatase substrate (Vector, UK) solutions was performed for 30min. Between each step of the 

immunostaining procedure, samples were repeatedly washed with PBS. For each assay, an additional 

control was prepared consisting of a protein-coated sample submitted to the same procedure but 

instead of incubating with the primary, PBS was used. Three replicates for each experimental 

condition were prepared and the procedure repeated three to five times.  
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4.4.2. Probe-labelled antibodies  

Antibody labelling of specific biological molecules was selected to detect the adsorption of albumin, 

fibronectin, vitronectin and fibrinogen on the different surfaces. For the detection of the biomolecules, 

samples used in the adsorption and desorption DCA studies were fixed using 4% formaldehyde 

solution and washed with PBS solution. Initially, the materials were exposed to horse serum for 

20min, followed by incubation with primary antibodies for 30min at 37ºC. For the identification of the 

different biomolecules, antibodies that had been shown to cross-react with rat specie were used: sheep 

anti-Human Albumin, Fibronectin, Vitronectin, and Fibrinogen (Farnell, UK). After that time, 

materials were incubated with donkey anti-sheep Alexa Fluor 488 antibody (Molecular Probes, The 

Netherlands) for 1h at 37ºC.  Results were obtained by performing Laser Scanning Confocal 

Microscopy (LSCM). 
 

4.5. Microscopy Analysis 

4.5.1 Light Microscopy 

Samples immunostained using the ALP procedure were observed using reflected light microscopy 

(Axioplan 2 Imaging, Zeiss, Germany) and image acquisition by digital camera equipment (AxioCam, 

Zeiss, Germany). 
 

4.5.2. Laser Scanning Confocal Microscopy (LSCM) 

A Confocal Laser Scanning Microscope (Version LSM 510 Zeiss, UK) was used to visualize the 

fluorescently labelled proteins adsorbed on the different starch based materials. Alexa 488 probe was 

used in single protein studies to label HSA and HFn molecules. For the study of binary protein 

systems, HSA and HFn were labelled with Alexa 488 and Alexa 555 probes, respectively. An argon 

laser (λ=488nm) and a HeNe laser (λ=543nm) provided the excitation of the protein-probe conjugates. 

Moreover, samples obtained after adsorption and adsorption/desorption DCA experiments were 

labelled with fluorescent secondary antibody (Alexa 488). The argon laser was used to detect adsorbed 

HSA, HFn, HVn and HFbg previously immunostained by probe-conjugated antibodies. Image analysis 

was performed using KS400 image analysis software (Imaging Associates, UK).  
 

4.6. Adsorption Isotherms: Langmuir and Freundlich models 
To develop the fundamental understanding of protein adsorption, two typical adsorption models, 

Langmuir and Freundlich isotherms,32 were used. The linearised Langmuir equation can be expressed 

as:  

   

   
 (6) 
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Where, C is the BSA concentration at a certain time, Q and Qm are the adsorption amounts for BSA at 

a certain time and the maximal adsorption amount respectively, and b is the Langmuir’s equilibrium 

constant that describes the strength of interaction between the protein and the surface.33  

 

Other models such as the Freundlich model are more suitable for use with heterogeneous surfaces, but 

can only describe adsorption data over a restricted range:34  

 

 

In this case, C, Q, and Qm are the same as in equation (1), n and K, constants at a specific condition. 

The constant K is a measure of the capacity of the adsorption and n is a measure of the intensity of 

adsorption.32, 33  

In the low concentration range, changes in the bulk concentration produce large changes in the amount 

adsorbed, resulting in a roughly linear increase in adsorption. However, as the bulk concentration is 

further increased, adsorption is reduced and a plateau or maximum adsorption level is reached. This 

type of adsorption behaviour is referred to as a Langmuir isotherm. In other cases, the increase in 

adsorption at high bulk concentration does not stop entirely, but presents a slow rise. This type of 

adsorption behaviour is referred to as a Freundlich isotherm. 

 

 

5. IN VITRO CELL STUDIES 
It is known that cellular functions at the material-interface are essential for the degree of success of 

biomedical devices. Also, to accomplish the characterization of the complexity of protein covered 

surfaces it is clearly required to understand normal cell mechanisms such as adhesion, proliferation 

and morphology of the specific cell populations. 

Cell studies were performed onto SBB and PDLLA surfaces after protein pre-adsorption. Cell seeding 

was carefully performed sample by sample and immediately after the protein incubation step to evade 

surface drying and consequent protein conformational changes or denaturation. Surface rinsing was 

not performed and any enrichment of the cell culture media that could result from remaining non-

adsorbed proteins was considered negligible. 

 

5.1. Attachment of Human Leukocytes 

5.1.1. Isolation and culture of human monocytes/macrophages and lymphocytes  

Whole blood was collected from healthy un-medicated, adult volunteers and anticoagulated with 

0.002% of heparin. Human blood mononuclear cells were isolated by means of using a one-step 

gradient centrifugation method. 5mL of anticoagulated blood was carefully layered over 3mL of 

LymphoSep Media (ICN, USA) and centrifuged at 2500rpm for 25min at 4ºC. The interface was 

! 

lnQ =
1

n
lnC + lnK  (7) 
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harvested, washed three times in PBS and cells were resuspended in 199-cell culture medium 

(GibcoBRL, USA) supplemented with 10% foetal bovine serum (FBS). 

After isolation, cells were seeded onto the protein pre-coated SEVA-C surfaces at a density of 5 x 

104cells/mL (in 199 medium with 10% FBS). Samples were incubated for 30min and 24h at 37ºC in 

5%CO2 and 100% humidity. After incubation, surfaces were fixed for 10min in 4% formaldehyde, 

immersed in PBS and kept in the refrigerator at 4ºC. 

 

5.1.2. Immunostaining and haematoxylin staining 

After leukocyte culture, fixed samples and controls were removed from PBS solution, coated with 

rabbit serum (1:75 dilution, Serotec, UK) for 20min and incubated overnight with purified monoclonal 

mouse anti-human CD3 or CD14 antibodies (1:1000 dilution, PharMingen, USA). Each disc was then 

coated with biotinylated rabbit anti-mouse IgG (1:200 dilution, Dako, Germany), followed by 

phosphatase alkaline (Vector, UK) and PA (Vector, UK) incubation, 30min each. Between every step, 

samples were rinsed with PBS for 5min. For each assay, an additional control was prepared, by 

replacing the incubation of the primary by PBS solution. Samples labelled with antibodies were then 

counterstained with haematoxylin (Sigma, UK).  Surfaces were then rinsed in warm water for 1min 

and analysed using the reflected light microscope and digital camera for image acquisition. 

 

5.1.3. Cell counting 

In order to obtain lymphocyte, monocyte/macrophage and total cell numbers, cell counting was 

performed in a two-step procedure: after labelling leukocytes with CD3 and CD14 primary antibodies 

and after haematoxylin staining. For each sample, counting was performed from 20 different and 

arbitrary fields of vision using KS400 3.0 image analysis software coupled to a transmitted light 

microscope (Zeiss, Germany) and digital camera (JVC, USA). 

 

5.2. Attachment and Proliferation of Fetal Rat Calvaria (FRC) cells 

5.2.1. Isolation and culture of FRC cells  

Fetal Rat Calvaria (FRC) cells were isolated by sequential enzyme digestions from calvaria of 21 days 

Sprague-Dawley rat foetuses as described elsewhere.35 Briefly, calvaria (frontal and parietal bones) 

were aseptically removed and stripped of the periosteum. The minced fragments underwent 9 

sequential digestions in fresh 0.2% collagenase/0.05% trypsin (Sigma, USA) in Hank’s Balanced Salt 

Solution (HBSS) for 20min at 37ºC (Sigma, USA).  Cells were resuspended in α−MEM (Gibco, USA) 

enriched with 10% (V/V) FBS (Atlanta Biomedicals, USA) and 1% (V/V) of Penicillin-

Streptomycin Mixture (Gibco, USA), plated in T-75 falcon tissue culture flasks and incubated at 

37ºC in 5%CO2 until confluent. Adherent cells were considered viable. For long culture periods, cells 

were trypsinized and grown as described by Bellows and co-workers.36 Populations II–V were seeded 
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at 4x104cells/mL in α−MEM containing 1mg/mL of β-glycerophosphate (Caliochem, USA), 

0.05mg/mL of L-ascorbic acid (Sigma, USA), 1% (V/V) of Penicillin-Streptomycin Mixture and 

10% (V/V) FBS onto the different surfaces: PDLLA, plasma treated PDLLA and the same surface 

batches after carrying out the first protein adsorption procedure described above at: 1000µg/mL BSA, 

100µg/mL Fn, 0.7µg/mL Vn and 1000µg/mL of FBS. Incubation was performed for 3 hours, and 7, 9, 

and 14 days.  

  

5.2.2. Trypsinization and cell counting 

After each incubation period, cultured samples were transferred to new wells with fresh media. 

Attachment (measured at the 3h time point) and proliferation (assessed with the 7, 9 and 14 day time 

points) measurements were conducted by trypsinization (Trypsin-EDTA, Sigma, USA) of the cultures 

for 5min, and subsequently by cell counting using a Coulter Zi Dual cell counter (Coulter 

Corporation, USA). Appropriate controls were used, including tissue culture polystyrene (TCPS). 

 

5.3. MG63 Osteoblast-like Cells  

5.3.1. Culture of MG63 cells 

Cell response was studied using the MG63 osteoblast-like osteosarcoma cell line that has been well 

characterized in the literature and consists of a good model for the study of human bone cells. MG63 

cells are known to present numerous osteoblastic traits, including increased levels of bone alkaline 

phosphatase and inhibition of proliferation following treatment with 1,25-(OH)2D3.37, 38 Cells 

(American Type Culture Collection, USA) were seeded on the relevant surfaces at 4 x 104cells/mL and 

incubation was performed for 1, 4 and 7 days in DMEM (CELLGRO, USA) containing 10% FBS 

(Atlanta Biomedicals, USA) and 1% of Penicillin-Streptomycin Mixture (Gibco, USA). Tissue culture 

polystyrene (TCPS) was used as maximum control.  

 

5.3.2. WST-1 cell quantification assay  

After each incubation period, cultured samples were transferred to new wells with fresh media and 

analyzed for mitochondrial activity using colorimetric WST-1 tetrazolium conversion assay 

(TAKARA, Japan).39 Briefly, 10µL of WST-1 reagent was added per well, and the cells were 

incubated for an additional 2h. The absorbance of the WST-1-containing cell supernatant was 

determined at 450nm (Benchmark Microplate Reader, Bio-Rad, USA). To avoid interference from 

both cell culture media and SBB biodegradable materials, the following controls were prepared and 

considered as blank samples: fresh media, and SBB samples immersed in fresh media but no cells 

were seeded. 
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5.3.3. Scanning Electron Microscopy (SEM)  

Cell morphology was evaluated by SEM. The preparation of cell cultured samples for SEM 

observation was performed using 4% formaldehyde and 1% gluteraldehyde as fixative solution 

(Electron Microscopy Sciences, USA). Samples were then washed using PBS solution (Sigma 

Diagnostics, USA) and gradually dehydrated by incubation in crescent ethanol concentrations. Drying 

was accomplished by means of hexamethyldisilazane (HMDS) solution (Polysciences Inc., USA), as 

recommended for SEM preparation of soft tissue.  

 

 

6. IN VIVO PROTEIN ADSORPTION 
The experimental procedures herein described provided for investigating a critical phase of 

biomaterials interaction: the analysis of the protein biolayer and tissue surrounding the in vivo 

implanted polymeric blends of corn starch and ethylene vinyl alcohol (SEVA-C). One of the aims of 

the research was to determine the relationship between key biological molecules and the tissue 

reactions evoked by SEVA-C in the in vivo subcutaneous environment.  

 

6.1. Subcutaneous implantation of SEVA-C materials  
The experiments were performed in Wistar rats, anaesthetized using Immobilon as previously 

described.6 Briefly, four different materials were implanted subcutaneously in the back, two either side 

of the spine, for 3, 7 and 14 days, with three repeats for each material per time period. At the end of 

the implantation period, rats were sacrificed by CO2 and the tissue surrounding the implant was 

carefully dissected with the material in situ and snap frozen using isopentane in cardice. Explanted 

samples were stored at -80ºC until resin embedded. 

 

6.2. Preparation of implanted materials 
Samples of the SEVA-C material were embedded in Technovit 8100 New®-embedded (Heraeus 

Kulzer, Wehrheim, Germany) that is a low temperature glycolmethacrylate embedding system that 

facilitates the preservation of tissue antigenicity. Resin embedding of the implants was performed 

according to the manufacturer’s indications. Fixation was performed in a mixture of 

paraformaldehyde, lysine and periodate (PLP fixative) for 24h at 4ºC and washed in 50mM 

ammonium chloride buffer. The implants were dehydrated in a cold acetone bath for 24h at 4ºC. A 

mixture of 0.6g of Technovit Hardener I in 100ml base-liquid 100% Technovit was used as the 

infiltration mixture for 24 hours. An embedding mixture was then used (1 part of Technovit Hardener 

II and 30 parts of infiltration solution); the infiltration of the samples was performed at -55ºC for 4 

days followed by 2 days at -20ºC for polymerisation. Sample blocks were then trimmed with a low 

speed circular saw (IsoMet® Low Speed Saw, Buehler LTD., USA). 7µm thick sections were cut 
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using a Polycut Microtome (Leica, UK) and then mounted on 3-aminopropyl-triethoxysilane (APES)-

coated slides, fixed with acetone for 5min, air-dried and kept short term at 4ºC until staining. 

 

6.3. Immunostaining  
Antibody labelling of specific biological molecules was used to determine the adsorption of Albumin 

(Alb), Fibronectin (Fn), Vitronectin (Vn) and Fibrinogen (Fbg). For the detection of the biomolecules, 

tissue sections were stained using an avidin-biotin alkaline phosphatase technique, as described 

elsewhere.40 In brief, materials were incubated with 0.1% trypsin solution to expose masked epitopes, 

exposed to horse serum for 20 min and incubated with primary antibodies overnight at 4ºC, for the 

identification of the different proteins. After that time, materials were incubated with biotinylated 

rabbit anti-goat IgG antibody (Dako A/S, Denmark) for 1h at room temperature. The avidin and 

biotinylated horseradish peroxidase complex (Vector Laboratories Ltd., UK) was added to all 

materials for 30min and the substrate reaction was developed using the Alkaline Phosphatase 

Substrate Kit (Vector Laboratories Ltd., UK). Each incubation was followed by one wash with PBS 

solution for 5min. Materials were washed and mounted in permanent aqueous mounting medium 

(Serotec Ltd, UK). Each time period studied had one sample stained as a control replacing the primary 

antibody with buffer and parallel isotype reference staining was always conducted.  

 

6.4. Image Analysis and Protein Diffusion  
Immunostaining results were observed using transmitted light microscopy (Axioplan 2 Imaging, Zeiss, 

Germany) and image acquisition by digital camera equipment (AxioCam, Zeiss, Germany). 

Subsequently, measurements of protein diffusion and biolayer thickness were performed for the 

assayed molecules. For each staining, three sections per time period were analyzed and twenty repeats 

per section were used. To quantify protein diffusion KS400 3.0 image analysis software (Zeiss, 

Germany) was used. 

 

 

7. STATISTICAL ANALYSIS 
Data analysis was presented as arithmetic means/standard deviations of the mean (mean/SD). 

Different statistical data were evaluated using the bi-tail Students t-test and the ANOVA/Tukey 

multiple comparison tests to detect differences between groups (SPSS 13.0.1, Statistical Analysis 

Software, USA). In all statistical evaluations, n>9 and p<0.05 was considered as statistically 

significant. 
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Abstract 

In this study, the adsorption of human serum albumin (HSA), fibronectin (FN) and vitronectin (VN) onto the 

surface of novel biodegradable materials was evaluated by immunostaining. Specifically, polymeric blends of 

corn starch with cellulose acetate (SCA), ethylene vinyl alcohol copolymer (SEVA-C) and polycaprolactone 

(SPCL) were immersed in unitary and competitive systems; that is, binary and more complex protein solutions. 

For binary solutions, different HSA, FN and VN protein distribution patterns were observed depending on the 

starch-based surface. Furthermore, the relative amount of proteins adsorbed onto starch-based surfaces was 

clearly affected by protein type: a preferential adsorption of VN and FN as compared to HSA was observed. On 

tests carried out with unitary, binary and more complex solutions, it was found that vitronectin adsorption ability 

was enhanced in competitive systems, which was associated with a lower amount of adsorbed albumin. In order 

to assess the effect of these human proteins on cell behaviour, a mixed population of human lymphocytes and 

monocytes/macrophages was cultured over pre-coated SEVA-C surfaces. Through anti-CD3 and CD-14 

monoclonal antibody labelling and cell counting, leukocyte adhesion onto pre-coated SEVA-C surfaces was 

analysed.  Based on the results, it was possible to detect albumin long-term effects and fibronectin short-term 

effects on cell adhesion proving that previously adsorbed proteins modulate leukocyte behaviour. 

  

 

 

Keywords 
Starch-based polymers, biodegradables, protein adsorption, leukocyte adhesion. 

 

                                                        
*This chapter is based on the following publication: 
C. M. Alves, R. L. Reis, J. A. Hunt, “Preliminary study on human protein adsorption and blood cells adhesion to starch-based biomaterials”, 
Journal of Materials Science: Materials in Medicine, 14, (2003), 157-165  
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1. INTRODUCTION 

Protein adsorption from surrounding tissue fluids is the first very important phenomenon of the host-

biomaterial interactions that may lead to implant integration or rejection.1-3  Immediately upon contact 

with physiological solutions, many proteins adsorb to the implant surface, subsequently promoting 

nearby cells to interact with the material.4-11 It can be said that when implanted, foreign materials 

interact indirectly with living tissues meaning that cell-surface interactions are mediated by proteins 

adsorbed from surrounding fluids.8,9 Together with other interfacial processes, protein adsorption will 

regulate cell function and the biocompatibility of the implant,1,12 being responsible for homeostasis and 

tissue healing but also for adverse immunologic mechanisms1,13 such as, inflammation10,13-18 and 

thrombosis.10,13-18  

To investigate further the phenomenon of protein adsorption and the effect of the surfaces on it, 

human proteins were used to coat different starch-based biodegradable polymeric blends. These novel 

biodegradable materials were recently shown to be biocompatible19-20 and cytocompatible surfaces,21 

and have been proposed for a range of biomedical applications,22-25 including tissue-engineering 

scaffolding.26 

Proteins conventionally classified as adhesive and non-adhesive were used in this study. Fibronectin, a 

glycoprotein known to contain both RGD, PHSRN and synergistic sequences,27,28 influences several 

processes, such as cell attachment, migration, differentiation and matrix assembly.27,29,30 Vitronectin, 

also found in plasma and ECM, comprises an important domain, the RGD peptide that is known for 

mediating attachment and spreading of cells.29,31 On the other hand, by binding to plasminogen 

activation inhibitor-1, this protein can potentially regulate the proteolytic degradation of the 

extracellular matrix.29,31,32 The third protein is human serum albumin that, although known to be 

depleted of adhesion ligands, was selected due to its presence in high concentrations in serum and its 

ability to bind other molecules, influencing competitive protein adsorption.33-35 The typical 

concentration of these proteins in the human serum is 35, 0.4 and 0.3 mg/mL, respectively for HSA, 

FN and VN.33  

In this study, antibody labelling of specific biological molecules was selected to detect HSA, VN and 

FN adsorption on the surface of starch-based materials by means of adapting a previously described 

technique.36 The methodology is based on the initial binding of a primary antibody to the surface of 

the sample where the antigen is adsorbed. Following this, the surface is incubated with a second 

antibody solution resulting in the formation of a primary-secondary complex. If this secondary is 

conjugated with an enzyme, such as alkaline phosphatase, the addition of the corresponding substrate 

will produce a colour change and, consequently, visualise the presence of the antigen on the surface.37  

Using the immunostaining technique, the relative presence of human albumin, fibronectin and 

vitronectin on the surface of different starch based polymers was determined. In addition, both 

distribution patterns and type of proteins that preferentially adsorb from human blood serum were 
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analysed. Furthermore, the effect of human proteins in modulating the interaction of a mixed 

population of leukocytes and the materials surfaces was investigated. For this purpose, monoclonal 

mouse anti-human CD3 and CD14 antibodies were used to label human lymphocytes and 

monocytes/macrophages, respectively. 

 

 

2. MATERIALS AND METHODS 

2.1. Starch based materials 

The materials used in this study were biodegradable polymeric blends of corn starch with: (i) cellulose 

acetate (SCA), (ii) ethylene vinyl alcohol copolymer (SEVA-C) and (iii) polycaprolactone (SPCL), 

supplied by Novamont (Italy). The amount of starch is 50% by weight (wt%) on SCA and SEVA-C 

and 30% wt. on SPCL. Using conventional injection moulding technology samples were processed 

into 10 mm circular discs. Efforts were made in order to obtain the most reproducible surfaces. 

Samples were sterilised by ethylene oxide, as described in other works,38 washed, and all subsequent 

experimental procedures were performed under sterile conditions.  

 

2.2. Protein adsorption assay 
Human serum albumin, human fibronectin and human vitronectin were obtained from Sigma (UK). 

Human vitronectin was reconstituted to a final concentration of 2µg/mL in tissue-culture-grade water 

and sterilised by filtration. Whole blood was collected from healthy un-medicated adult donors, 

coagulated and centrifuged at 2500rpm during 5min for serum separation. Protein solutions of 

different concentrations were prepared by diluting initial solutions in 0.1M phosphate-buffered saline 

(PBS) solution without Ca2+ and Mg2+ and pH 7.4. HSA solutions used in the immersion experiments 

had concentrations of 1000, 70 and 35µg/mL. The FN solutions had concentrations of 1, 0.8 and 

0.4µg/mL and VN solution were diluted to 0.6 and 0.3µg/mL. Besides single protein solutions, 

competitive systems were studied: (i) binary solutions prepared to final concentrations of 1000µg/mL 

of HSA and 1µg/mL of FN and (ii) also complex solutions with 1%, 10% and 20% (v/v) of human 

blood serum. All solutions were sterilised by filtration through 0.2µm of pore size. Proteins were 

adsorbed to starch-based surfaces by transferring each sample to polypropylene tubes and immersing 

them in 2mL of the prepared solution for 24h at 37ºC. Batches of samples were also immersed in PBS 

solution without proteins to be used as control surfaces. After 24h samples were fixed in 4% 

formaldehyde for 5min, immersed in PBS and kept at 2 to 8ºC. Care was taken in order to prevent 

drying of the protein-coated surfaces before further analysis.  
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2.3. Detection of surface adsorbed proteins by immunostaining 
Samples and control surfaces were removed from PBS solution and coated for 20min with rabbit 

serum (1:10 dilution, Serotec, UK) in order to block later non-specific binding. Monoclonal mouse 

anti-human HSA, FN or VN antibodies (Dako, Germany) used as primaries in the immunostaining 

procedure were diluted to 1:1000. Discs were washed and, afterwards, coated with biotinylated rabbit 

anti-mouse immunoglobulins (IgG, Dako, Germany) diluted to 1:200. Both primary and secondary 

antibody solutions were diluted in PBS with 1%BSA and incubated for 30min. Detection of proteins 

adsorbed onto starch-based surfaces was processed using the alkaline-phosphatase protocol. The 

incubation of alkaline phosphatase (Vector, UK) and alkaline phosphatase substrate (Vector, UK) 

solutions was performed for 30min. Between each step of the immunostaining procedure, samples 

were repeatedly washed with PBS. For each assay, an additional control was prepared consisting of a 

protein-coated sample submitted to the same described procedure but instead of incubating with the 

primary, PBS was used. Three replicates for each experimental condition were prepared and the 

procedure repeated three to five times. Immunostaining results were observed using reflected light 

microscopy (Axioplan 2 Imaging, Zeiss, Germany) and image acquisition by digital camera equipment 

(AxioCam, Zeiss, Germany).  

 
2.4. In vitro human monocytes/macrophages and lymphocytes isolation and culture 
Whole blood was collected from healthy un-medicated, adult volunteers and anticoagulated with 

0.002% of heparin. Human blood mononuclear cells were isolated by means of using a one-step 

gradient centrifugation method. Five mL of anticoagulated blood was carefully layered over 3mL of 

LymphoSep Media (ICN, USA) and centrifuged at 2500rpm for 25min at 4ºC. The interface was 

harvested, washed three times in PBS and cells were resuspended in 199-cell culture medium 

(GibcoBRL, USA) supplemented with 10% foetal bovine serum (FBS). 

After isolation, cells were seeded onto the protein pre-coated SEVA-C surfaces at a density of 5 x 

104cells/mL (in 199 medium with 10% FBS). Samples were incubated for 30min and 24h at 37ºC in 

5%CO2 and 100% humidity. After incubation, surfaces were fixed for 10min in 4% formaldehyde, 

immersed in PBS and kept in the refrigerator at 4 ºC.  

 
2.5. Analysis of leukocytes attachment by immunostaining and haematoxylin staining 
After leukocyte culture, fixed samples and controls obtained were removed from PBS solution, coated 

with rabbit serum (1:75 dilution, Serotec, UK) for 20 min and incubated overnight with purified 

monoclonal mouse anti-human CD3 or CD14 antibodies (1:1000 dilution, PharMingen, USA). Each 

disc was then coated with biotinylated rabbit anti-mouse IgG (1:200 dilution, Dako, Germany), 

followed by phosphatase alkaline (Vector, UK) and PA (Vector, UK) incubation, 30 min each. 

Between every step, samples were rinsed with PBS for 5 min. For each assay, an additional control 
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was prepared, by replacing the incubation of the primary by PBS solution. Samples labelled with 

antibodies were then counterstained with haematoxylin (Sigma, UK).  Surfaces were then rinsed in 

warm water for 1min and analysed using the reflected light microscope and digital camera for image 

acquisition. 

 

2.6. Cell counting 
In order to obtain lymphocyte, monocyte/macrophage and total cell numbers, cell counting was 

performed in a two-step procedure: after labelling leukocytes with CD3 and CD14 primary antibodies 

and after haematoxylin staining. For each sample, counting was performed from 20 different and 

arbitrary fields of vision using KS400 3.0 image analysis software coupled to a transmitted light 

microscope (Zeiss, Germany) and digital camera (JVC, USA). 

 

 

3. RESULTS AND DISCUSSION 

3.1. Immunostaining analysis of protein adsorption 

3.1.1. Unitary systems 

In this study, immunostaining technique was used to analyse protein adsorption with respect to their 

proportional amounts in the human serum 0.1% and 0.2% of those concentrations33 were used. The 

immunostaining technique allowed qualitative and semi-quantitative analysis of different starch-based 

blends studied in terms of protein adsorption pattern and intensity (Figures 1, 2 and 3). In the first 

case, the aim was to detect different protein distribution patterns and to determine whether it was a 

material or protein dependent phenomenon. For all proteins studied it was observed that SCA and, to 

some extent, SPCL present a less homogeneous protein coating than SEVA-C. Starch and ethylene 

vinyl alcohol blends are inter-penetrating networks (INP). SPCL presents some complexion and 

interaction between the starch and PCL phases, while SCA is a non-miscible blend. Considering the 

order SCA, SPCL and SEVA-C, we obtain an increase in miscibility and interaction between these 

natural and synthetic polymeric phases, explaining why proteins form a smooth and homogeneous 

protein coating at SEVA-C surfaces when compared with SPCL and SCA. By means of analysing 

Figures 1, 2 and 3 it can be concluded that protein adsorption pattern is determined by the type of 

material. Whatever the protein used the same staining distribution for a certain starch-based surface 

was obtained. In terms of intensity of the staining, and comparing Figures 1a, 2a and 3a with Figures 

1b, 2b and 3b it is possible to observe that human albumin, fibronectin and vitronectin at 35, 0.8 and 

0.4µg/mL are not saturating for almost all surfaces, once the protein concentration is doubled and a 

more intense staining is achieved. Furthermore, it can be observed that both fibronectin and vitronectin 

adsorb in higher amounts to the starch-based surfaces and at least 85 lower concentrations are used. 

These results indicate higher adsorption affinity of FN and VN to the materials studied.   
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Figure 1. Immunostaining results (5x) of different starch-based materials (SCA, SEVA-C, and SPCL) immersed in two 

distinct human serum albumin solutions: 35.0µg/mL – 0.1% of the concentration in human serum – (a) and 70.0 µg/mL – 

0.2% of the concentration in human serum (b). 

 

Figure 2. Immunostaining results (5x) of different starch-based materials (SCA, SEVA-C, and SPCL) immersed in two 

distinct human fibronectin solutions: 0.4 µg/mL – 0.1% of the concentration in human serum – (a) and 0.8 µg/mL – 0.2% of 

the concentration in human serum (b). 

 

3.1.2. Binary systems 

In order to examine protein adsorption in a competitive environment, binary solutions of 1000µg/mL 

of albumin and 1µg/mL of fibronectin were prepared and samples were immersed in the solutions for 

SCA SEVA-C 

1cm 

(a) 

(b) 

SPCL 
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(b) 

SCA SEVA-C SPCL 



Chapter III. Preliminary study on human protein adsorption and leukocyte adhesion to SBB 

 

77 

24h at 37ºC. Figure 4 presents the different starch-based surfaces previously immersed in the two-

protein solutions and immunoassayed for HSA and FN. It was observed that, in opposition to single 

protein solutions (see Figure 1 and Figure 2), staining intensities were generally lower although higher 

albumin and fibronectin concentrations were used. In unitary systems, SEVA-C adsorbed more FN 

than HSA and showed a more intense staining for HSA. In addition, although SCA and SPCL present 

a general decrease in staining intensity, higher adsorptions are still obtained for fibronectin. In 

opposition to the previously discussed results, the binary solutions indicate low adsorption capabilities 

of fibronectin in competitive environment and, subsequently, a synergistic effect driven by the 

presence of albumin. 
 

Figure 3. Immunostaining results (5x) of different starch-based materials (SCA, SEVA-C, and SPCL) immersed in two 

distinct human vitronectin solutions: 0.3 µg/mL – 0.1% of the concentration in human serum – (a) and 0.6 µg/mL – 0.2% of 

the concentration in human serum (b). 

 

3.1.3. Complex systems 

To complement the results obtained for binary systems, more complex protein solutions were also 

prepared and studied. Collected serum was diluted to 20%, 10% and 1% (v/v) in PBS without Ca2+ and 

Mg2+. After immersion in serum solutions, surfaces were immunoassayed for HSA, FN and VN 

(Figure 5). Although it was not possible to observe any increase in staining intensity from less to more 

concentrated solutions, both 10% (results not shown) and 20% human serum solutions seemed, in 

quantitative terms, to stimulate higher protein adsorption than the 1% solution (results not shown). 

Analysis of the results leads to the conclusion that in opposition to vitronectin, albumin is the protein 

that is adsorbed to the smallest extent onto the starch-based materials. Alternatively, from the 

materials perspective, SPCL and SEVA-C were observed to present higher protein adsorption affinity 

when compared to starch cellulose acetate (SCA) polymeric blends (see Figure 5). 

SCA SEVA-C 

1cm 

(a) 

(b) 

SPCL 
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Figure 4. Immunostaining results (5x) of different starch based materials (SCA, SEVA-C and SPCL) immersed for 24 hours 

in a solution with both human serum albumin (1000 µg/ml) and human fibronectin (1 µg/mL) and stained for albumin (a) and 

fibronectin (b).  

Figure 5. Immunostaining results (5x) of different starch-based materials (SCA, SEVA-C and SPCL) immersed 20% (v/v) of 

human serum and stained for human serum albumin (a), human fibronectin (b) and human vitronectin (c). 
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3.2. Immunostaining analysis of leukocyte adhesion to protein coated surfaces 

3.2.1. Effect of cell culture media, foetal bovine serum and leukocyte culture onto pre-

adsorbed proteins 

In order to study cell-protein interactions on starch-based material surfaces the effect of cell culture 

media and foetal bovine serum were examined. Samples were immersed in protein solutions 

concentrated at 0.2% of the human serum and then placed in cell culture media with and without 

bovine serum. The main aim was to study the effect of cell culture media, but also the effect of foetal 

serum, as this is a highly concentrated complex protein solution where protein-protein interactions are 

certain to occur. Although no significant differences in staining intensities were observed for SEVA-C 

pre-coated with FN and VN (see Figure 6), albumin antibody-labelled surfaces showed some loss of 

this protein after immersion in serum-supplemented media. This change may be a result of protein 

release from the SEVA-C surface to the surrounding solution or due to the coverage of this substrate 

with bovine foetal serum proteins.  

Figure 6. Immunostaining results (5x) of SEVA-C initially immersed in HSA (a), HF (b) and HV(c) at 0.2% of the 

concentration in the human serum, 70.0, 0.8 and 0.6 mg/mL, respectively, and then exposed 24 hours to the cell culture 

media with and without foetal bovine serum. 
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After confirming that albumin, fibronectin and vitronectin are still present on the surface after cell 

culture immersion, the effect of previously adsorbed proteins on cultured cells was assessed. Figure 7 

shows SEVA-C surfaces exposed to 0.2% of protein concentrations, on which cells were seeded and 

then stained for the presence of HSA, FN and VN. After 30min and 24h of leukocyte culture, 

fibronectin samples showed no interference determined by cell incubation. With respect to HSA and 

VN, results indicate protein desorption from the surface leading to the idea that fibronectin might be 

the more strongly adsorbed protein or at least less affected by cell culture interactions.  

 

Figure 7. Protein immunostaining samples (20x) of SCA, SEVA-C and SPCL previously immersed in 0.2% of HSA, HF and 

HV and then submitted to cell culture for 30min (a) and 24h (b). 

 

 

3.2.2. Immunostaining and cell density analysis of adherent leukocytes 

To examine how adsorbed proteins on SEVA-C surface affect cell adhesion, samples were immersed 

in albumin, fibronectin and vitronectin solutions, concentrated at 0.2% of physiological levels. 

Surfaces were used as substrates for cell culture and afterwards, antibody-labelling was performed. An 

example of the immunostaining results is presented in Figure 8 where it is possible to observe 

lymphocytes and monocytes/macrophages (CD3 and CD14 positive stained cells, respectively) 

incubated with SEVA-C surfaces previously immersed in vitronectin solution. From the preliminary 

results obtained, it was not possible to observe inhibition of monocytes/macrophages or lymphocytes 

adhesion to SEVA-C surface driven by the presence of HSA, FN nor VN. 
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Figure 8. Example of immunoshistochemical detection of human leukocytes cultured on SEVA-C surfaces previously 

immersed in 0.6mg/mL of VN. Red cells consist of CD3 (a) and CD14 (b) positive cells; blue cells are a result of 

haematoxylin stain (20x). 

 
To assess quantitatively the effects of albumin, fibronectin and vitronectin on monocyte and 

lymphocyte adhesion to SEVA-C surfaces, CD3 and CD14 positive cells were first counted and then 

counterstained with haematoxylin to determine total cell number.  
 

 

Figure 9: Total cell number, CD3 and CD14 positive cell numbers obtained for each different pre-treatment promoted to the 

surface of SEVA-C samples. Two different cell incubation periods are presented: 30min (a) and 24h (b). 

 
From Figure 9a and 9b, it is possible to see differences in cell number from 30min and 24h of cell 

incubation. In terms of specific populations, it is obvious the preference of monocytes/macrophages to 

adhere to SEVA-C surfaces when compared to CD3 positive cells. These observations conflict with 

established procedures regularly used to isolate lymphocytes from other leukocytes, which consider 

these CD3 positively stained cells not capable of adhesion to exposed surfaces.40 After 24h (Figure 

9b), it was possible to observe a cell number decrease for all the studied conditions. This behaviour 

was not obtained for HSA previously immersed samples that exhibit a clear increase in total cell 

number, and in CD3 and CD14 positive cells. The decrease in cell number can be explained by these 

cells ability to detach from surfaces in order to adhere later or begin the apoptotic cycle.40,41 Once 
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again, CD3 positive cells seem to adhere less than CD14 positive cells to SEVA-C surfaces (with or 

without proteins previously adsorbed on it). In summary, it might be said that vitronectin promotes a 

short-term effect in leukocyte adhesion and albumin was found to endorse long-term effects, 

subsequently leading to cell number increase after 24h of cell culture. 

 

 

4. CONCLUSIONS 
In this study, the use of antibodies to label human proteins allowed to obtain reproducible results, 

useful for understanding protein adsorption on biodegradable surfaces. Single protein solutions lead to 

higher adsorptions of FN and VN followed by HSA. Preference of FN adsorption in comparison to 

HSA was also detected when studying binary systems, except for SEVA-C, which was the only 

material on which HSA preferentially adsorbed. When human blood serum was used as the protein 

source, differences in protein behaviour were observed: in opposition to vitronectin and to fibronectin, 

the competitive potential of albumin to adsorb onto starch-based surfaces was decreased. Furthermore, 

SPCL presented the highest protein adsorption levels, even though for the studied serum 

concentrations surfaces showed, in general, good VN adsorption. These results support the idea that 

single solution studies are not good simulations of the real situation of the complex bioenviromnent. 

Consequently, complex systems should be considered in future for protein adsorption studies to be 

carried out on starch-based biomaterials.  

In the second part of this study, the effect of human albumin, fibronectin and vitronectin on 

modulating leukocyte adhesion gave rise to interesting results. In fact, short and long-term effects in 

cell adhesion were found to be developed in the presence of vitronectin and albumin, respectively. In 

addition, it was shown that cell populations adhere to protein coated and non-coated surfaces, although 

monocytes and/or macrophages were found in higher numbers mainly for shorter incubation periods. 
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Abstract 

The effect of oxygen-based radio frequency Glow Discharge (rfGD) on the surface of different Starch-based 

Biomaterials (SBB) and the influence of proteins adsorption on modulating bone-cells behaviour was studied. 

Bovine serum albumin, fibronectin and vitronectin were used in single and complex protein systems. RfGD-

treated surfaces showed to increase in hydrophilicity and surface energy when compared to non-modified SBB. 

Biodegradable polymeric blends of corn starch with cellulose acetate (SCA; 50/50 wt%), ethylene vinyl alcohol 

(SEVA-C; 50/50 wt%) and polycaprolactone (SPCL; 30/70 wt%) were studied. SCA and SCA reinforced with 

10% hydroxyapatite (HA) showed the highest degree of modification as result of the rfGD treatment. Protein and 

control solutions were used to incubate with the characterised SBB and, following this, MG63 osteoblast-like 

osteosarcoma cells were seeded over the surfaces. Cell adhesion and proliferation onto SCA was found to be 

enhanced for non-treated surfaces and on SCA+10%HA no alteration was brought up by the plasma 

modification. Onto SCA surfaces, BSA, FN and VN single solutions improved cell adhesion, and this same 

effect was found upscaled for ternary systems. In addition, plasma treated SEVA-C directed an increase in both 

adhesion and proliferation comparing to non-treated surfaces. Even though adhesion onto treated and untreated 

SPCL was quite similar, plasma modification clearly promoted MG63 cells proliferation. Regarding MG63 cells 

morphology it was shown that onto SEVA-C surfaces the variation of cell shape was primarily defined by the 

protein system, while onto SPCL it was mainly affected by the plasma treatment. 
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*This chapter is based on the following publication: 
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starch-based biomaterials by surface plasma treatment and protein adsorption”; Biomaterials, 28 (2007), 307-315  
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1. INTRODUCTION 

The strategy of surface modification of biomaterials has been adopted over the years in order to alter 

the area of the biomaterial that first comes in contact with a biological environment. Surface 

modifications methodologies have been used in a variety of applications, with many researchers 

concentrating on the study of different surface stimuli and optimize the short-term and long-term 

performance of biomaterials. Examples are attempts to prevent or improve adsorption of proteins and 

adhesion of cells to biomaterial surfaces.1-3 Plasma surface modification methodologies have been 

used for biomaterials in a variety of applications such as post-treatment grafting processes4,5 for 

altering surfaces functionality, and modulate proteins6,7 and cell behavior.8,9. The ability to retain the 

bulk properties constant while surfaces are changed is the key to the success of such type of 

approaches.10, 11 Radio frequency Glow Discharge (rfGD), has been used for surface modification over 

the years because it is considered an economical technique and clearly due its reproducibility, 

flexibility and clean nature.7,12 The degree of interaction of the plasma with the polymer is partly 

determined by the chemical structure and composition of the surface and is usually accompanied by 

roughening of the surface13,14. Although, plasma modification can yield instable and irregular surface 

chemistries,14 enables the use of a diversity of chemical and thus the production of different special 

functional groups on the surface.12 Interestingly both surface roughness15,16 and chemical features17 

direct the response of osteoblastic cells.  

Protein adsorption has been described by different authors18,19 as the initial and key step following the 

contact of an artificial surface with blood. Either in in vivo or in vitro conditions, cells are known not 

to interact with biospecies free-surfaces.20,21 Along with a number of other interfacial processes, the 

amount, type and conformation of adsorbed proteins directs the bio-integration of an implant, thus 

defining its final outcome: integration or rejection.22 

Protein adsorption is dependent on the chemistry, wettability, energy and topography of a polymeric 

surface.23,24 For instance, studies with chitosan25 show that an increase in hydrophobicity (water 

contact angle of ~ 100º) lead to increased protein adsorption compared to the more hydrophilic non-

modified surfaces. In this case, hydrophobic interactions govern the protein adsorption and the 

majority of blood proteins form proteinaceous layers over the surface.25,26 On the other hand, very 

hydrophilic surfaces also favour high biocompatibility due to the preferential adsorption of albumin, 

which firmly binds in high concentration.26, 27 In high concentrations albumin reaches the surface and 

binds, leading to a thrombogenicity lowering effect.28 In contrast, other authors29, 30 state that strongly 

hydrophobic or hydrophilic surfaces show a very low ability for protein adsorption.  

When contacting a material cell behaviour is dependent on the orientation or three-dimensional 

conformation and nature of the adsorbed biomolecules. Plasma treatment of different surfaces has for 

instance shown to up-regulate the expression of adhesion molecules and improve adhesion and growth 

of endothelial8 and bone related cells.31 The biological response of tissues to biomaterials is to a large 
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extent cell specific and also depends on the subsequent procedures after the initial surface preparation 

processes.13  

Starch-based biomaterials are biocompatible and non-cytotoxic materials that have been explored for 

several applications, including drug delivery systems,32 bone replacement and regeneration,33 and 

tissue engineering scaffolding.34, 35 In this study, starch-based biomaterials (SBB) modified by oxygen 

rfGD were analyzed in terms of surface chemical and physical changes and its potential for positively 

modulate bone-cells behaviour was assessed. The surface modification was characterized by 

measurement of surface contact angles, surface energy, scanning electron microscopy (SEM), X-ray 

spectrophotometry (XPS) and Fourier transformed infra-red spectroscopy (FTIR). Subsequently, non-

adhesive proteins such as serum albumin (BSA),36 adhesive proteins like fibronectin (FN)37 and 

vitronectin (VN) 38 and complex protein solutions such as fetal bovine serum (FBS) were incubated 

both with treated and original surfaces. These proteins were chosen on the basis of their importance in 

a variety of biomedical applications, including drug delivery and tissue engineering; and also on their 

characteristics: albumin represents highly concentrated, non-adhesive and globular proteins;36 and FN 

and VN represent adhesive sequence containing proteins also present in the extracellular matrix 

(ECM) and known to influence cell attachment, migration, differentiation and matrix assembly.39 

Finally, the influence of these proteins coupled to the effect of surface plasma treatment on the 

adhesion, growth and morphology of bone-like cells was studied.   

 

 

2. MATERIALS AND METHODS 

2.1. Starch-based Biomaterials (SBB) 
The materials used in this study were biodegradable polymeric blends of corn starch with: (i) cellulose 

acetate (SCA), (ii) ethylene vinyl alcohol copolymer (SEVA-C) and (iii) polycaprolactone (SPCL). 

The amount of starch was 50% by weight (wt%) for SCA and SEVA-C and 30% wt. for SPCL. 

Furthermore, a composite of SCA reinforced with 10% (wt%) of hydroxyapatite (HA) was prepared 

using twin-screw extrusion. Samples were processed into 10 mm circular discs using conventional 

injection moulding technology. Samples were sterilised by ethylene oxide,40 washed, and all 

subsequent experimental procedures were performed under sterile conditions. 

 

2.2. Oxygen-based Plasma Treatment  
Surfaces were modified by means of O2 gas plasma in a rfGD chamber (Harrick Scientific 

Corporation, USA). The plasma reactor chamber was stabilized at vacuum to approximately 26.7 Pa 

using a vacuum and O2 was injected into chamber at a pressure of 15psi for 30sec followed by a 

waiting period of a 30s before plasma treatment. Plasma treatment was initiated for 180s using a 
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power of 100W and pulsed frequency of 13.5MHz. Time-related changes of treated surfaces were 

minimized by using the samples within the following 4h.  

 

2.3. Characterization of SBB Surface Modification 

2.3.1. Water Contact Angle  

Contact angle measurements were used to investigate the wettability of the surfaces following rfGD 

modification. The relative hydrophilicity of treated and untreated SBB surfaces was assessed by using 

the sessile drop method on a Video Contact Angle 2000 System (AST Products, Inc., USA) and ultra-

pure water (Pierce, USA). Each side of water drops was recorded and averaged; 9 drops and 3 samples 

per condition were used. Measurements were recorded 10 sec after liquid contact with the surface. 

 

2.3.2. Surface Energy and Adhesion Tension of Water 

The determination of surface energy (γ) of SBB compact samples after plasma treatment was based on 

the Owens and Went method 41 that discerns between a polar  (γp) and a disperse or nonpolar (γd) 

component of the surface energy. Water and diiodomethane (Sigma, USA) were used as test liquids 

for the determination of the surface energy. Reported surface tension values for water and 

diiodomethane are respectively, 72.8 and 50.8dyn/cm at 20ºC.42 Furthermore, in this study polar and 

disperse parts of water were considered to be 51.0 and 21.8dyn/cm and for diiodomethane 0.0 and 

50.8dyn/cm, respectively.42 

According to Janocha et al.,43 the measurement of the adhesion tension of water is an adequate 

alternative methodology to the calculation of the surface energy of solid surfaces due to its higher 

experimental or less assumption-based nature. The contact angle ϑ of water on the surfaces was 

measured and multiplied by the surface tension γ1 of water (72.8mN/m) to obtain the adhesion tension 

of water.  

Both adhesion tension of water and surface energy were based on a sessile drop method. Drop contact 

angles were measured 10s after contact with the surface 9 drops and 3 samples per condition were 

used. 

 

2.3.3. X-Ray Photoelectron Spectroscopy (XPS) 

XPS measurements were performed in order to characterize the surface composition of biodegradable 

blends of corn starch with cellulose acetate (SCA) following the rfGD treatment. The experiments 

were carried out using a Kratos Axis-Ultra (Kratos Analytical Inc., USA) with monochromatic Al X-

ray source. X-rays energy was 1486.6eV and base pressure approximately 2.9 x 10-11psi. Triplicates 

were prepared and results collected from 5 different points of the surface of SCA samples. 
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2.3.4. Fourier Transform Infra Red Spectroscopy (FTIR) 

Spectra were obtained by attenuated total reflection (ATR) using a Nicolet Spectrometer (Nicolet 

Instrument Coorporation, USA). Each spectrum was recorded with a total of 32 scans and 4.0 

resolution after 20s of vacuum for chamber stabilization. Original and treated surfaces were analyzed 

in triplicates 400-4000cm-1.  

 

2.3.5. Scanning Electron Microscopy (SEM) 

Samples morphology was analyzed by means of SEM. Surfaces were sputter coated (Med-010 Sputter 

Coater by Balzers-Union, USA) for obtaining a thin Au-Pd layer and examination was performed 

using a scanning electron microscope (Leica, UK). Triplicates were prepared for all original and 

plasma treated starch-based polymeric materials. 

 

2.4. Protein Incubation Assay 
Since protein–surface interactions are highly dependent on the experimental system, all assay 

conditions were previously optimized and kept constant throughout the performed replicates.  

Single and complex protein solutions were prepared for the incubation with non-treated and rfGD-

treated SBB surfaces. Proteins from bovine source were used: BSA, FN, VN and FBS and obtained 

from Pierce (USA), Sigma (USA), Calbiochem (USA) and Atlanta Biologicals (USA), respectively. 

The saline solution was supplied by Baxter (USA). Proteins were incubated with characterized 

samples for 15min at 37ºC as described elsewhere.44 To simulate the blood protein environment, 

protein solutions were prepared at 1% of the concentration of those proteins in human blood plasma:45 

350µg/mL of BSA, 4µg/mL of FN and 3µg/mL of VN. By combining BSA, FN and VN in the same 

solution, a ternary protein system was prepared using the same concentrations described for the single 

protein solutions. Furthermore, 1% (V/V) of FBS was also used to mimic complex protein 

environments. 

Cell seeding was carefully performed sample by sample and immediately after protein adsorption step 

to evade surface drying and consequent protein conformational changes or denaturation. Surface 

rinsing was not performed and any enrichment of the cell culture media that could result from 

remaining non-adsorbed proteins was considered negligible. 

 

2.5. MG63 Osteoblast-like Cells Culture, WST-1 Assay and SEM  
Cell response was studied using the MG63 osteoblast-like osteosarcoma cell line that has been well 

characterized in the literature and consists of a good model for the study of human bone cells. MG63 

cells are known to present numerous osteoblastic traits, including increased levels of bone alkaline 

phosphatase and inhibition of proliferation following treatment with 1,25-(OH)2D3.46,47 Cells 

(American Type Culture Collection, USA) were seeded on the relevant surfaces at 4 x 104cells/mL and 
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incubation was performed for 1, 4 and 7 days in DMEM (CELLGRO, USA) containing 10% FBS 

(Atlanta Biomedicals, USA). Tissue culture polystyrene (TCPS) was used as maximum control.  

After each incubation period, cultured samples were transferred to new wells with fresh media and 

analyzed for mitochondrial activity using colorimetric WST-1 tetrazolium conversion assay 

(TAKARA, Japan). Briefly, 10µL of WST-1 reagent was added per well, and the cells were incubated 

for an additional 2h. The absorbance of the WST-1-containing cell supernatant was determined at 

450nm (Benchmark Microplate Reader, Bio-Rad, USA). To avoid interference from both cell culture 

media and SBB biodegradable materials, the following controls were prepared and considered as blank 

samples: fresh media, and SBB samples immersed in fresh media but no cells were seeded. Cell 

morphology was evaluated by SEM. Briefly, preparation of cell cultured samples for SEM observation 

was performed by using 4% formaldehyde and 1% gluteraldehyde as fixative solution (Electron 

Microscopy Sciences, USA). Samples were then washed using phosphate buffered saline (PBS) 

solution (Sigma Diagnostics, USA) and gradually dehydrated by incubation in crescent ethanol 

concentrations. Drying was accomplished by means of hexamethyldisilazane (HMDS) solution 

(Polysciences Inc., USA), as recommended for SEM preparation of soft tissue.  

 

2.6. Statistical Analysis 
Results of the tests were tabulated as mean ± SD. The effects of plasma treatment on both the surface 

parameters and cell density values were statistical analyzed by performing the bi-tail Students t-test. 

Significant differences were considered to exist when p<0.05. 

 

 

3. RESULTS AND DISCUSSION  

3.1. Results of Plasma Treatment on the Wettability and Surface Energy of Starch-

based Biomaterials (SBB)  
Oxygen plasma treatment has been described to result in the grafting of atoms or activation of existing 

chemical groups in the outer surface layer. Literature sources48, 49 reveal that oxygen plasma exposure 

can render higher hydrophilicity on most polymer surfaces. Briefly, the active plasma species attack 

the polymer surface resulting in the increase or incorporation of carbonyl, carboxyl or hydroxyl 

functional groups.48-51 The resulting wettability changes are generally due to oxidation effects, 

unsaturation, electrostatic charges and surface morphological effects.50, 51  

The relative hydrophilicity of treated and untreated starch-based biomaterial surfaces was assessed by 

measuring the contact angle using ultra-pure water and the sessile drop method. Contact angle 

measurements are frequently applied in surface characterization and considered a high sensitive 

technique to study surface changes within a depth of a few atomic layers.52 In the technique used a 

drop of ultra pure water was placed on the surface of the material and allowed to spread for 10sec, 
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after which images were acquired and analyzed. The results and characteristic drop profiles can be 

observed in Table 1. In general terms, all analyzed surfaces showed a significant increase in 

hydrophilicity following oxygen-based plasma treatment (p<0.05) that was confirmed by the higher 

contact angles for untreated when compared to plasma-treated surfaces (Table 1). For SCA and 

SCA+10% HA decreases in the contact angle were observed, 40º and 35º respectively. For SEVA-C 

and SPCL the plasma treatment resulted in moderate enhancement in wettability bringing surfaces 

contact angles to 54º and 61º - a result of 33% and 23% reduction, respectively.    
 

Table 1. Contact angle and water drop profiles, surface energy and adhesion tension of the water for plasma treated and non-

treated starch based biomaterials.  
 

Contact Angle Surface Energy Adhesion Tension Water Drop Profiles 
SURFACE 

Degrees Change 
(%) dyn/cm Change 

(%) mN/m Change 
(%) nt t 

nt 76.4±3.2 43.0±2.7 17.0±3.9 
SCA 

t 37.5±2.6* 
-51% 

62.6±0.8* 
46% 

57.7±2.0* 
239% 

 

nt 65.4±3.1 46.6±2.2 30.3±3.6 
SCA+10%HA 

t 30.5±5.7* 
-53% 

66.5±3.0* 
43% 

62.4±3.7* 
106% 

 

nt 80.0±2.6 36.2±1.8 12.6±3.3 
SEVA-C 

t 54.0±1.7* 
-33% 

51.9±1.1* 
43% 

42.8±1.7* 
239% 

 

nt 78.8±1.7 46.9±1.0 14.1±2.1 
SPCL 

t 60.7±3.2* 
-23% 

55.8±1.6* 
19% 

35.6±3.4* 
152% 

 

Leg.: nt- non-treated or original SBB surfaces; t rfGD-treated SBB. 
*Statistically different from non-treated SBB surfaces (t-Test; Bi-tail; p<0.05; n>9).  
 
 

The effect of plasma treatment was further studied by means of determining the surface energy and 

adhesion tension of the water. The surface energy of the SBB was determined using the Owens and 

Went method41 with water and diiodomethane as test liquids. For the determination of surface energy, 

this method distinguishes the contribution of the polar (γp) and dispersion forces (γd), taking in 

consideration that γd are always present regardless of the chemical nature of the system. The results 

are shown in Table 1. After rfGD treatment, all surfaces showed a significant increase of the polar (γp) 

term compared to the original surfaces (p<0.05). On the other hand, the dispersion (γd) term was not 

statistically different for treated and untreated SBB samples. It was found that the increasing of the 

surface energy was attributed to the increasing of the polar (γp) term following SBB treatment. As the 

relative increasing ratio of the polar (γp) term is significantly larger than the relative increase ratio of 

the dispersion (γd) term, the values of surface energy for treated samples are higher than those 

untreated ones that resulted from the increasing hydrophilicity of surfaces after hydration. SCA and 

SCA+10%HA composite presented the highest increase in surface energy values, of approximately 



Chapter IV. Plasma treatment, protein adsorption and cell behaviour on SBB 

 

94 

20dyn/cm (46% change), followed by SEVA-C with 16dyn/cm (43% change) and SPCL with 9dyn/cm 

(19% change).  

In parallel, adhesion tension was used as an alternative methodology to calculate surface energy. This 

approach permits more accurate measurements by being experimental rather than based on 

assumptions.43 RfGD-treated SBB surfaces when compared to untreated ones showed higher surface 

energy and water adhesion tension values.  

The results of water contact angle, surface energy and adhesion tension of the water showed that 

plasma treatment significantly affected the properties of all studied SBB. The herein described 

treatment introduced higher variations of the studied surfaces when compared to other chemical-based 

modification methods.53 In general, SCA surfaces were the most dramatically modified ones in 

opposition to SPCL that showed higher surface stability. Both the increase in surface hydrophilicity 

and surface energy changes are due to the density of -OH polar groups on the studied surfaces, which 

were highly affected by the selected surface modification technology. In the natural form both SCA 

and SEVA-C present the same -OH density in contrast to SPCL that is composed of less 20% of 

starch. On the other hand, -OH groups in the synthetic polymeric fraction of the studied SBB are 2:1:0 

for SCA:SEVA-C:SPCL. The nature of the different materials, including the decrease of -OH groups 

from SCA to SEVA-C and finally to SPCL, gives a possible explanation for the variation of contact 

angle or surface energy values obtained for these surfaces after plasma treatment.  

 

3.2. Effect of Plasma Treatment on Total Oxygen Content of SBB 
From the three polymeric blend studied, SCA modified surfaces showed the lowest wettability, and 

highest surface energy and adhesion tension. Considering the different used surfaces, SCA blends are 

also characterized by a higher content of hydroxyl groups known to be directly affected by oxygen 

reactive species as the environment created in the plasma reactor. As a case study, this material was 

further analyzed by XPS. XPS retrieves detailed chemical information54 from the nanometer scale, 

more specifically with a depth up to 50 Å.50 XPS was used in the present study to characterize the 

surface composition of SCA following oxygen rfGD plasma treatment. Table 2 shows the results 

obtained for treated and untreated SBB. 

 
Table 2.  XPS analysis of atomic percentages and functional groups for the native and oxygen rfGD modified SCA.  
 

SURFACE O1 (%) N 1s (%) C-H (%) C=O (%) C-OOH (%) Total O (%) Total C (%) 

SCA 35,19 ± 1,07 0,07 ± 0,16 16,83 ± 5,14 33,68 ± 5,14  14,23 ± 0,85 35,19 ± 1,07 64,74 ± 1,12 

rfGD-SCA 41,37 ± 1,10* 1,05 ± 0,26* 4,91 ± 1,75* 36,57 ± 2,31 16,09 ± 0,86* 41,37 ± 1,10* 57,57 ± 0,94* 

*Statistically different from non-treated SCA (t-Test; Bi-tail; p<0.05; n>9). 
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The oxygen rfGD treatment was found to add significant amounts of C-O-O bonds to the surface but 

on the other hand C-H and C=O functional groups decreased following plasma surface modification 

(p<0.05). After plasma treatment, C:O ratio increases from 1:0.57 to 1:0.77, indicating an increase of 

oxygen on the surface of the SCA blends. Comparing the contact angle and XPS results it is seen that 

after the plasma treatment the increase in the total oxygen is due to an increase of OH or COOH 

groups as an increase in C=O group would lead to an increase in oxygen but to a more hydrophobic 

surface.  

 

 

 

 

 

 

 

 
 

Figure 1.  FTIR spectra of original and plasma-treated SCA surfaces. 

 

FTIR spectroscopy with ATR (FTIR-ATR) was also performed to characterize all SBB materials 

before and after plasma treatment. In contrast to surface methodologies as the wettability analysis 

described above, the FTIR-ATR spectra results from signals retrieved from up to 100nm thickness, 

which in practice could mask true surface signals.52 Spectra analysis did not suggest treatment driven-

chemical changes either in the aliphatic, carbonyl or asymmetric stretching regions55 as can be 

observed in the example presented in the Figure 1. This indicates that the oxygen plasma surface 

modification did not affect the properties of the bulk of the material. 

 

3.3. Effects of Plasma Treatments on the Surface Morphology of SBB 
SEM was used to perform a qualitative surface analysis of the morphology changes introduced by the 

plasma treatment (Figure 2). In opposition to SCA+10%HA, non-modified SCA, SEVA-C and SPCL 

polymeric blends (Figures 2a, 2e and 2g, respectively) presented a smoother surface when compared 

to treated surfaces. These preliminary results could indicate the ability of oxygen plasma treatment to 

modify SBB microtopography. The increase in surface heterogeneity may be another factor 

responsible for changing the hydrophilicity of SBB surfaces since surface micro-features affect 

wettability.56  
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Figure 2. Morphology of original and plasma treated starch-based biomaterials: non-treated (a) and treated SCA (b), non-

treated (c) and treated SCA + 10% HA (d), non-treated (e) and treated SEVA-C (f) and non-treated (g) and treated SPCL (h) 

surfaces. 

 
3.4. Effect of Plasma Treatments and Adsorbed Proteins on the Density and 

Morphology of Osteoblast-like Cells seeded on SBB 
Single and complex protein solutions were prepared for the incubation with non-treated and rfGD-

treated SBB surfaces. Proteins were incubated as described elsewhere;44 to simulate the physiological 

environment protein solutions were prepared at 1% of the concentration of those proteins in human 

blood plasma:45 350µg/mL of BSA, 4µg/mL of FN and 3µg/mL of VN. By combining BSA, FN and 

VN in the same solution, a ternary protein system was prepared. Furthermore, in order to mimic 

complex protein environments, 1% (v/v) of FBS was used. Cell response was studied using MG63 

osteoblast-like osteosarcoma cell line. Cells were seeded on the surfaces for 1, 4 and 7 days; cell 

adhesion and proliferation was assessed in terms of absorbance and cell morphology observed by 

SEM. WST mitochondria assays measure viability taking in account intact mitochondrial mechanisms, 

consistent cellular activation and similar ECM interactions. The PreMix WST-1 enables to analyze 

cell proliferation and cell viability with a colorimetric assay, and is based on the cleavage of 

tetrazolium salts by mitochondrial dehydrogenase in viable cells.57 

Cell adhesion and proliferation on SCA (Figure 3a) were found to be enhanced for non-treated 

surfaces. As for SCA surfaces, proliferation of MG63 cells was promoted on untreated SCA+10%HA 

(Figure 3b) but no alteration on cell adhesion was introduced by the plasma modification. In addition, 

plasma-treated polymeric blends of corn starch and ethylene vinyl alcohol showed an increase in both 

MG63 cells adhesion and proliferation compared to non-treated surfaces (Figure 3c). Even though 

adhesion on treated and untreated SPCL (Figure 3d) was rather similar, plasma modification promoted 

MG63 cells proliferation. Between the cells and the surface, proteins are present. In the case of SCA 

surfaces, gas plasma treatment and subsequent protein incubation revealed to affect MG63 cells 

adhesion. On SCA surfaces, BSA, FN and VN single solutions improved cell adhesion levels, and this 

same effect was found for ternary systems.  

10 µm 

(a) (b) (c) (d) 

(e) (f) (g) (h) 
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Figure 3. Adhesion and proliferation of MG63 osteoblast-like cells onto the different non-treated and treated starch-based 

biomaterial surfaces: (a) SCA, (b) SCA + 10% HA, (c) SEVA-C and (d) SPCL. Leg.: Sal- saline solution and Ter-ternary 

solution. * Statistically different from non-treated sample (t-Test; Bi-tail; p<0.05; n>9). 
 

 

Figure 4. Representative MG63 cells morphology over SEVA-C (a to f) and SEVA-C-treated surfaces (g to l), previously 

incubated with: saline (a and g), BSA (b and h), FN, (c and i), VN (d and j), ternary (e and k) and FBS (f and l) solutions. 
 

 

20 µm 

a) 

g) 

b) 

h) 

c) 

i) 

d) 

j) 

e) 

k) 

f) 

l) 



Chapter IV. Plasma treatment, protein adsorption and cell behaviour on SBB 

 

98 

Figure 5. Representative MG63 cells morphology over SPCL (a to f) and SPCL-treated surfaces (g to l), previously 

incubated with: Saline (a and g), BSA (b and h), FN, (c and i), VN (d and j), Ternary (e and k) and FBS (f and l) solutions. 
 

Regarding MG63 cells morphology it was shown that on SEVA-C surfaces the variation of cell shape 

was primarily defined by the protein system used (Figure 4). In general, cells presented a similar 

morphology either for treated or non-treated SEVA-C surfaces. Specific morphological characteristics 

were observed for the surfaces pre-adsorbed with FN (Figures 4c and 4i) and VN (Figures 4d and 4j), 

where cell spreading is increased when compared with the surfaces incubated with other protein 

systems. For SPCL surfaces, cell shape was affected by the plasma treatment (Figure 5). 

No cell morphological variation was observed when comparing the different protein systems within 

the treated or non-treated surfaces. Comparing Figures 5a-f with 5g-l reveals that on non-treated SPCL 

surfaces cells present lamelipodia structures and on treated surfaces they present preferentially 

filapodia formation.  

 

 

4. Conclusion 
The surface modification technique used in this study, oxygen-based radio frequency Glow Discharge 

(rfGD) treatment was successful in changing starch based biomaterials surface properties. Oxygen 

rfGD was shown to uniformly functionalize/activate the surface of SBB without affecting the bulk 

properties. The effect of oxygen-based rfGD on the surface of starch-based biomaterials (SBB) was 

investigated by means of: contact angle, surface energy, adhesion tension of water, scanning electronic 

microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared 

spectroscopy with attenuated total reflection (FTIR-ATR). Both, the effects of plasma modification 

and the presence of different protein systems on the viability and morphology of MG63 osteoblast-like 

20 µm 

a) b) c) d) e) f) 

g) h) i) j) k) l) 
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cells were also studied. RfGD-treated surfaces showed an increase in the hydrophilicity as well as the 

adhesion tension and surface energy when compared to non-modified SBB. Biodegradable polymeric 

blends of corn starch with cellulose acetate (SCA) and SCA with 10% hydroxyapatite (HA) showed 

the highest change in wettability and surface energy as result of the rfGD treatment. Surface 

morphological changes were also observed by SEM. XPS analysis of SCA indicated significant 

differences in the C:O ratio, which increased after treating surfaces by plasma treatment, and may 

explain the biological response of the different polymeric blends. 

In the absence of pre-incubated proteins, the plasma-treated SPCL surfaces showed to highly improve 

osteoblast-like cells proliferation. Protein types and the presence of other proteins were shown to be 

the key for cell adhesion and proliferation. In several cases, cell morphology was shown to be related 

to surface properties created by the plasma treatment. In contrast to SEVA-C surfaces, cell adhesion 

and proliferation on SCA were found to be enhanced for non-treated surfaces and on SCA+10%HA no 

significant changes in cell adhesion were introduced by the plasma modification. Even though 

adhesion on treated and untreated SPCL was very similar, plasma modification clearly promoted 

MG63 cells proliferation. MG63 cells morphology on SEVA-C surfaces was primarily defined by the 

protein system used, while on SPCL it was mainly affected by the plasma treatment. 
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Abstract 
We have studied the influence of oxygen radio frequency glow discharge (rfGD) on the surface and bulk 

properties of Poly(D,L-lactic acid) (PDLLA) and the effect of this surface modification on both protein 

adsorption and bone cell behavior. PDLLA films were characterized before and after plasma surface 

modification by water contact angle, surface energy and adhesion tension of water as well as by scanning 

electron microscopy (SEM), X-ray electron spectroscopy (XPS) and Fourier transform infra-red (FTIR) 

spectroscopy. RfGD-films showed an increase in hydrophilicity and surface energy when compared to untreated 

films. Surface morphological changes were observed by SEM. Chemical analysis indicated significant 

differences in both atomic percentages and oxygen functional group. Protein adsorption was evaluated by 

combining solute depletion and spectroscopic techniques. Bovine serum albumin (BSA), fibronectin (FN), 

vitronectin (VN) and fetal bovine serum (FBS) were used in this study. RfGD-treated surfaces adsorbed more 

BSA and FN from single specie solutions than FBS that is a more complex, multi-specie solution. MG63 

osteoblast-like cells and primary cultures of fetal rat calvarial (FRC) cells were used to assess both the effect of 

RfGD treatment and protein adsorption on cell attachment and proliferation. In the absence of pre-adsorbed 

proteins, cells could not distinguish between treated and untreated surfaces, with the exception of MG63 cells 

cultured for longer periods of time. In contrast, the adsorption of proteins increased the cells’ preference for 

treated surfaces, thus indicating a crucial role for adsorbed proteins in mediating the response of osteogenic cells 

to the RfGD-treated PDLLA surface. 
 

Keywords 

Polylactic acid, Plasma surface modification, Protein adsorption, Cell attachment and proliferation. 

 
                                                        
*This chapter is based on the following publication: 
C. M. Alves, Y. Yang, D.  Marton, D. L. Carnes, J. L. Ong, V. L. Sylvia, D. D. Dean, R. L. Reis, C. M. Agrawal, “Plasma surface 
modification of poly(D,L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types”; Journal of 
Biomediical Materials Research - Part B, 2007, accepted  
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1. INTRODUCTION 

Polylactic acid (PLA) is a well know biodegradable aliphatic polymer that has been previously 

explored for several biomedical applications such as bone fixation devices and tissue engineering 

scaffolds.1,2 Although it is known to be biocompatible and is widely used clinically, its low wettability 

and surface energy have been shown to affect cell attachment and proliferation and remain an issue.3 

In the field of biomaterials it is well established that the surface characteristics of an implant play a 

more critical role in determining the biologic response compared to the bulk properties of the 

biomaterial. Thus a wide range of surface modification methodologies have been explored to achieve 

desirable surface properties, such as chemistry, wettability, surface energy and topography.4,5 Often the 

goal of surface modification techniques is to generate a physical and/or chemical modification of the 

outer molecular layer of the surface, while retaining the bulk properties of the material, including 

mechanical ones.4 In this context, plasma treatments are frequently used to modify the chemical 

functionality of non-reactive biomaterial surfaces because they can be applied on a wide range of 

implant shapes and sizes.6 Although it is accepted that plasma modification can yield irregular surface 

chemistries,7 this technique presents a major advantage while enables the use of a diversity of 

chemicals and thus the production of a variety of special functional groups on the surface.8 Plasma 

surface activation employs gases, such as oxygen, which dissociate and react with the surface, creating 

additional functional groups that can be recognized as adhesion sites for surrounding cells.9 

Cell response to a biomaterial surface is considered one of the major factors in determining the 

biocompatibility of a material because this step affects subsequent cell proliferation and differentiation 

pathways.10 With this in mind, a number of investigators have reported using plasma treatment to 

improve the behavior of anchorage-dependent cells such as osteoblasts11 and endothelial cells.12,13 It is 

known that interfacial reactions occurring when a material contacts a biological environment are 

modulated by both the surface and the biomolecules, such as proteins, that interact with it.  The 

outcome of these interactions subsequently affect the cellular response.14,15 In the past, studies have 

tried to assess the effect of surface properties on the adsorption of proteins with the goal of creating 

biomimetic surfaces, such as those that mimic extracellular matrix (ECM) properties, to improve 

surface recognition by cells.16,17 Along these lines, in the present study we aim to provide insight into 

the interaction of two different types of osteogenic cells with poly(D,L-lactic acid) surfaces with 

differences in wettability, surface energy, chemistry and roughness. 

An oxygen-based plasma treatment of PDLLA was used to modify surface properties and alter the 

adsorption of proteins. Characterization of the surface was performed by measuring the surface contact 

angle and surface energy, and the use of scanning electron microscopy (SEM), X-ray photoelectron 

spectroscopy (XPS) and Fourier transform infra-red spectroscopy (FTIR). The adsorption of various 

proteins was studied as a function of gas plasma treatment; these included non-adhesive proteins such 

as bovine serum albumin (BSA),18-20 adhesive proteins such as fibronectin (FN)21-24 and vitronectin 
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(VN)25-27 and the complex protein solution fetal bovine serum (FBS). The influence of these proteins 

on cell attachment and proliferation was analyzed. Two types of cells were used: MG63 cells as a 

prototype of an established line of bone-like cells, and fetal rat calvarial (FRC) cells as an example of 

primary osteoprogenitor cells. 

 

 

2. MATERIALS AND METHODS 

2.1. Materials and Chemicals 
Poly[D,L-Lactide] (PDLLA) was purchased from Birmingham Polymers, Inc. (USA) and acetone 

from EM Science (Germany). Glass coverslips were obtained from PGC Scientifics (USA). Ultra pure 

water for contact angle was purchased from Pierce (USA) and diiodomethane was supplied from 

Sigma (USA). The proteins used were from bovine sources; serum albumin (BSA), plasma fibronectin 

(FN), vitronectin (VN) and fetal bovine serum (FBS) were obtained from Pierce (USA), Sigma (USA), 

Calbiochem (USA) and Atlanta Biologicals (USA), respectively. Saline solution was purchased from 

Baxter (USA) and Bicinchronic Acid (BCA) reagents were obtained from Pierce (USA). The enzyme 

mixture of 0.2% collagenase/0.05% trypsin and Hank’s Balanced Salt Solution (HBSS) were obtained 

from Sigma (USA). Cell culture media αMEM and Penicillin-Streptomycin Mixture were obtained 

from Gibco, DMEM from CELLGRO, β-glycerophosphate from Caliochem, L-ascorbic acid from 

Sigma and Fetal Bovine Serum (FBS) from Atlanta Biomedicals (USA). WST-1 (TAKARA, Japan) 

and trypsin-EDTA (Sigma, USA) were used for cell number quantification. 

 

2.2. Poly(D,L-Lactic Acid) Films Fabrication 
Poly[D,L-Lactide] (PDLLA) films were fabricated under clean conditions using acetone as solvent.  

The polymer used had an inherent viscosity of 0.67dL/g and was dissolved in acetone at a ratio of 

about 1:23 or 1.64g/37mL. The polymer solution was cast directly over 1.5cm diameter glass 

coverslips. In this fashion, after solvent evaporation, circular PDLLA film samples attached to the 

glass coverslips were obtained. These were kept under vacuum for further drying until use. The films 

were sterilized by UV radiation (8 hours) in a tissue culture hood prior to use. 

 

2.3. Plasma Treatment and Surface Sterilization 
The PDLLA film sample surfaces were modified by means of O2 gas plasma in a Radio Frequency 

Glow Discharge (RfGD) chamber (Harrick Scientific Corporation, USA). The plasma reactor chamber 

was stabilized under vacuum to approximately 26.7Pa and then O2 was injected into chamber at a 

pressure of 15psi for 30sec followed by a waiting period of 30sec before plasma treatment. Plasma 

treatment was initiated for 180sec using a power of 100W and pulsed frequency of 13.5MHz. Time-
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related changes on treated surfaces were minimized by testing the samples within the following 48 

hours. Sterilization of plasma modified PDLLA was performed as described for original surfaces. 

 

2.4. Characterization of PDLLA Surfaces 

2.4.1. Water Contact Angle  

The relative hydrophilicity of gas plasma treated and non-treated PDLLA surfaces was assessed by 

water contact angle measurements. Contact angles were measured using the sessile drop method on a 

Video Contact Angle 2000 System (AST Products, Inc., USA) and ultra-pure water. Both side of the 

water drops were recorded and averaged; 9 drops and 3 samples per condition were used and the 

results averaged. Measurements were recorded 10 sec after liquid contact with the surface. 

Contact angle measurements were used to investigate the wettability of the surfaces following both 

RfGD modification and UV sterilization experimental steps. 

 

2.4.2. Surface Energy and Adhesion Tension of Water 

Surface energy measurements on control and plasma treated PDLLA films were performed in 

accordance with the Owens and Went method28 that distinguishes between polar  (γp) and disperse or 

nonpolar  (γd) components of the surface energy. Literature sources report surface tension values for 

water and diiodomethane as 72.8 and 50.8dyne/cm at 20ºC, respectively.29 Moreover, polar and 

disperse parts for water were considered to be 51.0dyne/cm and 21.8dyne/cm and for diiodomethane 

0.0dyne/cm and 50.8dyne/cm, respectively.29 

Water adhesion tension was determined by multiplying the contact angle (ϑ) of water on the surfaces 

by the surface tension (γ1) of water (72.8mN/m).29 Thus, both the adhesion tension of water and 

surface energy determinations were based on the sessile drop method.  

 

2.4.3. X-Ray Photoelectron Spectroscopy (XPS) 

X-Ray Photoelectron Spectroscopy (XPS) measurements were performed before and following plasma 

treatment in order to determine the surface composition of the PDLLA films. Measurements were 

taken at 5 different points on each surface. These experiments were carried out using a Kratos Axis-

Ultra (Kratos Analytical Inc.UK) with monochromatic Al x-ray source. The x-ray energy was 

1486.6eV and the base pressure was approximately 2.9 x 10-11Pa.  

 

2.4.4. Fourier Transform Infra Red Spectroscopy (FTIR) 

FTIR spectra were obtained in the Attenuated Total Reflection (ATR) mode using a Nicolet 

Spectrometer (Nicolet Instrument Coorporation, USA). Each spectrum was recorded with a total of 32 

scans and 4.0 cm-1 resolution after 20 sec of vacuum chamber stabilization. Original and treated 

surfaces were analyzed in triplicates in the range 400 cm-1 to 4000 cm-1. 
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2.4.5. Scanning Electron Microscopy (SEM) 

Samples were sputter coated (Med-010 Sputter Coater by Balzers-Union, USA) with a thin Au-Pd 

layer and examination was performed using a scanning electron microscope (Leica, UK). Triplicates 

were prepared for all control and plasma treated PDLLA surfaces. 

 

2.5. Protein Adsorption Assay 
Two different protein adsorption studies were performed. In both cases, glass coverslips were used as 

control surfaces. Single and complex protein solutions were prepared for incubation with PDLLA 

surfaces before and after plasma treatment with the goal to assess the effect on individual molecules 

and to mimic more complex protein environments.  

For the first protein adsorption study the following solutions were prepared: 1000µg/mL of bovine 

serum albumin (BSA), 100µg/mL of fibronectin (FN), 0.7µg/mL of vitronectin (VN) and 1000µg/mL 

of fetal bovine serum (FBS). Proteins and controls were individually incubated with characterized 

samples for 15min at 37ºC as described elsewhere.30 Protein adsorption for BSA and FN was assessed 

by coupling a depletion method with a protein assay as follows: after incubation, the amount of non-

adsorbed protein in the solution was quantified using the Micro-BCA assay and reading visible 

emission (570nm) in a Micro Plate Reader (BIO-RAD, USA). Glass coverslips were used as control 

surfaces and control polymer surfaces were prepared using incubation in saline solution. Unintended 

protein loss from other sources was controlled by means of using positive displacement pipettes, 

capillaries and pistons purchased from Gilson Medical Electronics S. A. (France). 

In a second set of experiments, protein solutions were prepared at 1% of the concentration of those 

proteins in human blood plasma:18 350µg/mL of BSA, 4µg/mL of FN, 3µg/mL of VN and 1% (V/V) 

of FBS. As previously stated, protein incubation followed a method described elsewhere.30 

 

2.6. Attachment and Proliferation of FRC and MG63 Cells 
Cell seeding was performed immediately after the protein adsorption step in order to avoid surface 

drying and consequent protein conformational changes or denaturation. Surface rinsing was not 

performed and any enrichment of the cell culture media that could result from remaining non-adherent 

proteins were assumed negligible.  

 

2.6.1. Primary Cell Culture  

Fetal Rat Calvaria (FRC) cells were isolated by sequential enzyme digestions from calvaria of 21 days 

Sprague-Dawley rat fetuses as described elsewhere.31 Briefly, calvaria (frontal and parietal bones) 

were aseptically removed and stripped of the periosteum. The minced fragments underwent 9 

sequential digestions in fresh 0.2% collagenase/0.05% trypsin in Hank’s Balanced Salt Solution 

(HBSS) for 20min at 37ºC. Cells were resuspended in α-MEM enriched with 10% FBS, plated in T-75 
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falcon tissue culture flasks and incubated at 37ºC in 5%CO2 until confluent. Adherent cells were 

considered viable. For long culture periods, cells were trypsinized and grown as described by Bellows 

and co-workers.32 Populations II–V were seeded at 4 x 104 cells/mL in α−MEM containing 1 mg/mL 

of β-glycerophosphate, 0.05mg/mL of L-ascorbic acid, and 10% (V/V) FBS onto the different 

surfaces: PDLLA, plasma treated PDLLA and the same surface batches after carrying out the first 

protein adsorption procedure described above at: 1000µg/mL BSA, 100µg/mL FN, 0.7µg/mL VN and 

1000µg/mL of FBS. Incubation was performed for 3 hours, and 7, 9, and 14 days. Attachment 

(measured at the 3h time point) and proliferation (assessed with the 7, 9 and 14 day time points) 

measurements were conducted by trypsinization of the cultures and then cell counting using a Coulter 

Zi Dual cell counter (Coulter Corporation, USA). Appropriate controls were used, including tissue 

culture polystyrene (TCPS). 

 

2.6.2. Cell Line culture  

Cell response was also studied using human MG63 osteoblast-like osteosarcoma cells (American Type 

Culture Collection, Rockville, MD) that have been well characterized in the literature and provide a 

good model for the study of human bone cells. Cells were incubated for 1, 4 and 7 days in DMEM 

containing 10% FBS and 1% penicillin-streptomycin mixture. In this study, the plasma protein 

environment was simulated by preparing protein solutions at 1% of their concentration in human blood 

plasma: 350µg/mL of BSA, 4µg/mL of FN, 3µg/mL of VN and 1% (V/V) of FBS.18 The films were 

seeded at 4 x 104 cells/mL and cell proliferation was assessed by WST-1 assay. After each incubation 

period, cultured samples were transferred to new wells with fresh media and analyzed for 

mitochondrial activity using the colorimetric WST-1 tetrazolium conversion assay (TAKARA, Japan). 

Briefly, 10µL of WST-1 reagent was added per well, and the cells were incubated for an additional 2h. 

The absorbance of the WST-1-containing cell supernatant was determined at 450nm (Benchmark 

Microplate Reader, Bio-Rad, USA). To avoid interference from both cell culture media and PDLLA 

surfaces, the following controls were prepared and considered as blank samples: fresh media and 

PDLLA samples immersed in fresh media but with no cells seeded. 

 

2.7. Statistical Analysis 
Results of the tests were tabulated as mean ± SD. The effects of plasma treatment on both the surface 

parameters and cell density values were statistically analyzed by two-tail Students t-test and 

differences were considered significant at p<0.05. 
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3. RESULTS 

3.1. Characterization of PDLLA and Plasma Treated PDLLA Films  
The effect of oxygen based RfGD treatment on PDLLA films was assessed by several surface 

analytical techniques: water contact angle, surface energy, adhesion tension of water, SEM, XPS and 

FTIR-ATR.  
 

  

 

 

 

 

 

 

 

Figure 1. Water drop profiles (a) and contact angle measurements (b) for PDLLA and plasma treated PDLLA films. 

*Statistically different from PDLLA (t-Test; Bi-tail; p<0.05; n>9). 

 

In Figure 1, surface wettability obtained by the sessile drop method is presented as a function of 

plasma treatment. Contact angle measurements are frequently used because of their sensitivity and 

because they allow for studying surface changes within the top few atomic layers.33 As seen in Figure 

1a, the characteristic water drop profiles show lower spreading for the control PDLLA surfaces when 

compared to plasma treated surfaces. As a consequence of the oxygen-based plasma surface 

modification, contact angles decreased from 75.4 ± 2.6º to 59.3 ± 1.6º (Figure 1b), which comprises a 

hysteresis of 6º. Thus the results indicate an increase in the hydrophilicity of the RfGD-PDLLA 

surface (p<0.05). Contact angle measurements were also performed after UV sterilization on both 

treated and control samples because UV radiation is a physic-chemical modification methodology 

frequently used for photo-activation of polymers and could possibly alter the surface properties.4 

However, measurements of contact angles obtained before and after sterilization by UV do not reflect 

any statistical differences between PDLLA and RfGD-PDLLA (data not shown). 
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Table 1. Adhesion tension of water and surface energy measurements for non-treated and RfGD-PDLLA. 

 Surface Energy 

(dyne/cm) 
Adhesion Tension 

(mN/m) 

PDLLA 42.7 ± 2.3 18.3 ± 3.2 

RfGD-PDLLA 50.0 ± 1.8 * 37.2 ± 1.8 * 

*Statistically different from PDLLA (t-Test; Bi-tail; p<0.05; n>9). 

 

The results for surface energy and adhesion tension of water are presented in Table 1. The 

determination of surface energy was based on the Owens and Went method28 and performed using 

water and diiodomethane test liquids. In parallel, adhesion tension was also calculated as an alternative 

indicator of surface energy. RfGD-PDLLA films, when compared to control PDLLA films, showed 

significantly higher surface energy and water adhesion tension values. PDLLA surface energy 

significantly increased from 42.7 ± 2.3dyne/cm to 50.0 ± 1.8dyne/cm; the adhesion tension of water 

increased approximately 19mN/m (from 18.3 ± 3.2mN/m to 37.2 ± 1.8mN/m). These results suggest 

the incorporation of polar groups as a consequence of oxygen plasma surface treatment. 

 

 

Figure 2. SEM characterization of surface morphology of PDLLA films: (a) before treatment; (b) after plasma treatment. 

 

SEM was used as a qualitative tool to detect any changes in morphology introduced by the plasma 

treatment (Figure 2). The control surface (non-treated PDLLA) exhibited a uniform texture (Figure 

2a), while treated surfaces presented small and irregularly distributed protrusions of less than 1 µm 

diameter. Although these features were sparsely distributed, it is clear that oxygen plasma treatment 

can modify the microtopography of PDLLA films.  

XPS was used for more detailed chemical analysis of the surface.34 During the RfGD treatment the 

active plasma species attack the polymer surface resulting in the incorporation of additional carbonyl, 

carboxyl or hydroxyl functional groups.35-38 X-ray photoelectron spectroscopy retrieves information on 

the nanometer scale, more specifically with up to a depth close to 50 Å.33 XPS analysis results for 

treated and non-treated PDLLA films are shown in Table 2. Following plasma surface modification 

there was a significant increase in the C-O-O bonds while the C-H and C=O functional groups 

(a) 

 

5 µm 

 

(b) 
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decreased (p<0.05). Also the total oxygen content exhibited a 4% increase, in contrast to carbon 

content, which decreased approximately 4%. 

 
Table 2. XPS analysis data: atomic percentages of elements and functional groups for the untreated and oxygen RfGD 

modified PDLLA.  
 

 O1 (%) O2 (%) N 1s (%) C-H (%) C=O (%) C-O-O (%) Total O (%) Total C (%) 

PDLLA 14.4±0.2 17.4±0.3 1.2±0.1 23.9±0.5 23.2±0.5 19.9±0.1 31.8±0.5 67.0±1.1 

RfGD-PDLLA 18.7±0.5 * 17.0±0.3 1.1±0.1 20.7±0.2 * 20.6±0.1 * 21.7±0.4 * 35.8±0.8 * 63.1±0.7 * 

*Statistically different from PDLLA (t-Test; Bi-tail; p<0.05; n>3). 

 

In this study FTIR-ATR was performed on non-treated and plasma-treated PDLLA films to detect any 

changes in chemical composition. Analysis of the spectra did not suggest treatment-driven chemical 

changes either in the aliphatic, carbonyl or asymmetric stretching regions39,40 (data not shown). This 

may be because in contrast to surface sensitive methodologies such as contact angle or XPS, the FTIR-

ATR collects spectra from a depth up to 100nm below the surface.33 Thus changes limited to the top 

few atomic layers (as detected by XPS) may become indistinguishable.  

 

3.2. Protein Adsorption onto PDLLA and RfGD Treated PDLLA  
Several surface properties can influence protein adsorption, such as morphology, chemistry and 

hydrophobicity.41 In this study, the potential of oxygen-based RfGD treatment to increase protein 

adsorption onto PDLLA was assessed. The degree of protein adsorption was carried out using an 

indirect method by coupling a solution depletion technique and a colorimetric protein (BCA) assay as 

described earlier. As shown in Figure 3, after RfGD treatment PDLLA surfaces adsorbed a 

significantly higher percentage of BSA and FN. The adsorption increased approximately 6% and 15% 

for albumin and fibronectin, respectively, which corresponds to 5.83 µg/mL of BSA and 15.3 µg/mL 

of FN. In contrast, FBS did not show any preference for either surface. The results for VN were 

inconclusive. 

 

3.3. Behavior of Bone-related Cells on PDLLA Films 
The attachment and proliferation of FRC cells onto RfGD modified PDLLA was compared to the 

control TCPS and non-treated PDLLA surfaces. Cells were seeded on the surfaces for 3 hours, and 7, 

9, and 14 days followed by trypsinization and subsequent cell counting. Figure 4 show the results of 

cell numbers for the different post-seeding time points. The results indicate that the number of FRC 

cells on PDLLA was similar to the one observed for plasma modified surfaces. In contrast, BSA and  
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Figure 3. Percentage of adsorbed proteins, BSA, FN and FBS on PDLLA non-treated and treated by oxygen based RfGD. 

*Statistically different from PDLLA (t-Test; Bi-tail; p<0.05; n>3). 
 

 

Figure 4. FRC cells attachment and proliferation after 3 hours, 7, 9 and 14 days of culture on PDLLA and RfGD treated 

PDLLA films, previously incubated with different protein systems. *Statistically different from PDLLA (t-Test; Bi-tail; 

p<0.05; n>3). 

 

VN had a positive influence on FRC cell attachment to gas plasma treated films as shown by the 

significantly higher cell numbers at 3 hours (Figure 4). This can be attributed to the combination of 

plasma treatment and pre-incubation of the films with proteins. By day 14, however, the RfGD treated 

films with pre-incubated with FN showed a higher average cell number compared to the non-treated 

PDLLA. Thus, although BSA and VN appeared to cause an increase in cell attachment this effect did 
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not translate into an advantage by day 14.  Furthermore, cell proliferation was similar at days 7 to 14 

in both controls and protein-exposed surfaces.  Interestingly, this is the time when an increase in 

alkaline phosphatase expression has been reported previously.42 Studies on gene expression and cell 

differentiation could be helpful for further understanding of the observed cell behavior.  

In the study with MG63 osteoblast-like cells, the relative proportions of BSA, FN and VN found in 

human blood were used and FBS was diluted to 1%. WST-1 mitochondria assay was performed for 

measuring the viability of MG63 cells after 1, 4 and 7 days of culture, taking into account intact 

mitochondrial mechanisms, consistent cellular activation and similar extracellular matrix 

interactions.43  

Figure 5. MG63 cells density for 1, 4 and 7 days of culture on control PDLLA and RfGD treated PDLLA pre-coated with 

proteins. *Statistically different from PDLLA (t-Test; Bi-tail; p<0.05; n>3). 

 

Cell attachment and proliferation results for MG63 cells are shown in Figure 5. The test films 

performed as well as the culture standard TCPS. At day 1, there is an increase in cell attachment on 

RfGD treated PDLLA films pre-coated with BSA, FN, VN, FBS.  However, by day 4 these trends 

were reversed except for BSA.  By day 7 there was significant difference in cell numbers between the 

treated and non-treated PDLLA films as for the case of VN where the non-treated surfaces showed 

more cells. For days 4 and 7 of culture, there was a reversal in the relative density (OD) for treated and 

non-treated PDLLA films with pre-adsorbed VN and FBS compared to day 1. Also, as can be 

observed in Figure 5, only gas plasma treatment followed by saline pretreatment increased MG63 cell 

attachment by day 7.  
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4. DISCUSSION 

The herein presented study aimed at assessing the influence of oxygen radio frequency glow discharge 

on the surface and bulk properties of Poly(D,L-lactic acid) and the effect of this surface modification 

on both biomolecules adsorption and bone cell behavior. The main purpose of these experiments was 

to determine whether oxygen-based RfGD could improve the adsorption of various proteins, as BSA, 

FN, VN and complex protein solutions as FBS and ultimately model cell attachment and proliferation 

of MG63 and FRC cells. 

The surfaces were characterized by evaluating different key parameters such as the surface contact 

angle, surface energy and adhesion tension of the water. Oxygen based RfGD treatment on PDLLA 

films was shown to significantly decrease surface contact angle to approximately 60º (Figure 1b), thus 

indicating an increase in the hydrophilicity of the RfGD-PDLLA surface. Furthermore, surface energy 

and the adhesion tension of water significantly increased to approximately 50.0dyne/cm and 37mN/m, 

respectively. These results suggest the incorporation of polar groups as a consequence of oxygen 

plasma surface treatment. Multiple studies in the past have shown that oxygen plasma exposure can 

render higher hydrophilicity on polymer surfaces.36,37 The changes in wettability are generally due to 

effects of oxidation, unsaturation, electrostatic charges or surface morphology.35,38 Thus, in this study 

we used a variety of techniques to further interrogate the test PDLLA surfaces. SEM analysis of 

PDLLA films indicated that RfGD introduced some surface morphological changes. More precisely, 

changes in microtopography were evidenced by the increase in surface roughness. This factor has been 

related to the improve of hydrophilicity since surface micro-features are known to affect wettability.3 

Chemical changes showed an increase in total oxygen atomic percentage ascribed to an increase in the 

oxygen-containing functional group C-O-O. The FTIR analysis, compared to the XPS results, suggests 

that the effects of the oxygen plasma surface modification were limited to the surface and did not 

affect the bulk properties of the material. 

The potential of surface properties in influencing protein adsorption, such as morphology, chemistry 

and hydrophobicity was been evaluated.41 In this study, the capacity of oxygen-based RfGD treatment 

to increase protein adsorption onto PDLLA was assessed. The degree of protein adsorption was 

carried out using an indirect method by coupling a solution depletion technique and a colorimetric 

protein (BCA) assay as described earlier. The amounts of adsorbed proteins in single systems (BSA, 

FN) were shown to increase after plasma treatment (p<0.05), which modified PDLLA wettability, 

surface energy and adhesion tension of water as discussed earlier (see Figure 1 and Table 1). The 

relation between protein adsorption and contact angle or surface energy is controversial in the 

literature; it has been shown that decreasing surface hydrophilicity leads to lower protein adsorption44 

and, in contrast, it has also been reported that increasing surface energy leads to lower adsorption.45 It 

must be stated that in this study, RfGD of PDLLA films did not result in extremely high or low contact 

angle or surface energy. According to Ikada,46 intermediate values seem to be the most favorable for 
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cell adhesion. The increase in O-containing functional group C-O-O and the increase in total O% of 

treated over non-treated samples as determined by XPS may promote protein-surface interactions. The 

introduction of oxygen functionalities creates sites for binding proteins by polar interactions or 

hydrogen bonding. Also, the simultaneous increase in surface micro-heterogeneity may play a role in 

the increased protein adsorption. However, at the same time, the degree of protein adsorption from 

multi-protein solutions was not affected by the change in surface properties. This could perhaps be 

explained by protein competition and the resulting protein conformations taking place on the surface. 

These factors could be further explored using other approaches, such as extrinsic fluorescent probes.  

MG63 osteoblast-like cells and primary cultures of fetal rat calvarial (FRC) cells were used to assess 

both the effect of RfGD treatment and protein adsorption on cell attachment and proliferation.  

In the absence of previously adsorbed proteins, neither the attachment of MG63 nor that of FRC cells 

showed significant changes resulting from the treatment. Also, the proliferation of FRC cells up to 14 

days was not affected by the RfGD treatment. In contrast, proliferative rates of MG63 osteoblast-like 

cells were higher for plasma treated PDLLA surfaces, showing a direct effect of the oxygen based 

plasma technique.  

 

 
5. CONCLUSION 

The surface modification technique selected for this study, oxygen-based RfGD treatment, was shown 

to functionalize/activate the surface of PDLLA films without affecting the bulk properties. After 

treatment under the described conditions, PDLLA films exhibited presented increased wettability, 

surface energy and water adhesion tension. Chemically, changes showed an increase in total oxygen 

atomic percentage ascribed to an increase in the oxygen-containing functional group C-O-O. 

Moreover, RfGD introduced some surface morphological changes. Regarding protein adsorption 

studies, oxygen gas plasma treatment of PDLLA films was shown to improve BSA and FN adsorption 

from single protein solutions. On the other hand, adsorption from complex protein solutions (e.g. FBS) 

was unaffected by the material treatment. Thus, oxygen RfGD treatment resulted in PDLLA surfaces 

with preferred adsorption characteristics. 

In the absence of pre-adsorbed proteins, neither MG63 nor FRC cells could distinguish between 

treated and untreated surfaces. However, MG63 osteoblast-like cells showed higher proliferation rates 

for plasma treated PDLLA surfaces, indicating a direct effect of the oxygen based plasma technique. 

In turn, gas plasma treatment, by influencing protein adsorption on the surfaces, was shown to affect 

cell response to the surfaces. The effect on the treatment over the cultured cells was only observed by 

combining gas plasma modification of the surface with the protein adsorption, thus indicating a crucial 

role for adsorbed proteins in mediating the response of osteogenic cells to the RfGD-treated PDLLA 

surface.  
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Abstract 

The correlation between the surface characteristics and protein adsorption from unitary and complex protein 

systems was investigated with respect to altering the bulk chemistry of the substrate material. Starch-based 

materials were the biomaterials used as interfaces to analyze the in vitro protein adsorption isotherms. To further 

investigate protein-surface interactions, isotherm data were treated according to Langmuir and Freundlich 

models. Distribution, quantification and competition profiles of Human Serum Albumin (HSA) and Human 

Fibronectin (HFN) were measured by fluorescence and visualised by Laser Scanning Confocal Microscopy 

(LSCM). The adsorption isotherms for albumin fit the Freundlich model. The analysis of unitary systems 

demonstrated that the adsorption of HSA was increased for SCA and SPCL surfaces (18% and 24%, 

respectively). The adsorption of fibronectin was higher onto SEVA-C and SPCL corresponding to 89% and 97% 

of adsorption. In studying the coadsorption of proteins, an increase of both HSA and HFN adsorption for SEVA-

C surfaces was observed. On the SCA surfaces, the presence of HFN decreased in binary conditions while an 

increase in HSA adsorption occurred in comparison to the unitary systems. In contrast, SPCL showed no 

substantial increase in the adsorption of the proteins in competitive conditions. 
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1. INTRODUCTION 

Analyzing the interaction of proteins with the surfaces of materials intended for biomedical 

applications is fundamental for understanding cellular events and the overall host response. 

Furthermore, the importance of a variety of molecules in the biomedical field is known for several 

applications, including drug delivery, biomaterials, extracorporeal therapy and solid phase 

diagnostics.1,2 To improve the understanding of the fundamentals of protein adsorption, many protein 

adsorption-modelling approaches have been successfully utilized.3,4 Most approaches treat the 

electrostatic and van der Waals interactions between the protein and the surface, and thus consider the 

effects of surface charge, protein size, or solution ionic strength.5 Although the correlation between the 

adsorbed protein and bulk concentration of protein solution has been dealt with using many adsorption 

isotherm equations, the Langmuir equation, however, has been frequently applied due to its lower 

complexity and broader applicability to various adsorption data.4 The Langmuir isotherm performs a 

dynamic adsorption process with the reciprocation between adsorbed and unabsorbed BSA molecules, 

but disregards the interaction between these adsorbed molecules. On the contrary, the Freundlich 

isotherm can validate many adsorption processes facilitating the modelling of one or more interactions 

between adsorbed molecules or adsorbed molecules and the surfaces involved in the dynamic process.6 

The adsorption of two factors from the human blood matrix,7 fibronectin and albumin, onto the surface 

of polymeric blends was studied. These proteins were chosen on the basis of their biological effect and 

importance in a variety of biomedical applications. Furthermore, they represent two different types of 

proteins, small globular proteins (albumin) and large glycoproteins (fibronectin).8, 9 Human 

Fibronectin (HFN) is known to present RGD and PHSRN sequences with synergistic action 

responsible for substantial modulation of the biological activity subsequent to protein adsorption 

processes.9 Fibronectin has been considered for some time to facilitate and precede cell attachment to 

artificial and natural surfaces when adsorbed in a favourable conformation,10 while Human Serum 

Albumin (HSA) was selected considering its high concentration in the human blood plasma.7 It is 

therefore likely that the results obtained for HSA and HFN will be representative of a large number of 

serum proteins. Moreover, authors have reported the ability of albumin, to “rescue” fibronectin 

molecules influencing it’s molecular conformation on hydrophobic surfaces11 which was also reported 

to facilitate cell adhesion dependent processes.12 

Starch-based Biomaterials (SBB) have been increasingly studied for applications in the field of Tissue 

Engineering, including their use as scaffolds for bone related applications13 and drug delivery 

systems.14 The starch based materials selected are known to present different properties in terms of 

bulk chemistry, surface energy, wettability and phase interconnectivity.15-18 As part of previous 

research their in vitro19 and in vivo biological response20 has been assessed. In these studies the effect 

of the adsorption of different molecules onto the surface of starch based materials was evaluated and 

the behaviour of immunological cells16 and osteoblast-like cells17 was investigated as a function of the 
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pre-adsorbed proteins. Although in vitro protein adsorption and competition studies were previously 

conducted,16 the adsorption behaviour of biomolecules relevant for the cell-biomaterial interactions 

has yet to be understood regarding SBB materials. The present work aimed to determine further the 

relationship between substrate properties and protein competition using Fluorimetry and Laser 

Scanning Confocal Microscopy (LSCM) in both single and competitive protein adsorption studies. To 

further understand the observed in vitro and in vivo cell behaviour, the direct assessment of the 

adsorptive potential of HSA and HFN onto starch-based biomaterials was evaluated using single 

molecule solutions. Subsequently, the competitive effectiveness of fibronectin against albumin was 

studied using binary mixtures that mimic the proportional amounts of both proteins in the human 

blood plasma. 

 

 

2. MATERIALS AND METHODS 

2.1. Materials and Chemicals 
Bovine Serum Albumin (BSA)-Alexa Fluor® 488 conjugates were obtained from Molecular Probes 

(The Netherlands) and purified Human Serum Albumin (HSA) and Human Fibronectin (HFN) were 

purchased from Sigma-Aldrich (UK). Alexa Fluor® 488 and Alexa Fluor® 555 Protein Labelling Kits 

(Molecular Probes, The Netherlands) were used to fluorescently label proteins of human origin. The 

labelling procedure was conducted following the manufacturer’s instructions, using Bio-Rad BioGel 

P-30 fine size exclusion purification resin to separate uncoupled dye from labelled proteins. All 

aqueous solutions were prepared using purified deionised water and Phosphate Buffered Saline (PBS, 

Sigma-Aldrich, UK). Clear-bottomed black 24-well plates were used for fluorescence measurements 

(Biosera, UK) and Tissue Culture Polystyrene Coverslips (TCPS) were used as the control surfaces 

(Sarstedt, UK). 

 

2.2. Starch Based Biomaterials (SBB) 
Different natural-based polymers were investigated. Biodegradable polymeric blends of corn starch 

with: (i) cellulose acetate (SCA), (ii) ethylene vinyl alcohol copolymer (SEVA-C) and (iii) 

polycaprolactone (SPCL). The amount of starch was 50% by weight (wt%) on SCA and SEVA-C and 

30% wt. on SPCL. By means of using a conventional injection moulding technology samples were 

processed into 10 mm circular discs. Samples were sterilized by ethylene oxide in optimised 

conditions,21 washed, and all subsequent experimental procedures were performed under sterile 

conditions.   
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2.3. Protein Adsorption Studies  
The physiological proportion of albumin and fibronectin in the human serum was considered for the 

preparation of the different solutions and used in the present study according to literature data: 35 

mg/mL of albumin and 0,4 mg/mL of fibronectin.7 Accounting for the relative amounts of these 

biomolecules in the human body provided for the data to be related to the analysis of the in vivo 

biological response to implanted surfaces. 

A commercially available BSA-Alexa Fluor 488 conjugate was used as the model of adsorption 

studies and also to control the experiments with HSA and HFN labelled according to manufacturers 

specifications. In brief, HSA and HFN protein solutions at a concentration of 2mg/mL in standard 

phosphate buffer saline were mixed with 50µL of sodium bicarbonate solution and allowed to react 

with Alexa-Fluor dye for 1h at room temperature. Subsequently, labelled proteins were separated from 

unincorporated dye using fine size exclusion chromatography. The concentration and degree of 

labelling (moles of dye per mole protein) were calculated following supplier indications. UV-visible 

spectra of protein-dye conjugates (Bio-Tek Instruments, KC4™ Data Analysis Software, USA) were 

used and the degree of labelling was calculated: 4.0 for HSA and 2.9 for HFN. Labelled proteins were 

stored at 4ºC and used within 1 week of preparation. 

Probe-labelled proteins were used to study the surface concentration and protein distribution by 

fluorimetry and LSCM. For all studies, Human Serum Albumin was labelled with Alexa Fluor 488 

and Human Fibronectin was labelled with Alexa Fluor 555, except for confocal image analysis of 

HFN adsorption from unitary protein solutions, which was performed using Alexa Fluor 488 labelling. 

 

2.3.1 Study of Unitary Protein Systems 

BSA was used for kinetic and isotherm studies. Adsorption studies were performed for the surface of 

starch-based biomaterials using commercially available BSA-Alexa 488 conjugates, which was also 

utilised as the control for the experiments using proteins of human origin.  The following solutions of 

BSA conjugates were prepared: 35, 70, 105, 140 and 175µg/mL (pH 7.4), which corresponded to 0.1, 

0.2, 0.3, 0.4 and 0.5% (W/V) of albumin concentration in blood.7 

Human protein adsorption onto the surface of SBB surfaces was studied using purified HSA labelled 

with Alexa Fluor 488 and HFN labelled with Alexa Fluor 555. HSA-probe conjugates were studied at 

2 different concentrations, 35 and 70µg/mL, while HFN-Alexa Fluor 555 solutions were prepared at 

0.4 and 0.8µg/mL in PBS solution. 

Saline solution was used as the control. Proteins and controls were incubated with samples for 

different time periods: 15, 30, 60, 120, 180, 240 and 420 minutes at 37ºC. Experiments were 

performed at least 3 times under the same conditions and in triplicate (n>9). 
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2.3.2 Protein Competition: study of binary protein systems 

Competition of proteins for the different starch-based surfaces was analyzed using two-protein 

solutions: HSA and HFN fluorescently labelled with Alexa Fluor 488 and Alexa Fluor 555, 

respectively. Labelling and characterization of the conjugates was accomplished as previously 

described. A mixture of 70µg/mL of HSA conjugate and 0.8µg/mL of HFN conjugated with Alexa 

Fluor probes was used. The described solution corresponds to 0.2% (W/V) of these molecules in the 

human blood serum.  

Saline solution was used as the control. Proteins and controls were incubated with samples for 

different time periods: 15, 30, 60, 120, 180, 240 and 420 minutes at 37ºC. As for unitary protein 

systems, binary protein adsorption studies were repeated and triplicates were prepared (n>9).  

 

2.4. Fluorimetry  

Samples were incubated as described for the analysis of protein adsorption. For each time point, 

fluorescence measurements were taken according to the conjugate spectroscopic properties using a 

Microplate Fluorescence Reader (Version FLx800T, Bio-Tek Instruments, USA). Measurements were 

automated for top probe detection, using one or two filter sets (488 and 555nm) to assess labelled 

biomolecule kinetics and competitive adsorption. Acquired data was analyzed using KCJunior 

Software (Version 1.31.5, Bio-Tek Instruments, USA). 

Fluorimetry results were calibrated by assessing other contributions to the total fluorescence intensity. 

Background fluorescence was subtracted and the emission of SBB surfaces at the different 

wavelengths studied was analyzed. Briefly, the different surfaces were incubated in protein-free PBS 

solution and the fluorescence intensities measured over time were corrected to rule out artifactual 

effects, such as normal absorption interferences from the polymer materials.  

The data of protein adsorption was presented as arithmetic means/standard deviations of the mean 

(mean/SD). Standard curves were prepared for the different protein types and for each time point, 

fluorescence was converted in protein concentration. 

 

2.5. Laser Scanning Confocal Microscopy (LSCM)  
A Confocal Laser Scanning Microscope (Version LSM 510 Zeiss, UK) was used to visualize the 

fluorescently labelled proteins adsorbed on the different starch based materials. Alexa 488 probe was 

used in single protein studies to label HSA and HFN molecules. For the study of binary protein 

systems, HSA and HFN were labelled with Alexa 488 and Alexa 555 probes, respectively. An argon 

laser (λ=488 nm) and a HeNe laser (λ=543 nm) provided the excitation of the protein-probe 

conjugates. Image analysis was performed using KS400 image analysis software (Imaging Associates, 

UK). 
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3. RESULTS AND DISCUSSION 

3.1. BSA Adsorption 
The interaction of proteins from single systems with different surfaces was determined. SCA and 

SPCL profiles (Figure 1A and B) reflect a fast burst of adsorption over the initial 60 min of incubation 

after which a pseudo-steady level is maintained. This could indicate that the adsorption can reach 

equilibrium within 60 min. In contrast, the shape of the kinetic curves indicated a slower adsorption of 

this molecule onto the SEVA-C surfaces (Figure 1C).  

The different shapes of the adsorption curves could be related to the heterogeneity that characterises 

the different polymeric blends. The heterogeneity of the materials is known to vary in the order 

SCA>SPCL>SEVA-C as a result of the increasing miscibility and interaction between the synthetic 

and natural polymeric phases.16 SCA is a non-miscible blend, while SPCL presents some interaction 

between the different phases. SEVA-C consists of the most homogeneous mixture presenting inter-

penetrating networks (INP) that could unease the reorientation of the polymer chains at the liquid 

interface, and thus slower the adaptation of the outermost region of the materials to the environment. 

This effect could explain the curve shape observed for SEVA-C characterized by a smoother slope 

than that of SCA and SPCL.  

Figure 1. BSA adsorption onto SCA (A), SPCL (B), SEVA-C (C) and TCPS (D) surfaces. The different samples were 

incubated for 7 hours in solutions of BSA ranging from 35µg/mL to 175µg/mL. 
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The analysis of Figure 1 indicated that BSA adsorption per unit area was higher for SCA and SPCL 

polymeric blends than that of SEVA-C surfaces. After 7 hours, SCA and SPCL adsorbed 27µg/cm2 

and 40µg/cm2 of protein from the more concentrated solution of BSA-Alexa 455 (175 µg/mL), and 

SEVA-C adsorbed 13µg/cm2. Adsorption onto TCPS was substantially reduced when compared to the 

SBB surfaces. 

The amounts of BSA adsorbed onto SCA, SPCL and TCPS at 60 min presented no obvious difference 

from that at 420min. Figure 2 shows the adsorption isotherms calculated from the data obtained at 

420min. The results indicated that the fractional coverage was strongly dependent on the bulk 

concentration of proteins; the adsorbed amount gradually increased with the protein solution 

concentration. The adsorption isotherms (Figure 2) further indicated the affinity of BSA for the 

different surfaces; SPCL and SCA demonstrated the highest adsorption for increasing concentrations 

of BSA solutions. After 7 hours of incubation with solutions of 35 and 175µg/mL of BSA, adsorption 

onto SCA and SPCL increased respectively 20 and 30µg/cm2 while for SEVA-C this variation was 

around 8µg/cm2.  
 

 

Figure 2. Isotherms of BSA adsorbed onto the different starch based polymeric blends (equilibration time 7 hours). 

 
In previous studies performed to characterize the different polymeric blends, both wettability and 

surface energy were analysed. Contact angles were shown to progressively decline with decreasing 

content of OH groups, indicating SCA < SPCL < SEVA-C ranking in terms of hydrophobicity; with 

contact angles of 76.4±3.3º, 78.80±1.7º and 80.0±2.6º respectively.17 The contact angle variation 

between the different materials was low for all surfaces and values were above 65º, which is 

considered to be the theoretical limit between hydrophobic and hydrophilic properties.22 Moreover, 

SEVA-C presented the lowest value for surface energy that reached 36.2±1.8 Dyn/cm in opposition to 

SCA and SPCL that showed 43.0±2.7 and 46.9±1.0Dyn/cm, correspondingly.17 Considering previous 

results it can be stated that the higher the surface energy of the materials, the greater the level of 

albumin adsorption.  
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Previous research is contradictory concerning the effect of wettability on the adsorption of different 

molecules. Some authors reported an increased protein adsorption onto hydrophilic substrates.23 Whilst 

the majority found that proteins tended to adsorb more extensively onto hydrophobic surfaces,6, 24 such 

as SBB. Surface energy has also been related to the affinity of proteins to surfaces, although there 

have been publications indicative of increasing surface energy leading to lower adsorption.25 The 

results of surface energy previously obtained for SBB surfaces are in good agreement with published 

data. Michiardi et al.26 compared surface energy and protein adsorption behaviour for untreated and 

oxidized surfaces and showed that higher surface energy triggered albumin and fibronectin adsorption. 

Similarly, studies with PDLLA indicated an increase in albumin adsorption onto treated surfaces of 

higher surface energy.27  

 

3.2. BSA Adsorption Isotherms: Langmuir and Freundlich models 
To develop the fundamental understanding of protein adsorption, two typical adsorption models, 

Langmuir and Freundlich isotherms,4 were used. The linearised Langmuir equation can be expressed 

as:  

   

   
where, C is the BSA concentration at a certain time, Q and Qm are the adsorption amounts for BSA at a 

certain time and the maximal adsorption amount respectively, and b is the Langmuir’s equilibrium 

constant that describes the strength of interaction between the protein and the surface.6  

Other models such as the Freundlich model are more suitable for use with heterogeneous surfaces, but 

can only describe adsorption data over a restricted range:28  

 

 

In this case, C, Q, and Qm are the same as in equation (1), n and K, constants at a specific condition. 

The constant K is a measure of the capacity of the adsorption and n is a measure of the intensity of 

adsorption.4, 6  

In the low concentration range, changes in the bulk concentration produce large changes in the amount 

adsorbed, resulting in a roughly linear increase in adsorption. However, as the bulk concentration is 

further increased, adsorption is reduced and a plateau or maximum adsorption level is reached. This 

type of adsorption behaviour is referred to as a Langmuir isotherm. In other cases, the increase in 

adsorption at high bulk concentration does not stop entirely, but presents a slow rise. This type of 

adsorption behaviour is referred to as a Freundlich isotherm.  

 

 

 

! 

lnQ =
1

n
lnC + lnK  (2) 

 

 (1) 
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Table 1. Langmuir and Freundlich parameters for BSA adsorption onto starch based materials. 

Langmuir Parameters Freundlich Parameters 
Materials R2 Qm (mg/g) b (L/mg) R2 n K (L/g) 

SCA 0,6538 66,14 0,01516 0,9651 1,27 0,46 

SEVA-C 0,6678 24,19 0,00472 0,8263 1,58 0,57 

SPCL 0,4276 144,90 0,03963 0,9757 1,21 0,50 

TCPS 0,9446 3,36 0,00029 0,7595 2,94 0,49 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Langmuir (A) and Freundlich (B) fitting curves. 

 

The fit of the different models to the experimental data was analysed taking in account the coefficient 

of determination (r2, Table 1). All surfaces, except TCPS, showed higher correlation for Freundlich 

fitting (Figure 3B) than for Langmuir isotherms (Figure 3A). The fact that albumin adsorption onto 

TCPS surfaces was reduced could reduce protein-protein interactions and result in a better fit to the 

Langmuir model. The process of BSA adsorption onto SCA, SEVA-C and SPCL was more 

complicated than that of ideal adsorption. Possibly interactions between adsorbed BSA molecules and 

the type of surface played an essential role in influencing these interactions. Clearly, if there were no 

interactions among adsorbed BSA molecules, the Langmuir’s fitting for SBB surfaces would be 

characterised by a higher r2. Similarly, if the different surfaces did not affect the interaction, the 

correlation between both models should be the same.  

It is known that the Langmuir model, disregards interactions between adsorbed proteins. The 

Freundlich isotherm, empirical in origin, is suitable for use with heterogeneous surfaces. This model 

can fit many adsorption processes considering further the dynamic while taking into account 

interactions between adsorbed molecules or between adsorbed molecules and the surfaces studied.6 

This could explain the improved correlations from the Freundlich fit for SBB surfaces. Freundlich’s n 

parameter correlates with the averaged energies of adsorption; the lower the n the higher the affinity 
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between solid and adsorbates.29 From the protein adsorption data (Figure 2), the values of the constant 

n (Table 1) are higher for SPCL and SCA. 

 

3.3. Adsorption of Human Fibronectin and Human Serum Albumin  

The adsorption of Alexa Fluor 488-labelled human serum albumin onto SBB surfaces was measured 

as a function of the incubation time (Figure 4). The results obtained for HSA were similar to those 

presented for BSA.  For SCA and SPCL, HSA curves presented similar shapes to that of BSA and 

showed an initial fast adsorption that was reduced to a semi-steady state after 60 minutes. SEVA-C 

showed a gradual increase in HSA adsorption and did not show a defined plateau over the time period 

and concentration studied, suggesting that maximum surface coverage was not reached. The increase 

in protein bulk concentration from 35 to 70µg/mL induced an increase in adsorption. After 7 hours, 

SCA and SPCL adsorbed around 16µg/cm2 and 21µg/cm2 of protein when using the more concentrated 

solution of HSA (70µg/mL), while SEVA-C adsorption was 8µg/cm2 and 3µg/cm2 onto TCPS. In 

terms of percentage of adsorption, SPCL, SCA, SEVA-C and TCPS adsorbed 24%, 18%, 9% and 3% 

(W/W) respectively after incubation in 70µg/mL of HSA.  

Figure 4. Adsorption of HSA in single and competitive conditions on the surface of SCA (A), SPCL (B), SEVA-C (C) and 

TCPS (D). Continuous lines ( ) correspond to unitary protein systems of 35µg/mL and 140µg/ml of HSA and dashed 

line ( ) represent the adsorption of HSA in the presence of 0,8µg/mL of fibronectin. 
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In addition, protein coverage of the different surfaces was visualised (Figure 5) and demonstrated 

heterogeneous HSA distribution on SCA, SPCL and SEVA-C surfaces. 

Figure 5. Confocal images of HSA-Alexa488 adsorbed onto the surface of SCA (A), SPCL (B), SEVA-C (C) and TCPS (D) 

after 7h incubation in 70µg/mL of HSA-Alexa Fluor 488. 

 

For all materials except SCA, fibronectin adsorption curves (Figure 6) were similar to those observed 

for HSA demonstrating that the molecule specie did not affect the shape of adsorption curves onto 

SEVA-C, SPCL and TCPS.  

 

Figure 6. Adsorption of HFN in single and competition conditions on the surface of SCA (A), SPCL (B), SEVA-C (C) and 

TCPS (D). Continuous lines ( ) correspond to unitary protein systems of 0,4µg/mL and 0,8µg/mL of Hfn and dashed line  

( ) represent the adsorption of HFn in the presence of 70µg/mL of albumin.  
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Different to the trend observed for HSA adsorption, higher levels of HFN adsorption were obtained for 

SEVA-C and SPCL polymeric blends. After 7 hours of incubation in 0.8µg/mL solution, SEVA-C and 

SPCL adsorbed approximately 1.02µg/cm2 and 1.12µg/cm2 of HFN, which corresponded to around 

89% and 97%, respectively. Fibronectin adsorption onto SCA was lower and reached values of around 

0.29µg/cm2 that corresponded to 36%.  

Fluorescence measurements were in good agreement with the results obtained by LSCM. Figure 7 

demonstrated that the confocal method was applicable for protein observation and was in agreement 

with the fluorescence measurements that demonstrated higher intensities for SPCL and SEVA-C 

polymeric blends. 

Figure 7. Confocal images of HFN-Alexa488 adsorbed onto the surface of SCA (A), SPCL (B), SEVA-C (C) and TCPS (D) 

after 7h incubation in 0.8µg/mL of HFN-Alexa Fluor 488. 

An important result of the present study is the indication that the protein specie did not affect the 

adsorption curves. In contrast, adsorption onto SBB was clearly surface-regulated. In fact, using BSA, 

HSA or HFN resulted in a similar curve shape for the same SBB surface. The adsorption of HSA and 

HFN was in good agreement with a previously developed in vitro protein adsorption study using the 

same surfaces, proteins and solution concentrations.16 In this study adsorption has been determined by 

immunostaining revealing that onto SEVA-C and SPCL surfaces, the adsorption of fibronectin was 

higher than that of albumin. In general, SPCL surfaces presented the highest affinity of all the studied 

molecules. Moreover, the reduced adsorption of albumin onto SEVA-C indicated low levels of non-

specific protein adsorption onto this blend when compared to SPCL and SCA surfaces. On the 

contrary, fibronectin adsorption was highest onto SEVA-C, evidence of the higher affinity of this 

molecule for the SEVA-C surface.  

 

3.4. Protein Behaviour in Competitive Conditions: binary systems 
The single adsorption studies were investigated further in two additional experiments: (i) adsorption of 

HSA-488 Alexa Fluor from a solution containing unlabeled HFN and (ii) adsorption of HFN-555 

Alexa Fluor from a binary solution containing unlabeled HSA. The weight ratio of fibronectin to 

albumin was approximately 1:90, typical of that found in normal human blood serum.7 The adsorption 

of albumin and fibronectin from binary mixtures was investigated as a function of time, indicated by 
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the dashed lines in Figures 4 and 6, respectively. In addition the adsorption of molecules from 

HSA/HFN binary systems was assessed by LSCM and presented in Figure 8. 

 

Figure 8. Confocal images of HSA/HFN adsorbed onto the surface of SCA (A), SPCL (B), SEVA-C (C) and TCPS (D) after 

7h incubation in binary solutions of 70µg/mL of HSA-Alexa Fluor 488 and 0,8µg/mL of HFN-Alexa Fluor 555. 

 

In competition conditions adsorption profiles shifted from the single protein conditions. A clear 

difference in HFN/HSA adsorption from the single protein solution versus the binary mixtures 

containing HFN and HSA was evident for some of the SBB surfaces.  

On the SCA surfaces the adsorption of HSA was higher in competitive conditions (Figure 6A) than 

that observed in unitary systems. Furthermore, in HSA-HFN solutions albumin substantially decreased 

fibronectin adsorption. The outcome of the competitive behaviour onto the SCA surface has been 

previously observed using other proteins. Brash‘s group30 showed a significant reduction of fibrinogen 

adsorption on different surfaces when high-molecular-weight kininogen was co-adsorbed. In the 

present study, results indicated that the presence of HSA had a negative effect on the level of adsorbed 

HFN. This effect could be brought about by the synergy of two mechanisms: first, by displacing HFN 

from the surface due to the high affinity of HSA for this surface, and second by a molecular weight 

and concentration effect favourable to the adsorption of HSA. In contrast to SCA, the fluorescence 

intensities for single vs. binary indicated that adsorbed HFN was not displaced by albumin for the 

SPCL interface, even at the much higher bulk albumin concentration. However for SPCL, there was 

little discernible increase or decrease in the fluorescence of both proteins, suggesting that while there 

may be adsorption/desorption of the same species, there was no visible change in the total quantity of 

HFN at the interfaces (Figures 4B and 6B). HSA adsorption on SEVA-C from single-protein solutions 

as well as from competitive systems was lower than that of the SCA and SPCL (Figure 4C), while 

HFN reached the highest adsorption percentages (Figure 6C). For binary systems (dashed lines) an 

increase of both HSA and HFN adsorption for SEVA-C surfaces was observed.  

Modulation of the biological activity of adsorbed fibronectin has been shown in several studies in 

which the ability of fibronectin adsorbed to various surfaces to support cell attachment or spreading 

was found to differ. Grinnell‘s group showed that fibronectin biological activity was strongly affected 

by the type of surface to which it was adsorbed as well as by whether albumin was coadsorbed.11, 31 In 
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these studies, fibronectin adsorbed to tissue culture grade polystyrene was able to support cell 

attachment and spreading, whereas fibronectin adsorbed to ordinary polystyrene did not support 

spreading unless some albumin was added to the fibronectin solution. Addition of BSA to 2µg/ml 

fibronectin solutions was reported to enhance the fibronectin binding to both bacteriologic and tissue 

culture grade polystyrene.31 Lewandowska et al., demonstrated that the conformation of fibronectin 

molecules can vary due to the chemical nature of the substrates. On hydrophobic surfaces preadsorbed 

with fibronectin, cell spreading was improved only when albumin was coadsorbed, so called “albumin 

rescuing”.12 The “rescuing” phenomenon is similar to the effect Grinnell reported on polystyrene. This 

could explain the increase in HFN adsorption observed in binary conditions onto the SEVA-C and 

TCPS surfaces. In a later extension of this work, BSA-mediated modulation of the ability of the 

adsorbed fibronectin to induce neurite formation in neuroblastoma cells was noted.32 The authors 

concluded that the cellular response was altered due to a change in the conformation of fibronectin 

molecules as they interacted with the different chemical end groups. This rearrangement of fibronectin 

onto the surfaces indirectly detected by the analysis of the cellular response could also hinder an 

increased adsorbed amount of this protein determined in this study by fluorescence measurements.  

 

 

4. CONCLUSIONS 
The adsorption isotherms and the competition of plasma proteins on starch-based biomaterials has 

been elucidated. In the present work, the type of adsorption obtained onto SBB surfaces was 

characteristic of a Freundlich type. For SCA and SPCL the equilibrium of adsorption was achieved 

within the first hour of incubation while for SEVA-C the adsorption was slower. Albumin adsorption 

onto starch based biomaterials was affected by the material composition as well as by the 

concentration of the protein solution, preferentially adsorbing onto SCA and SPCL. Fibronectin 

adsorption reached higher values on SEVA-C and SPCL. There was no effect on the adsorption of 

HSA and HFN onto SPCL in competitive conditions. Fibronectin adsorption was reduced on SCA in 

the presence of albumin, for which adsorption simultaneously increased, while the opposite situation 

was observed for TCPS. Competitive conditions were favourable to the affinity of both molecules by 

improving the affinity of albumin and fibronectin onto SEVA-C surfaces. Fibronectin demonstrated a 

different adsorption activity for the different materials as assessed by single and competitive 

adsorption with albumin. 
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Abstract 

The characterisation and quantification of the adsorption and desorption of plasma proteins on different natural 

based materials was performed by multiloop Dynamic Contact Angle (DCA) measurements based on the 

Wilhelmy method. Starch-based materials were the interfaces used to analyze the influence different surfaces 

had on the adsorption, desorption and changes in protein configuration. The studied protein systems included 

single protein solutions of Human Serum Albumin (HSA), Fibronectin (HFn), Vitronectin (HVn) and Fibrinogen 

(HFbg). Human blood plasma was used as the competitive protein solution. In the adsorption studies, the DCA 

loops observed on all the materials were reduced and the decrease in hysteresis was demonstrated. This effect 

was more significant for SCA surfaces than SEVA-C and SPCL, which had similar hysteresis loops. The effect 

of protein concentration was assessed and demonstrated to substantially affect the DCA wetting forces of SEVA-

C and SPCL surfaces. In the desorption study, during the rinsing phase with phosphate buffered saline (PBS) 

solution, the DCA loops became larger than that observed for the adsorption phase. The hysteresis of SCA and 

SPCL surfaces irreversibly changed through the desorption phase. The results indicated that adsorbed proteins 

could desorb more readily on SCA and SPCL than on SEVA-C. In the later case, stronger interactions such as 

hydrophobic forces were established and it is likely the rearrangement of protein conformation had occurred. 
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1. INTRODUCTION 

The paradigm of cell material interactions, which holds that protein adsorption is the first event 

following contact and determines the later interactions of the cell, could be central to the design of 

new strategies for biocompatibility1 and tissue engineering2, 3 From a functional point of view, it is 

accepted that qualitative and quantitative assessment of the affinity of proteins to surfaces is essential 

to evaluate cell mechanisms upon attachment to the surfaces and thus develop improvements in the 

properties of implanted materials.  

Plasma proteins are immediately adsorbed onto the surface of biomaterials and are the key factors 

determining the subsequent cell related events.4 Proteins such as fibronectin and vitronectin are known 

to have an early interaction with surfaces and are considered of central importance in the regulation of 

cell adhesion.5, 6 Different substrates interact differently with these molecules resulting in 

conformational changes of the protein structures, thus defining the binding quality of specific cell 

receptors.7 Therefore, in the field of surface science the study of adsorption-desorption kinetics or 

adsorption reversibility related to the folding-unfolding events, have been investigated.  

Several methodologies are available for the study of protein interactions with macromolecules 

providing information on the amount of protein or molecular conformation.8-10 Yet, protein-polymer 

interactions are not directly evaluated.11 Moreover, proteins are essentially large hydrocarbons with 

complex structures and as such their identification is highly complex. Detection problems are even 

more apparent at submonolayer coverage, where the substrate adds greater complexity to the analytical 

spectrum. Proteins are difficult to distinguish from “contamination” by other hydrocarbon species that 

can be present on the surfaces; but also the intensity of spectral features that can be used for 

identification are often so weak that detection limits are low and sensitivity is poor.11 Useful 

information could be provided by the study of the dynamics of interfacial reactions such as the one 

that is triggered by the contact of a surface with a biological medium.  

Although the adsorptive characteristics of a surface are determined by its wetting tension and 

wettability,12 the real time interference of these parameters in protein adsorption have been hardly 

investigated. Dynamic Contact Angle (DCA) analysis, developed by Andrade et al.,4 has proven to be 

a useful technique for a first-order interpretation of these dynamic interfacial interactions. DCA is 

sensitive to the outermost few angstrons of the surface and thus provides a powerful means of 

monitoring submonolayer changes of the substrate.4, 13 Currently, the tensiometric DCA has proven to 

be extremely useful for biomaterial characterization.14, 15 This technique is generally used to measure 

the advancing and receding contact angle of water on material surfaces and can therefore be used to 

determine surface changes by the measurement of the variation in the contact angles (hysteresis). 

From a thermodynamic perspective, advancing and receding contact angles should be equal. Yet, in 

experimental systems hysteresis is detected and two types are generally considered: thermodynamic 

and kinetic hysteresis.4, 16, 17 DCA provides information from the material side that allows the detection 
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of quick changes in the surface configuration.18 The method yields data on a multitude of surface 

characteristics, such as the presence of chemical and physical heterogeneities, changes in the surface 

configuration and adsorption-desorption processes. DCA allows the study of sample surfaces while in 

contact with the biological model fluid, providing a continuous, non-destructive monitoring 

technique19 that detects changes over increasing time.4 The formation of a biofilm from a protein 

solution also takes place on the same timescale.20 In protein adsorption studies, changes in DCA 

hysteresis can reflect the adsorption of proteins onto surfaces forming a biofilm. Upon adsorption, 

proteins may undergo conformational changes that allow hydrophobic residues to contact a 

hydrophobic surface exposing hydrophilic residues towards the solution. This results in a stronger 

bond between the protein and the surface and can lead to a more uniform and hydrophilic surface 

chemistry.21  

In the present study, changes in the homogeneity of Starch based Biomaterials (SBB) exposed to 

protein solutions were determined using DCA measurements. Starch-based Biomaterials have been 

increasingly studied for applications in the field of Tissue Engineering,22, 23 including their use as 

scaffolds for bone related applications24 and drug delivery systems.25 The work disclosed herein 

focused on obtaining the DCAs of different surfaces for single solutions of human proteins: serum 

albumin (HSA), fibronectin (HFn), vitronectin (HVn), fibrinogen (HFbg); and for complex solutions 

as human blood plasma (HBP). The DCA technique was used to determine (1) the adsorption of 

macromolecules, (2) protein concentration effects, (3) the adsorption and desorption rates and (4) 

partial denaturation effects driven by the surface characteristics. Moreover, visualization of the final 

surfaces was analysed by Laser Scanning Confocal Microscopy (LSCM). 

 

2. MATERIALS AND METHODS 

2.1. Starch-based Biomaterials (SBB) 

Different biodegradable polymeric blends of corn starch with: (i) cellulose acetate (SCA), (ii) ethylene 

vinyl alcohol copolymer (SEVA-C) and (iii) polycaprolactone (SPCL) were studied. The amount of 

starch was 50% by weight (wt%) on SCA and SEVA-C and 30% wt. on SPCL. By means of using 

conventional injection moulding technology, samples were processed into 10 mm circular discs. 

Samples were sterilized by ethylene oxide under optimised conditions26, washed, and subsequent 

experimental procedures were performed under clean conditions. 

 

2.2. Proteins and Human Blood Plasma Collection  
Dynamic contact angle studies were performed using different commercially available human origin 

biomolecules: HSA, HFn, HVn and HFbg (Sigma-Aldrich, UK). Single and complex protein solutions 

were prepared in Phosphate Buffered Saline (PBS; Sigma-Aldrich, UK) solution (pH 7.4). 

Concentrations of HFn, HVn and HFbg solutions were prepared at 0.2% of their amount in the human 
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blood: 0.8µg/mL, 0.6µg/mL and 0.4µg/mL, respectively. To assess the effect of protein concentration 

in DCA hysteresis, 35µg/mL and 70µg/mL HSA solutions were prepared, which corresponded to 

0.1% and 0.2% of its physiologic concentration. Furthermore, to analyse the effect of complex protein 

solutions on DCA hysteresis, human blood plasma was used. In brief, whole blood was collected from 

healthy un-medicated, adult volunteers, anticoagulated with 0.002% of heparin and centrifuged at 

2500rpm for 5min at 4ºC. Human Blood Plasma (HBP) was collected and stored at 0ºC. HBP 

solutions were prepared at 0.2% (V/V) in PBS solution. 

 

2.3. Dynamic Contact Angle: protein adsorption and desorption  

2.3.1. Theoretical Principles 

DCA measurements were performed based on the Wilhelmy plate method.27 Wilhelmy-balance 

tensiometry was performed using a computer-controlled instrument (Camtel CDCA 100F, Royston, 

UK). The theoretical principles of this methodology are described in the literature.11, 17 Briefly, a plate 

was immersed and emersed from a model liquid and the forces acting in the specimen were recorded 

by electrobalance. According to the procedure, the balance was reset to zero and linear regression was 

performed to the immersion depth zero. This provided for the elimination of the weight of the sample 

and buoyancy forces. The relation between force and surface tension was represented by the following 

equation:  

! 

F

L
= "l# cos$

 
where F is the force in mN, γlv the surface tension of the liquid and θ is either the advancing (θ adv) or 

receding (θ rec) contact angle.  

Finally, contact angle hysteresis is the difference between advancing and receding contact angles. This 

parameter is affected by the distribution of different chemistries on the surface with different 

properties and thus is a measure of the homogeneity of the surface. 

 

2.3.2. Adsorption and Desorption Studies 

Adsorption and desorption studies were performed running multiloop DCA at a controlled temperature 

(22ºC). For the experimental set up immersion/emersion speed was a constant set to 0.060mm/sec and 

the immersion depth was 2mm. In all experiments, a single hysteresis loop lasted 3min and therefore a 

complete 60 loop experiment ran for approximately 3h. The duration of the experiments and 

subsequently the number of DCA cycles was selected based on previous studies with starch-based 

biomaterials showing that HSA and HFn adsorption was completed in approximately 90min after 

incubation.28  

Prior to the evaluation of the effect of the different protein conditions on the advancing (adv) and 

receding (rec) dynamic contact angles (DCAs), ultra-pure water and PBS solution were studied. The 

(1) 
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effect of the different proteins and human blood plasma on the advDCAs and recDCAs of SCA, 

SEVA-C and SPCL was investigated and hysteresis (H) calculated. In the adsorption study, 

experiments were performed using each protein solution for 60 loops. In contrast 30 loop desorption 

studies were performed in protein free buffer (desorption phase) directly after the 60 loop experiment 

of the adsorption phase. 

 

2.4. Protein Labelling 
Antibody labelling of specific biological molecules was selected to determine the adsorption of 

albumin, fibronectin, vitronectin and fibrinogen on the different surfaces. For the detection of the 

biomolecules, samples used in the adsorption and desorption DCA studies were fixed using 4% 

formaldehyde solution and washed with PBS solution. Initially, the materials were exposed to horse 

serum for 20min, followed by incubation with primary antibodies for 30min at 37ºC. For the 

identification of the different biomolecules, antibodies that have been shown to cross react with rat 

specie were used: sheep anti-Human Albumin, Fibronectin, Vitronectin, and Fibrinogen (Farnell, UK). 

After the primary antibody, materials were incubated with donkey anti-sheep Alexa Fluor 488 

antibody (Molecular Probes, The Netherlands) for 1 h at 37 ºC.   

 

2.5. Confocal Laser Scanning Microscopy 
Samples obtained after adsorption and adsorption/desorption experiments were analysed by Confocal 

Laser Scanning Microscope (LSM 510 Zeiss, UK) using an argon laser (λ=488 nm) for the excitation 

of the probe-conjugated antibodies used to detect adsorbed HSA, HFn, HVn and HFbg. Image analysis 

was performed using KS400 image analysis software (Imaging Associates, UK).  

 

 

3. RESULTS AND DISCUSSION 

3.1. Characterization of SBB Surfaces by DCA Measurements  
The dynamics of the advancing and receding wetting tension were detected by means of force loops. 

The force loops using PBS and water were similar although a slight decrease in hysteresis was 

observed due to the influence of the phosphate buffer in the homogenization of the surface. DCA 

loops of the SBB surfaces after immersion in PBS were obtained (Figure 1). The fitting of the 

advancing arm, the transition from advancing to receding mode and the receding arm were 

determined. For each cycle, the DCA loops for the surfaces of SEVA-C and SPCL were similar 

(Figure 1b and 1c) with no reduction in hysteresis after the initial change from dry to wetted state, 

around the second loop. In contrast, control measurements using PBS and SCA surfaces, indicated an 

increase in the advancing contact angle with increasing cycles. The maximum hysteresis was obtained 

at loop 10, indicative that a steady state was achieved (Figure 1a). 
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Figure 1. DCA loops of SCA (A), SEVA-C (B) and SPCL (C) immersed in PBS solution. The advancing (a) and receding 
(r) loop numbers (1-5 and 10) were indicated.  

 

In theory, the occurrence of contact angle hysteresis is not predicted to occur for “ideal” surfaces.4 

Yet, surfaces generally present either time invariant hysteresis (thermodynamic or true hysteresis) or 

time-dependent hysteresis that results from the re-equilibration phenomenon taking place in the 

surface-liquid interface (kinetic hysteresis).4, 16, 17 The results demonstrated examples of kinetic (Figure 

1a) and thermodynamic hysteresis (Figure 1b and 1c). The increase in hydrophilicity was the 

fundamental difference between SCA, SEVA-C and SPCL polymeric blends. SCA changed 

completely into a wettable surface at loop 10 after the initial hydrophobic loops. Time-dependent 

contact angle hysteresis resulted from the changes of the advancing angles, as the variation of receding 

contact angles was very small.  

According to the literature,17, 21 the kinetic hysteresis observed for SCA could be due to swelling, 

surface mobility or to changes in surface configuration. In opposition, the hysteresis observed for 

SEVA-C and SPCL could be caused by surface roughness and chemical inhomogeneity, which was 

absent in the so called “ideal” surfaces.17 The results can be further interpreted by considering the 

miscibility and interaction between the synthetic and natural phases of the materials. Previous studies 

reported the heterogeneity of SCA surfaces in opposition to the higher homogeneity of SPCL and 

SEVA-C.29, 30 The more homogeneous a material is the lower the degree of freedom at the molecular 

level and thus changes in the surface configuration are limited. This could explain the invariant 

thermodynamic hysteresis observed for SEVA-C and SPCL. DCA analysis of hysteresis proved to be 

a sensitive method to assess surface configuration changes. Furthermore, Johnson & Detre derived an 

empirical model to explain the correlation between surface in homogeneity and contact angles.31, 32 

According to this model, advancing DCAs of the macroscopically heterogeneous surfaces were 

influenced by 10% hydrophobic surface patches, while the receding DCAs were affected by 10% 

hydrophilic areas in a hydrophobic surface. Developing from this, it could be stated that SCA presents 

hydrophobic patches that represent over 10% of the surface. 
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3.2. DCA and Protein Adsorption: effect of solution concentration  
The 10 loop DCA in 70mg/mL HSA for SCA, SEVA-C and SPCL (Figure 2) indicated differences 

between the advancing angles while receding angles remained constant. The shape of the DCA curves 

observed for all surfaces substantially changed when compared to the protein-free solution (Figure 1). 

This variation was more rapid for the SCA surface, indicative of total wetting.  

 

 

Figure 2. DCA loops of SCA (A), SEVA-C (B) and SPCL (C) immersed in a solution of 70µg/mL of HSA (adsorption 

phase). The advancing (a) and receding (r) loop numbers (1-5 and 10) were indicated.  

 

To analyse the effect of protein concentration on hysteresis, the data from the 30 loop experiments 

were presented as a function of time or cycle number (Figure 3). Albumin solutions of 35µg/mL and 

70µg/mL were used as test solutions. For all materials, the data showed that an increase in solution 

concentration resulted in a decreased hysteresis. These results were in agreement with other studies19, 21 

that indicated the reduction of hysteresis with increasing concentration of Bovine Serum Albumin 

(BSA) solutions. The hysteresis shifts of SCA, SEVA-C and SPCL were primarily caused by changes 

in the advancing arms of DCA force loops (Figure 3). This effect was more pronounced for SEVA-C 

and SPCL than for SCA. Moreover, SCA hysteresis approached a steady state close to zero during the 

initial 10 cycles. It was determined that higher concentrations did not yield different or further 

information, which could result from the formation of a monolayer. For SEVA-C and SPCL, the 

equilibrium between proteins in solution and those on the surface layer was observed around loop 30. 

Despite of the lower hydrophilicity of SEVA-C and SPCL than that of SCA, the hysteresis was 

affected by the protein solution and changed from a thermodynamic to a kinetic type. According to the 

literature, a cause of kinetic hysteresis is the adsorption of macromolecules from the liquid phase. 4, 16, 

17 When compared with the surface state before adsorption, the initial heterogeneity of a surface is 

affected by the onset of protein-surface interactions and kinetic hysteresis is a consequence of 

adsorption.4, 21 For all materials the DCA experiments in PBS contrasted with DCA studies in albumin 

solution (Figure 1 and 2). Time dependent shifts in immersing and/or emerging forces have been 

demonstrated. Due to protein adsorption, the increase in hydrophilicity and the homogenization of the 

surfaces was demonstrated. Proteins were able to undergo conformational rearrangement to adsorb on 

both hydrophobic and hydrophilic surfaces. The decrease in hysteresis and hydrophilicity showed that 
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the adsorption of albumin reduced the hydrophobic areas of the surface. In the present study, an 

energetically favourable system resulted from the rearrangement of the protein structure that exposed 

the hydrophilic regions towards the solution. 

  
Figure 3. 30-loop DCA experiments showing hysteresis, advancing and receding wetting tensions obtained for 35µg/mL and 

70µg/mL HSA solutions. SCA (a), SEVA-C (b) and SPCL (c) surfaces were analysed. 
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3.3. DCA Hysteresis of Protein Adsorption and Desorption  

3.3.1. Single Protein Solutions 

The adsorption/desorption studies were performed to analyse the reversibility of the wettability status, 

which may have changed during adsorption. Desorption studies were performed by replacing the 

protein solutions (adsorption phase) with PBS (Figure 4).  

 

Figure 4. DCA loops of SCA (A), SEVA-C (B) and SPCL (C) immersed in PBS solution (desorption phase) subsequently to 

the HSA adsorption experiment. The advancing (a) and receding (r) loop numbers (31-35 and 40) were indicated.  

Figure 5. 60-loop DCA adsorption/desorption hysteresis of SCA (a), SEVA-C (b) and SPCL (c) surfaces using 70 µg/mL 

HSA solutions. Adsorbed albumin at loop 30 (b, e and h) and at loop 60 (c, f and i) can be observed. Bar corresponds to 500 

µm. 
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DCA results for SCA and SPCL surfaces demonstrated that the advancing arms of the contact angle 

loops irreversibly changed towards an increase in hysteresis. Similar trends were obtained for SEVA-

C surfaces during the first cycles of the desorption phase. Nevertheless, at the end of the study, SEVA-

C hysteresis returned to the levels observed for the adsorption phase (Figures 2B and 4B). The results 

of the adsorption/desorption experiments from the 60-loop Wilhelmy measurements are shown in 

Figure 5. 

The equilibrium wetting tensions at loop 60 of the adsorption study were nearly identical for SCA, 

SEVA-C and SPCL. In the study of protein desorption (loops 31-60), drastic changes could be 

observed and the influence of surface identity on the desorption kinetics was clear. Conditioning of 

SCA and SPCL with PBS during loops 31-60 showed a kinetic enhancing effect. The advancing and 

receding wetting tensions showed an immediate increase in hysteresis at the 31st loop, the first loop of 

the desorption phase (Figure 4b). The advancing data partially shifted back in the hydrophobic 

direction, whereas the receding wetting tension showed an irreversible behaviour, the original small 

hysteresis increased irreversibly. According to these DCA results, the adsorption of HSA on SPCL and 

SCA was reversible. In contrast, the experiments with protein-free solution during desorption that 

indicated reversibility of the SEVA-C hysteresis shifts. As for SCA and SEVA-C, the advancing 

wetting tension moved in the hydrophobic direction. However at loop 60, hysteresis values were 

similar to those obtained at the end of the adsorption experiment. It can be concluded that HSA 

adsorption on SEVA-C was irreversible. 

DCA experiments were also performed using HFn, HVn and HFbg at much lower concentrations. The 

results for SEVA-C are shown in Figure 6. The trends observed for fibronectin, vitronectin and 

fibrinogen were similar to that of albumin, including a fast increase in hysteresis at loop 31. Also, at 

loop 60 the adsorption profiles were partially recovered for HVn and HFbg, and totally recovered in 

the case of HFn. This showed that, in approximately 90 minutes (loop 31-60), the proteins adsorbed on 

SEVA-C rearranged their conformation back to the structure adopted during the adsorption stage (loop 

1-30).   

DCA was also performed on the surface of SCA and SPCL using HFn, HVn and HFbg test solutions. 

Yet, in adsorption and desorption experiments no changes in hysteresis were observed (Figure 7a). 

Although protein adsorption was not detected by DCA analysis, it was observed by confocal 

microscopy performed after the adsorption (Figure 7b) and desorption studies (Figure 7c).    
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Figure 6. 60-loop DCA adsorption/desorption hysteresis of SEVA-C surfaces using 0.8 µg/mL HFn (a), 0.6 µg/mL HVn (b) 

and 0.4µg/mL HFbg (c) solutions; and protein visualization at loop 30 (b, e and h) and at loop 60 (c, f and i). Bar corresponds 

to 500 µm. 

 

 

Figure 7. 60-loop DCA adsorption/desorption hysteresis of SPCL surfaces using PBS and 0.4 µg/mL HFbg solutions and 

protein visualization at loop 30 (b) and at loop 60 (c). Bar corresponds to 500 µm. 
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3.3.2. Competitive Protein Systems 

Single protein solutions are generally emphasized over the complex protein mixtures when it comes to 

the experiments simplicity. In the present study complex protein solutions were analysed in order to 

closer evaluate the real biological environment.  

To analyse the effect of protein competition on hysteresis, the data of 60 loop experiments was 

represented as a function of loop number (Figure 8). 

 

 

Figure 8. 60-loop DCA adsorption/desorption hysteresis of SCA (a), SEVA-C (b) and SPCL (c) surfaces using human blood 

plasma (HBP) solutions at 0.2% (V/V). 

 
The adsorption and desorption experiments performed with human blood plasma strongly resembled 

those of HSA. The hysteresis curves and the hydrophobic shift obtained at loop 31 were very similar 

to the albumin single test solutions.  In complex protein solutions, SCA and SPCL showed a hysteresis 

of zero before loop 10. In contrast only at loop 20, SEVA-C surfaces achieved complete wettability. 

Furthermore, SCA and SPCL desorption hysteresis did not recover to the original values obtained 

during the adsorption study (Figure 8a and 8c). In contrast, SEVA-C achieved a completely wettable 

surface at both the end of the adsorption and desorption phases, at loop 30 and loop 60 respectively 

(Figure 8b). This was not demonstrated for unitary HSA solutions (Figure 5d). The increase in 

hydrophilicity of all the surfaces was higher for the competitive system due to the protein 

concentration and species diversity in the human blood plasma solution.  

Changes in DCA hysteresis profiles were demonstrated to be related to material, although changes in 

hysteresis with HFn, HVn and HFbg solutions were not detected on SCA and SPCL and adsorption 

and desorption profiles obtained for SEVA-C were similar for the different molecules. In addition, 

SEVA-C showed no reversibility of the advancing wetting tensions and consequently, no changes in 

hysteresis. The results suggested that SEVA-C presented irreversible adsorption.  

It is known that the wettability of a polymer affects protein adsorption and that hydrophobic surfaces 

tend to be much more denaturing to adsorbed proteins than hydrophilic surfaces.33 Surface 

hydrophobicity strongly affects the interactions of proteins with materials and thus, the irreversibility 

of the adsorption process. When hydrophilic proteins adsorb onto hydrophilic surfaces no net 

hydrophobic interactions occur. In addition, no significant conformational changes take place in the 

F/
L 

[m
N

/m
] 

 

Immersion Loop (a) Immersion Loop (b) Immersion Loop (c) 

F/
L 

[m
N

/m
] 

 

F/
L 

[m
N

/m
] 

 

PBS 

PBS 

HBP 

HBP/PBS  

SCA  

PBS PBS 

SEVA-C SPCL 



Chapter VII. Reversibility of protein adsorption onto biodegradable materials  

 

155 

tertiary and/or secondary structure of the protein.34, 35 In previous studies, SEVA-C was determined to 

be the most hydrophobic surface and, in contrast, SCA showed the lowest values of static contact 

angles.36 It was previously demonstrated that the adsorption of proteins to a hydrophobic surface is 

usually irreversible due to the increase of the free energy gain,37, 38 whereas the adsorption onto 

hydrophilic surfaces is weaker, more sensitive to electrostatic interactions and more reversible.39, 40 

Hydrophobic, electrostatic and specific acceptor donor interactions are generally referred to as the 

most important forces involved in the adsorption process. The surface charge plays a key role in the 

early electrostatic attraction of the protein to the surface. Nevertheless, these are relatively long 

distance forces. In contrast, hydrophobic interactions involve the release of water from both 

hydrophobic protein residues and the solid surface, which results in strong binding of the nonpolar 

protein components with the surface. An irreversibly adsorbed protein layer is formed. Several other 

reversibly bound layers will then form on top of the irreversibly bound layer41 to create the complex 

protein multilayers which mediate cell interaction.  

The differences of adhesion strength observed in the desorption phase that can be considered an 

elution test indicated conformational changes of the proteins. The surface mediated structure that was 

adopted by the proteins could affect the biological activity of the proteins and modulate the cell 

biological response to the different SBB. 

 

 

4. CONCLUSIONS 
The biological environment was simulated to determine single and competitive adsorption profiles of 

proteins from the blood matrix onto the surface of materials. Insights into the dynamic equilibriums 

established between proteins and surfaces were obtained from DCA measurements. Hysteresis profiles 

obtained for the different protein solutions indicated that different interactions between these proteins 

and substrates were taking place during the adsorption process. The SCA surface was the most 

interactive in terms of albumin adsorption, revealing saturation at shorter time periods as observed by 

the higher hydrophilicity. Adsorption studies with SEVA-C and SPCL showed very similar results and 

were in contrast to SCA. 

The most significant differences were observed in the study of protein desorption. The differences 

observed in the desorption phase indicated conformational changes of the proteins. SCA and SPCL 

were demonstrated to completely revert the hysteresis profile back to the original one obtained with 

protein-free buffer. In contrast, SEVA-C showed irreversible hysteresis independently of the protein 

used in the desorption study. The same results were obtained for the study of protein competition. The 

biological activity of the proteins on the SBB surfaces was affected by the material properties and 

could therefore modulate the cell biological response to the different starch-based materials. 
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Abstract 

The physicochemical relationship between different biological molecules and organic materials was investigated 

in vivo. The objective of the research was to determine the dynamic and competitive interaction of albumin, 

fibronectin, vitronectin and fibrinogen on polymeric blends of corn starch with ethylene vinyl alcohol (SEVA-

C). Samples were implanted subcutaneously and analyzed after 3, 7 and 14 days. Immunohistochemistry was 

performed to assess the spatial distribution, diffusion and displacement of the proteins albumin, fibronectin, 

vitronectin and fibrinogen. Results indicated that albumin and vitronectin were absent from the immediate tissue 

implant interface in contrast to fibrinogen and fibronectin that had adsorbed and formed layers on the surface of 

SEVA-C. For longer implantation periods, fibronectin adsorption presented a multilayer pattern that displaced 

fibrinogen from the immediate interface. The smaller molecular weight proteins diffused into the bulk of the 

materials, penetrating greater distances with increasing implantation time. The materials demonstrated molecule 

specific differences in affinity, enriching the surface with fibronectin and the bulk of the material with albumin 

and vitronectin that could be exposed or desorbed and subsequently delivered as part of the bulk material 

degradation. 
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1. INTRODUCTION 

Research for several decades has emphasized the importance of protein adsorption to understand the 

interactions between cells and implanted material surfaces.1, 2 Commonly used biomaterials are 

considered to be by design practically passive and non-toxic, but this is too a simplistic perspective; 

following blood-contact a wide variety of potentially adverse or at least interactive foreign body 

reactions (FBR) may be initiated.3 The accumulation of large and small biological molecules from the 

surrounding fluid is one of the very first steps in the biological cascade of events that follow the 

implantation of a material,4, 5 including the onset of FBR.6 In either in vivo or in vitro environments 

different cell types7, 8 including phagocytes9 are known to spontaneously interact with biological 

molecules that have bound to surfaces rather than directly with the material itself.  It is generally 

accepted that the type of molecule, it’s conformation and the amount adsorbed, play critical roles in 

the cellular response10, 11 and that the state of adsorption is strongly affected by surface properties, such 

as chemistry and wettability.10   

The problems of biological molecule interaction with surfaces intended for biomedical applications are 

less commonly studied in vivo and the assessment of protein behaviour in living organisms is yet to be 

fully understood.12 In vitro results provide valuable clues for the analysis of molecule interactions with 

surfaces in the in vivo environment, although studies using complex protein solutions can perform 

differently.13, 14 It is accepted that a common problem in the study of protein adsorption phenomena is 

the apparent disparity between the in vitro and in vivo behaviour of biological molecules that 

continues to limit our understanding of the functionality of proteins in the in vivo interface and delays 

the applicability of materials in the biomedical field. Numerous proteins exist in the human body and 

the variety of molecules in physiological fluids affect important aspects of protein interaction with 

surfaces, such as protein competition, denaturation or blood clotting that directly modulate the overall 

biocompatibility and performance of implanted materials.15-17  

Starch-based Biomaterials (SBB) have been investigated for a range of applications in the field of 

Tissue Engineering including scaffolding,18, 19 bone20 and drug delivery systems.21 The in vitro 

biocompatibility22 and in vivo host response23 of starch-based biomaterials has been assessed and 

correlated with protein adsorption behaviour. The in vitro protein adsorption, competition and 

immunological cellular response has been determined previously24 as well as the influence of SBB 

surfaces on protein adsorption and on the behaviour of osteoblast-like cells.25 The use of a complex in 

vivo model to study protein adsorption onto and into materials intended for biomedical applications is 

of critical value to achieve implant success.  

The hypothesis under investigation was that material bulk chemistry can directly affect protein 

adsorption in a manner that is protein specific and therefore, different for different proteins this effect 

can be determined in vivo.  In this study proteins were selected for investigation based on their 

relevance in the biomedical field and their specific properties. The adsorption of albumin, fibronectin, 
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vitronectin and fibrinogen was studied. Albumin is a model molecule in protein adsorption studies due 

to its high concentration in physiological fluids like blood plasma and interstitial space26 and to the 

ability to "passivate" biomaterial surfaces, reducing inflammatory and thrombogenic processes.27 

Members of the family of substrate adhesion molecules fibronectin28, 29 and vitronectin,30 were studied 

for their relevance in physiological processes such as the modulation of the immune system and tissue 

remodelling. These proteins are components of the extracellular matrix (ECM) and their integrin-

binding sequences are responsible for modulating cell adhesion and migration. Finally, fibrinogen was 

selected considering its prominent role in multi-component processes such as the FBR in which 

fibrinogen is believed to adsorb immediately to the implanted materials.6, 10 

Previous in vivo research that determined the analysis of protein adsorption is rare. This study 

investigated this critical phase of material interaction by analyzing the protein composition of the 

biolayer and tissue surrounding the in vivo implanted polymeric blends of corn starch and ethylene 

vinyl alcohol (SEVA-C). The results have been related to protein adsorption data from in vitro models 

that have utilised the same materials. In the in vitro studies, human serum was used as a dynamic 

multi-protein system and single and binary protein solutions of Human Serum Albumin (HSA), 

Human Fibronectin (HFN) and Human Vitronectin (HVN) were investigated.24 One of the aims of the 

research was to determine the relationship between key biological molecules and the tissue reactions 

evoked by SEVA-C in the in vivo subcutaneous environment.23 Protein adsorption patterns were 

analyzed for short and long implantation periods in order to relate in vitro protein adsorption with the 

in vivo inflammatory response. 

 

2. MATERIALS AND METHODS 

2.1. Starch-based Biomaterials (SBB)  
Natural origin polymers were investigated consisting of biodegradable polymeric blends of corn starch 

with ethylene vinyl alcohol copolymer (SEVA-C). The amount of starch was 50% by weight (wt%) on 

SEVA-C. Conventional injection moulding technology was used to process samples under optimized 

conditions. Samples were cut into rectangular-shaped blocks 13 x 10 x 7 mm3. Before implantation, 

the edges of the samples were trimmed and samples were rolled for 1 week in glass flasks to round 

machined edges and reduce the magnitude of edge effects.  

Samples were sterilized by ethylene oxide in optimised conditions,31 washed, and all subsequent 

experimental procedures were performed under sterile conditions.  

 

2.2. Subcutaneous Implantation of SEVA-C Materials  
The experiments were performed in Wistar rats, anaesthetized using Immobilon as previously 

described.23 Briefly, four different materials were implanted subcutaneously in the back, two either 

side of the spine, for 3, 7 and 14 days, with three repeats for each material per time period. At the end 
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of the implantation period, rats were sacrificed by CO2 and the tissue surrounding the implant was 

carefully dissected with the material in situ and snap frozen using isopentane in cardice. Explanted 

samples were stored at -80ºC until resin embedded. 

 

2.3. Preparation of Implanted Materials  
Samples of the SEVA-C material were embedded in Technovit 8100 New®-embedded (Heraeus 

Kulzer, Wehrheim, Germany) that is a low temperature glycolmethacrylate embedding system that 

facilitates the preservation of tissue antigenicity. Resin embedding of the implants was performed 

according to the manufacturer indications. Briefly, fixation was performed in a mixture of 

paraformaldehyde, lysine and periodate (PLP fixative) for 24h at 4ºC and washed in 50 mM 

ammonium chloride buffer. The implants were dehydrated in a cold acetone bath for 24h at 4 ºC. A 

mixture of 0.6 g of Technovit Hardener I in 100 ml base-liquid 100% Technovit was used as the 

infiltration mixture for 24 hours. An embedding mixture was then used (1 part of Technovit Hardener 

II and 30 parts of infiltration solution); the infiltration of the samples was performed at -55 ºC for 4 

days followed by 2 days at -20 ºC for polymerisation. Sample blocks were then trimmed with a low 

speed circular saw (IsoMet® Low Speed Saw, Buehler LTD., USA). 7µm thick sections were cut 

using a Polycut Microtome (Leica, UK) and then mounted on 3-aminopropyl-triethoxysilane (APES)-

coated slides, fixed with acetone for 5 min, air-dried and kept short term at 4 ºC until staining. 

 

2.4. Immunohistochemistry of In Vivo Protein Adsorption  
Antibody labelling of specific biological molecules was used to determine the adsorption of Albumin 

(Alb), Fibronectin (Fn), Vitronectin (Vn) and Fibrinogen (Fbg). For the detection of the biomolecules, 

tissue sections were stained using an avidin-biotin alkaline phosphatase technique, as described 

elsewhere.32 In brief, materials were incubated with 0.1% trypsin solution to expose masked epitopes, 

exposed to horse serum for 20min and incubated with primary antibodies overnight at 4ºC, for the 

identification of the different proteins. After that time, materials were incubated with biotinylated 

rabbit anti-goat IgG antibody (Dako A/S, Denmark) for 1h at room temperature. The avidin and 

biotinylated horseradish peroxidase complex (Vector Laboratories Ltd., UK) was added to all 

materials for 30min and the substrate reaction was developed using the Alkaline Phosphatase 

Substrate Kit (Vector Laboratories Ltd., UK). Each incubation was followed by one wash with 

Phosphate Buffered Saline (PBS) for 5min. Materials were washed and mounted in permanent 

aqueous mounting medium (Serotec Ltd, UK). Each time period studied had one sample stained as a 

control replacing the primary antibody with buffer and parallel isotype reference staining was always 

conducted.  
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2.5. Image Analysis and Protein Diffusion  
Immunostaining results were observed using transmitted light microscopy (Axioplan 2 Imaging, Zeiss, 

Germany) and image acquisition by digital camera equipment (AxioCam, Zeiss, Germany). 

Subsequently, measurements of protein diffusion and biolayer thickness were performed for the 

assayed molecules. For each staining, three sections per time period were analyzed and twenty repeats 

per section were used. To quantify protein diffusion KS400 3.0 image analysis software (Zeiss, 

Germany) was used. 

 

2.6. Statistical Analysis 
Data analysis of protein diffusion on and into the implanted materials was presented as arithmetic 

means/standard deviations of the mean (mean/SD). Statistical data evaluation was made by the 

ANOVA/Tukey multiple comparison tests to detect differences between groups (SPSS 13.0.1, 

Statistical Analysis Software, USA). In statistical evaluations, n>20 (by section) and p<0.05 was 

considered as statistically significant. 

 

 

3. RESULTS AND DISCUSSION 

3.1. Co-diffusion of Albumin and Vitronectin in the Bulk of the Implant  
The results obtained by antibody staining showed that albumin (Figure 1) and vitronectin (Figure 2) 

adsorbed into the bulk of the implant and were distributed in the same area of the implanted material. 

Moreover, immunodetection of both molecules indicated an absence of layer formation on the surface 

of SEVA-C material.  

 
Figure 1. Immunohistochemical staining of SEVA-C sections for serum albumin (Alb) after subcutaneous implantation for 3 

(A), 7 (B) and 14 (C) days. 
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Figure 2. Immunohistochemical staining of SEVA-C sections for Vitronectin (Vn) after subcutaneous implantation for 3 (A), 

7 (B) and 14 (C) days. 

 

The analysis of Alb and Vn behaviour showed that the increase in the diffusion distance was 

proportional to the implantation period. Summarized in Figure 3 the analysis of Figures 1 and 2 

indicated that for both proteins a staining increase was observed from day 3 up to day 14 of 

implantation. Overall, the analysis of the diffusion of both biomolecules indicated no differences in the 

distances measured, except for the shorter implantation period. At day 3 of implantation, albumin 

diffused 36.64 ± 2.14 µm in the bulk of the implant in contrast to vitronectin that showed increased 

diffusion of 45.98 ± 5.06 µm (p<0.05). From 3 and 7 days of implantation, a faster diffusion of 

albumin was observed when compared to vitronectin, thus resulting in similar measurements for both 

proteins. The data obtained for both proteins after 7 and 14 days of implantation was 115 µm and 120 

µm, respectively (Figure 3). 
 

 

Figure 3. Diffusion of Albumin (Alb) and Vitronectin (Vn) detected by immunostaining of SEVA-C materials implanted for 

3, 7 and 14 days. 
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Table 1. Diffusion of Albumin (Alb) and Vitronectin (Vn) determined by immunohistochemistry of SEVA-C materials 
implanted for 3, 7 and 14 days (A) and ANOVA analysis (B).  

 
Subset for alpha = 0.05 

SEVA-C Materials N 
1 2 3 4 

Alb 3 days 26 34,64    
Vn 3 days 34  45,98   
Alb 7 days 36   110,55  
Vn 7 days 30   114,87 114,87 
Vn 14 days 30    116,75 
Alb 14 days 33    117,98 

Sig.  1.00 1.00 0.33 0.69 
 
 

The degradation and hydration effects that may have taken place in the in vivo environment possibly 

enabled the diffusion of small molecular weight biomolecules since Fn and Fbg were not found in the 

bulk of SEVA-C materials. 

The glycoprotein Vn is known to circulate in plasma at concentrations of around 200 to 400 µg/mL. 

Vn is an asymmetrically shaped molecule found in fresh human plasma as a heterogeneous mixture of 

two structurally and functionally distinct forms: heparin-binding form (2%) and non-heparin-binding 

species (98%).33 The monomer non-heparin-binding Vn presents a Stokes’ radius of 3.9 nm consisting 

of a highly folded conformation and 75 kDa polypeptide.33, 34 On the other hand, serum albumin, with a 

molecular weight and Stokes’ radius lower than that of vitronectin, of 66 kDa35 and 3.53 nm,36 

respectively, is the most abundant plasma protein in the interstitial space.26 The physical properties of 

both proteins could suggest higher diffusion of Alb compared to Vn. Interestingly, the results indicate 

that for early implantation times the affinity of vitronectin was significantly higher than that observed 

for albumin (Table 1). In previous experiments24 using diluted human blood plasma and SEVA-C 

polymeric blends, vitronectin showed considerable enrichment at the surface after 24 h incubation, 

when compared to other adhesive and non-adhesive proteins. The higher affinity of the glycoprotein to 

the starch based surface under competitive conditions could also provide an explanation for its 

increased diffusion into the bulk of the implant. Studies from Fabrizius-Homan et al.,37, 38 found that 

the competitive potential of vitronectin could indicate a greater resistance to displacement when 

compared to other molecules such as fibrinogen, and that this protein could bind and activate platelets 

effectively forming thrombi even in sub monolayer surface concentrations. The results demonstrated 

the co-diffusion of molecules as the biomaterial equilibrated to the in vivo environment. As the 

material adsorbed water from the surrounding physiological fluids the porosity increased, proteins 

penetrated as a consequence of this increased permeability. The significant ability of a partially 

degradable material to self-select molecules could be utilised to provide material specific benefits; two 

advantages could be envisioned: 1) as the material degrades, molecules could become available for 

7 days 
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cell tagging by exposing reactive epitopes; 2) as the desorption and exchange of proteins increases, 

SEVA-C could gradually deliver albumin and vitronectin at the immediate surface interface. 

 

3.2. Fibrinogen Displacement by Fibronectin Multilayer Formation  

The results of fibronectin immunostaining (Figure 4) contrasted albumin and vitronectin; fibronectin 

was clearly detected in the immediate implant-tissue interface (Figure 4A). Fn adsorbed to the surface 

in a multilayer pattern and was not found dispersed in the tissue surrounding the implant. Moreover, 

the deposition rate and final adsorbed amount were substantially higher when compared to fibrinogen 

(Figure 5). The increase in Fn layer thickness was proportional to the implantation period, reaching 

approximately 310 µm after day 7 (Figure 4B) and 1015 µm after day 14 of implantation (Figures 4C 

and 4D). This concurred with previous studies using hydroxyapatite or titanium14; in this study 

adsorption of higher molecular weight proteins increased with longer incubation periods. At the last 

implantation time point the area surrounding the implant was characterized by a multilayered 

fibronectin rich pattern.  

 
Figure 4. Immunohistochemical staining of SEVA-C sections for Fibronectin (Fn) after subcutaneous implantation for 3 (A), 

7 (B) and 14 (C and D) days. 
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Several studies39, 40 have demonstrated the influence of fibronectin in the development of the 

vascularisation. It is also known that following injury from the implantation process itself, in situ 

production of fibronectin occurs and thus, adsorbed fibronectin may not derive exclusively from 

circulating plasma and interstitial fluids. The high affinity and consequent adsorption of Fn onto the 

surface of SEVA-C materials can ultimately cause the remodelling of the surrounding tissue. 

Antibody labelling of fibrinogen indicated the absence of recruited protein by SEVA-C at day 3 of 

implantation (Figure 5A). At day 7 a thin film of fibrinogen had accumulated on the implanted surface 

with thickness of 39.7 ± 8.8 µm (Figure 5B). Similar results were obtained for longer implantation, 

however fibrinogen was not detected in the implant tissue interface. In opposition, Fbg was displaced 

1077.4 ± 192.5 µm from the surface (Figures 5C and 5D).  

 
Figure 5. Immunohistochemical staining of SEVA-C sections for Fibrinogen (Fbg) after subcutaneous implantation for 3 

(A), 7 (B) and 14 (C and D) days. 

 

The relevant role of fibrinogen in a multi-component process such as the foreign body reaction is 

known.6, 10 Previous studies have indicated immediate adsorption of fibrinogen to the implanted 

materials and the formation of multilayer patterns.6, 41 Moreover, there is considerable data in the 
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literature showing that fibrinogen presents a high affinity for a large number of surfaces and is 

preferentially adsorbed from whole plasma, predominating in the deposited protein layer.42, 43 

According to Vroman et al.,44, 45 fibrinogen was demonstrated to dominate the proteinaceous film 

during the early implantation time. In contrast, the results obtained in this study, indicated a low 

affinity of this protein to the surface of the starch-based material. Fibrinogen was absent at day 3 

(Figure 5A) and was displaced from the interface tissue material after 14 days of implantation (Figure 

5C). In opposition to fibronectin, the low intensity of the anti-fibrinogen staining and its subsequent 

displacement from the surface indicated a poor interaction between fibrinogen and the implanted 

material. From competition studies, it is known that exchanged proteins typically consist of the less 

tightly surface bound biomolecules.46 

Previous in vitro studies42 using protein-deficient plasmas indicated the possibility of fibrinogen 

displacement by other molecules such as high molecular weight kininogen and, to a lesser extent, by 

factor XII. An important result of the present study is the indication that fibrinogen displacement 

resulted from the adsorption of fibronectin. The dynamics of fibronectin adsorption onto the SEVA-C 

surface was highly selective for this protein as shown in Figure 4 and in in vitro studies,24 this could be 

the reason for fibrinogen displacement from the interface instead of being a consequence of the 

activity of smaller size molecules as described by other authors. Effectively, the fibrinogen 

displacement distance (Figure 4C) suggests that the Fn multilayer (Figure 5C) was localized in 

between the implant surface and the thin Fbg layer.  

Studies10 already support the potential for the type of protein on the surface of a material to affect the 

host response in terms of inflammation following implantation, and specifically to influence 

fibrinogen in mediating a phagocyte response. Accordingly, previous studies using starch based 

materials23 have verified that SEVA-C polymeric blends induced mild inflammatory reactions, as 

determined by the macrophage/monocyte and lymphocyte responses after 14 days of implantation. 

The previously observed immunogenic response can be related to these results that indicated a 

hypofibrinogeneic tissue surrounding the implant as well as the displacement of this protein from the 

surface after 14 days of implantation.  

The role of fibrinogen in adverse body reactions has been supported by evidence that biomolecules 

tightly adsorb onto hydrophobic implanted surfaces as a consequence of conformational changes in 

their ternary structure.47 The dynamics of fibrinogen adsorption was evaluated onto SEVA-C material 

characterised by its hydrophobic nature,25 indicative that other properties such as surface chemistry 

could play a role in the overall fibrinogen behaviour. Moreover, the possibility of conversion of 

fibrinogen onto fibrin was not indicated as the layer determined after 14 days matched the thickness of 

that after 7 days. In this context, the presented results could indicate that due to its properties, SEVA-C 

could limit the complicated process of surface induced thrombosis. 
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4. CONCLUSIONS 
In vivo modelling provided further insights into the dynamics and equilibriums established between 

different proteins and the implanted SEVA-C material. The in vivo behaviour of key proteins 

following SEVA-C implantation and their correlation to the previously characterised cellular host 

response has been demonstrated.  

Albumin was localized in the same areas as vitronectin, diffusing into the bulk of the implant. The 

diffusion mechanism in place was dictated by the chemical characteristics of the proteins and indicated 

that for early implantation times the affinity of vitronectin was significantly higher than that for 

albumin. In contrast to albumin and vitronectin, fibronectin was observed mainly at the tissue implant 

interface and fibrinogen was displaced from the SEVA-C surface. The results suggest that the 

displacement of fibrinogen from the surface can be related to the high adsorption of fibronectin. 

Consistently, the distance from the surface at which fibrinogen was detected indicated the absence of 

interaction between these two proteins with fibrinogen, which is indicative of a lower affinity to the 

SBB surface and the fibrinogen distribution being dependent on the fibronectin layer. The tissue 

surrounding the implant was hypofibrinogeneic and rich in fibronectin possibly providing an 

explanation for the moderate inflammatory response of SEVA-C that has been determined by previous 

studies.  

The SEVA-C high affinity for fibronectin effectively influenced the distribution of fibrinogen by 

displacement from the surface. Simultaneously, co-diffusion of vitronectin and albumin induced an 

enrichment of the bulk of the material with these proteins. The material could therefore self-select and 

incorporate clinically relevant molecules to enable SEVA-C implants to continuously expose cell 

adhesive epitopes as well as anti-thrombogenic molecules at a controlled rate that was related to bulk 

degradation.  
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CHAPTER IX 
 

GENERAL CONCLUSIONS AND FINAL REMARKS 

 

 

1. IN VITRO ANALYSIS OF PROTEIN ADSORPTION  

Analyzing the interaction of proteins with the surfaces of materials intended for biomedical 

applications is fundamental for understanding cellular events and the overall host response. By single 

protein adsorption studies the complexity of blood bio environment or the biocompatible potential of 

biomaterial surfaces can not be assessed. In the present work one of the major aims was to investigate 

the adsorption mechanisms of clinically relevant proteins onto the surface of starch based biomaterials 

(SBB). Single protein systems and the complex multi-protein environment were evaluated to assess 

different aspects of protein-surface dynamics. 

 

1.1 Distribution of the proteins on the surfaces 
The distribution and density of biomolecules onto surfaces for clinical use are of utmost importance. 

In general, proteins are the cell anchor points to surfaces aimed to be colonized and thus integrated in 

a certain biological environment. 

The patterns of protein adsorption onto SBB materials were evaluated to determine whether it was a 

material or protein dependent phenomenon. The immunostaining technique provided important 

qualitative and semi-quantitative analysis of different starch-based blends studied in terms of protein 

adsorption pattern and intensity. For all proteins studied it was observed that SCA and, to some extent, 

SPCL presented a less homogeneous protein coating than SEVA-C. Considering the order SCA, SPCL 

and SEVA-C, we obtain an increase in miscibility and interaction between the starch and the synthetic 

polymeric phases, which also provides a decrease in surface chemical heterogeneity. It was 

demonstrated that independently of the biomolecule in study, proteins formed a smooth and 

homogeneous protein coating at SEVA-C surfaces when compared with SPCL and SCA. Thus, 

allowing concluding that the type of material defines the distribution of the studied biomolecules.  

 

1.2. Protein adsorption, kinetics and competition 
The adsorption amounts, the kinetic and the competitive behaviour of proteins onto SBB surfaces were 

investigated. Besides surface analysis provided by microscopy techniques, fluorimetry proved to be a 

useful technique. The type of adsorption obtained onto SBB surfaces was characteristic of a 

Freundlich type, in contrast to the control surfaces (TCPS) that fit the Langmuir model. The first 

model was more suitable for heterogeneous surfaces and consider further the dynamics of protein-

protein as well as protein-surface interactions. 
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Onto SCA and SPCL the equilibrium of adsorption was achieved faster than that of SEVA-C. 

Albumin adsorption was affected by the material composition as well as by the concentration of the 

protein solution, preferentially adsorbing onto SCA and SPCL. Fibronectin adsorption reached higher 

values on SEVA-C and SPCL.  

On the competitive behaviour of proteins for the different surfaces, fibronectin demonstrated a 

different adsorption activity for the different materials as assessed by single and competitive 

adsorption with albumin. There was no effect on the adsorption of HSA and HFN onto SPCL in 

competitive conditions. Fibronectin adsorption was reduced on SCA in the presence of albumin, for 

which adsorption simultaneously increased, while the opposite situation was observed for TCPS. 

Competitive conditions were favourable to the affinity of both molecules by improving the affinity of 

albumin and fibronectin onto SEVA-C surfaces.  

When the complexity of the study was increased by the use of human blood serum as the protein 

source, differences in protein behaviour were observed: in opposition to vitronectin and to fibronectin, 

the competitive potential of albumin to adsorb onto starch-based surfaces was decreased. All studied 

surfaces showed, in general, good VN adsorption and SPCL showed the highest protein adsorption 

levels, regardless of the biomolecule studied. The adsorption isotherms and the competition of plasma 

proteins on starch-based biomaterials were elucidated.  

 

1.3. Effect of surface modification on protein adsorption 
The potential of surface properties in influencing protein adsorption, such as morphology, chemistry 

and hydrophobicity were evaluated. In this study, the capacity of oxygen-based plasma treatment to 

increase protein adsorption onto PDLLA, a gold standard biodegradable material, was assessed. The 

amounts of adsorbed proteins in single systems (albumin and fibronectin) were shown to increase after 

plasma treatment. The surface modification increased the wettability as well as surface energy, which 

polar component of surface energy was mainly affected. Moreover, treated DLLA showed increase in 

total O% of treated over non-treated samples. Higher wettability and the introduction of oxygen 

functionalities created sites for binding proteins by polar interactions or hydrogen bonding. Also, the 

simultaneous increase in surface micro-heterogeneity could have played a role in the increased protein 

adsorption. In general, oxygen plasma treatment resulted in PDLLA surfaces of higher adsorption 

affinities. 

 

1.4. Protein adsorption/desorption studies 
In the field of surface science the study of adsorption-desorption kinetics or adsorption reversibility 

related to the folding-unfolding events, have been investigated. The biological environment was 

simulated and insights into the dynamic equilibriums established between proteins and surfaces were 

obtained from DCA measurements.  



Chapter IX. General conclusions and final remarks 

 

181 

Hysteresis profiles obtained for the different protein solutions indicated that different interactions 

between these proteins and substrates were taking place during the adsorption process. The SCA 

surface was the most interactive in terms of hysteresis changes due to immersion in PBS or to albumin 

adsorption, revealing saturation at shorter time periods as observed by the higher hydrophilicity. The 

most significant differences were observed in the study of protein desorption. The differences 

observed in the desorption phase indicated conformational changes of the proteins. SCA and SPCL 

were demonstrated to completely revert the hysteresis profile back to the original one obtained with 

protein-free buffer. In contrast, SEVA-C showed irreversible hysteresis independently of the protein 

used in the desorption study. The same results were obtained for the study of protein competition. On 

SEVA-C, stronger interactions such as hydrophobic forces were established and it is likely the 

rearrangement of protein conformation had occurred. The biological activity of the proteins on the 

SBB surfaces was affected by the material properties and could therefore modulate the cell biological 

response to the different starch-based materials.  

 

 

2. IN VITRO CELL RESPONSE TO PROTEINS AND SURFACES 
Cell response to a biomaterial surface is considered one of the major factors in determining the 

biocompatibility of a material because this step affects subsequent cell proliferation and differentiation 

pathways. It is known that interfacial reactions occurring when a material contacts a biological 

environment are modulated by both the surface and the biomolecules, such as proteins, that interact 

with it.  The outcome of these interactions subsequently affect the cellular response.  

 

2.1. Co-culture of monocytes/macrophages and lymphocytes 

The effect of human albumin, fibronectin and vitronectin on modulating leukocyte adhesion gave rise 

to results that demonstrate leukocyte behaviour to be affected by the protein studied and by the culture 

time period: (i) short-term effects in cell adhesion were found to be developed in the presence of 

vitronectin, (ii) while at longer-term, albumin induced the increase in cell attachment.  

In addition, it was shown that cell populations adhere to protein coated and non-coated surfaces, 

although monocytes and/or macrophages were found in higher numbers mainly for shorter incubation 

periods. 

 

2.2. Bone related cells: FRCs and MG63 osteoblast like cells 

The surface modification technique used in this study, oxygen-based plasma treatment successfully 

functionalize/activate the surface of SBB and PDLLA without affecting the bulk properties of both 

materials. Both, the effects of plasma modification and the presence of different protein systems on the 

viability and morphology of MG63 osteoblast-like cells were evaluated.  
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In the absence of pre-incubated proteins, the plasma treated SPCL surfaces were demonstrated to 

greatly improve osteoblast-like cells proliferation. Protein types and the presence of other proteins 

were shown to be the key for cell adhesion and proliferation numbers. In several cases, cell 

morphology was shown to be related to surface properties created by the plasma treatment. In contrast 

to SEVA-C surfaces, cell adhesion and proliferation on SCA were found to be enhanced for non-

treated surfaces. Adhesion on treated and untreated SPCL was very similar, while plasma modification 

clearly promoted MG63 cells proliferation. The morphology of the cells was studied: on SEVA-C 

surfaces was primarily defined by the protein system used, while on SPCL it was mainly affected by 

the plasma treatment. 

 

Onto PDLLA, MG63 osteoblast-like cells and primary cultures of FRC cells were used to assess both 

the effect of plasma treatment and protein adsorption on cell attachment and proliferation. In the 

absence of pre-adsorbed proteins, neither MG63 nor FRC cells could distinguish between treated and 

untreated surfaces. However, MG63 osteoblast-like cells showed higher proliferation rates for plasma 

treated PDLLA surfaces, indicating a direct effect of the oxygen based plasma technique. In turn, gas 

plasma treatment, by influencing protein adsorption on the surfaces, was shown to affect cell response 

to the surfaces. The effect on the treatment over the cultured cells was only observed by combining 

gas plasma modification of the surface with the protein adsorption, thus indicating a crucial role for 

adsorbed proteins in mediating the response of osteogenic cells to the plasma-treated PDLLA surface.  

 

 

3. IN VIVO PROTEIN ADSORPTION: HOST RESPONSE TO SEVA-C POLYMERIC 

BLEND 
To some extent, the in vitro results supported the idea that single solution studies were not good 

simulations of the real situation of the complex bioenviromnent. Consequently, in vivo modelling was 

performed, which provided further insights into the dynamics and equilibriums established between 

different proteins and the implanted SEVA-C material. The in vivo behaviour of key proteins 

following SEVA-C implantation and their correlation to the previously characterised cellular host 

response has been demonstrated.  

Albumin was localized in the same areas as vitronectin, diffusing into the bulk of the implant. The 

diffusion mechanism in place was dictated by the chemical characteristics of the proteins and indicated 

that for early implantation times the affinity of vitronectin was significantly higher than that for 

albumin. In contrast, fibronectin was observed mainly at the tissue implant interface and fibrinogen 

was displaced from the SEVA-C surface. The results suggest that the displacement of fibrinogen from 

the surface can be related to the high adsorption of fibronectin. Consistently, the distance from the 

surface at which fibrinogen was detected indicated the absence of interaction between these two 
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proteins with fibrinogen, which is indicative of a lower affinity to the SBB surface and the fibrinogen 

distribution being dependent on the fibronectin layer.  

The SEVA-C high affinity for fibronectin effectively influenced the distribution of fibrinogen by 

displacement from the surface. Simultaneously, co-diffusion of vitronectin and albumin induced an 

enrichment of the bulk of the material with these proteins. The material could therefore self-select and 

incorporate clinically relevant molecules to enable SEVA-C implants to continuously expose cell 

adhesive epitopes as well as anti-thrombogenic molecules at a controlled rate that was related to bulk 

degradation.  
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