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ABSTRACT 

Tissue engineering is a new concept emerged as an alternative approach to 

tissue and organ reconstruction. It differs from organ transplantation by 

regenerating patient’s own tissue and organs avoiding the biocompatibility and 

low biofunctionality problems as well as severe immune rejection; which are the 

main problems of organ transplantation. Tissue engineering methods generally 

require the use of three main components: a porous scaffold that serves as a 

matrix, cells and growth factors. The architecture of the tissue engineered 

scaffold is an important factor to take into consideration that can modulate 

biological response and the clinical success of the scaffold.  

Fiber-based scaffolds can provide large surface area and highly 

interconnective porous structure for cell attachment and ingrowth as well as 

variety of geometric possibilities that can be regulated depending on the 

application.  

In the works presented in this thesis, we developed different fiber based 

structures based on two natural origin polymers, chitosan and starch, for use in 

tissue engineering.  

In Chapter III, chitosan fibers and fiber mesh scaffolds were produced by 

means of wet spinning technique. The tensile strength of produced fibers was 

around 205 MPa and Ca-P layer formation could be observed on their surfaces 

after 14 days of immersion in simulated body fluid (SBF). In Chapter IV, these 

fibers were then used in further studies for the reinforcement of the structure of a 

composite material which was consisting of microporous coralline origin 

hydroxyapatite microgranules, chitosan membranes and chitosan fibers. This 

composite architecture showed 88% (w/w) swelling in one hour and preserved its 

complex structure upon long-term incubation. Chitosan fiber meshes were 

obtained by moulding a predetermined amount of wet-spun fibers. After 7 days of 

culture, it was found that they were able to support osteoblast-like cell 

attachment and proliferation. A bone-like apatite layer was obtained on these 
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scaffolds by means of using a simple biomimetic coating process. The apatite 

formation was determined by different techniques, including SEM, FTIR-ATR, 

EDS, XRD. The influence of biomimetic coating on osteoblast cell behaviour was 

also examined by culturing SaOs-2 cells onto scaffolds. The cell population and 

ALP enzyme activity were found to be higher in the biomimetic coated scaffolds 

than those in uncoated scaffolds. Furthermore, cell presented more spread and 

flat morphology when they were seeded on biomimetic coated scaffolds. 

Regarding starch-based fiber structures, wet spinning was used in 

Chapter VI as an alternative method to melt spinning for production of 

starch/polycaprolactone fiber mesh scaffolds. This method seemed to be a very 

reproducible way of obtaining the fiber mesh scaffolds, typically with 77% 

porosity and mean pore size 250µm. The specific surface of the scaffolds was 

measured around 29 mm2/mm3, which was very similar to natural bone. The 

surfaces of the scaffolds were then treated with plasma under Ar atmosphere. 

Although both treated and untreated scaffolds exhibited ability for osteoblast-like 

cell attachment and proliferation, DNA content and ALP enzyme activity were 

higher in plasma treated scaffolds. 

Finally, and as a new approach to mimic the natural extracellular matrix 

(ECM), nano- and micro-fiber combined scaffolds from starch/polycaprolactone 

blend were designed by means of two step methodology. Electrospinning was 

used to obtain nanofibers on melt-spun micro-fiber meshes. With regard to the 

cell culture studies with osteoblast-like cells and rat bone marrow stromal cells, 

these new architectures showed excellent cell support ability and very promising 

properties to make them a proper tissue engineering scaffold.   

 In summary, results from these works showed that the designed fiber-

based structures from natural origin polymers could successfully serve as a 

scaffold for tissue engineering. 
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RESUMO  

Engenharia de tecidos é um conceito novo que emergiu como uma abordagem 

alternativa para a reconstrução de tecidos e órgãos. Difere da transplantação de 

órgãos na medida em que gera os tecidos e órgãos do próprio doente 

melhorando desta forma a biocompatibilidade e funcionalidade, assim como 

reduzindo o risco de rejeição pelo sistema imunitário, que são os principais 

problemas associados à transplantação de órgãos. Geralmente os métodos de 

engenharia de tecidos requerem o uso de três componentes principais: um 

suporte poroso que serve de matriz, células e factores de crescimento. A 

arquitectura do suporte é um aspecto importante a ter em consideração que 

pode modular a resposta biológica e o sucesso clínico do mesmo a longo prazo. 

Suportes à base de fibras podem dar origem a uma grande área superficial e a 

uma estrutura porosa interconectada para a adesão migração celulares, assim 

como uma variedade de possibilidades geométricas que podem ser adaptadas 

dependendo da aplicação. 

No trabalho apresentado nesta tese foram desenvolvidas, para uso em 

engenharia de tecidos, diferentes estruturas à base de fibras produzidas a partir 

de dois polímeros de origem natural, sendo estes o quitosano e o amido. Fibras 

de quitosano e suportes à base de fibras foram produzidos pela técnica de “wet 

spinning”. A resistência à tracção das fibras produzidas foi em média 204.9 MPa 

e a formação da camada Ca-P foi observada nas suas superfícies após 14 dias 

de imersão em “simulated body fluid” (SBF). Estas fibras foram usadas em 

estudos posteriores para o reforço da estrutura do material compósito, que 

consiste em microgrânulos de hidroxiapatite de origem coralina microporosa, 

membranas e fibras de quitosano. Esta arquitectura compósita apresentou 88% 

(p/p) de inchamento ao fim de uma hora e manteve a sua estrutura complexa em 

incubações prolongadas. Suportes à base de fibras de quitosano foram obtidos 

moldando uma quantidade pré-determinada de fibras produzidas por “wet-

spinning”. Após 7 dias de cultura, verificou-se que eram capazes de suportar a 
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adesão e proliferação de osteoblastos. Uma camada de apatite idêntica ao osso 

foi obtida nestes suportes através de um processo simples de revestimento 

biomimético. A formação de apatite foi determinada por diferentes técnicas, tais 

como: SEM, FTIR-ATR, EDS e XRD. A influência do revestimento biomimético 

foi também examinada na actividade celular dos osteoblastos, cultivando células 

SaOs-2 nos suportes. Observou-se que a população celular e a actividade da 

enzima ALP é maior nos suportes com revestimento biomimético do que nos 

suportes sem revestimento. Além disso, células semeadas nos suportes com 

revestimento biomimético apresentam-se mais espalhadas e com uma 

morfologia plana. 

Relativamente às estruturas de fibras à base de amido, a técnica de “wet 

spinning” é utilizada como uma alternativa à técnica de “melt spinning” para 

produção de suportes à base de fibras de amido/policaprolactona. Este método 

permite obter de uma forma reprodutível suportes à base de fibras com 77% de 

porosidade e tamanho médio de poro de 250 µm. A superfície específica dos 

suportes é de aproximadamente 29 mm2/mm3, que é em muito semelhante ao 

osso natural. As superfícies dos suportes foram então tratadas com plasma em 

atmosfera árgon. Embora ambos os suportes tratados e não tratados por plasma 

tenham exibido capacidade para adesão e proliferação dos osteoblastos, o 

conteúdo de DNA e a actividade da enzima ALP foram maiores em suportes 

tratados.  

Numa nova abordagem para mimetizar a matriz extracelular natural (ECM), 

foram concebidos, por uma metodologia em duas etapas, suportes combinados 

de nano- e micro-fibras a partir de uma mistura de amido/policaprolactona.  A 

técnica de “electrospinning” é utilizada para produzir nano-fibras no topo de 

malhas de micro-fibras sendo estas obtidas por “melt-spun”. No que diz respeito 

a estudos de culturas celulares com osteoblastos e células da medula óssea de 

rato, estas novas arquitecturas mostraram uma excelente capacidade de suporte 

celular como uma estrutura de engenharia de tecidos. 
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Em resumo, os resultados destes trabalhos demonstraram que as estruturas à 

base de fibras, concebidas a partir de polímeros naturais, podem servir com 

êxito como suporte para engenharia de tecidos.   
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CHAPTER I 

GENERAL INTRODUCTION 

BIODEGRADABLE POLYMERİC FIBER STRUCTURES IN TISSUE 
ENGINEERING 
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Abstract 

Tissue engineering offers a promising new approach to create biological alternatives 

to repair or restore function of damaged or diseased tissues. In order to obtain three-

dimensional tissue constructs, stem/progenitor cells must be combined with a highly 

porous three-dimensional scaffold. However, so far, many of the structures purposed 

for tissue engineering can not meet all the criteria required by an adequate scaffold 

due to the lack of mechanical strength and interconnectivity as well as poor surface 

characteristics. Fiber-based structures represent a wide range of morphological and 

geometric possibilities that can be tailored for each specific tissue engineering 

application. The present article overviews the research data in tissue engineering 

therapies based on the use of biodegradable fiber architectures as a scaffold. 
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1. Definition 

Fibers are the fundamental units of textile and fabrics. They can be directly supplied 

from nature or produced from synthetic polymers. Both natural and synthetic fibers 

and fiber-based structures, so-called biotextiles, have been widely used for 

biomedical applications.  

 “Biotextiles” has been defined as a “structure composed of textile fibers and 

designed for used in a specific biological environment (e.g. surgical implant), where 

its performance depends on its interactions with cells and biological fluids as 

measured in terms of its biocompatibility and biostability” [1].   

Polymeric fibers that are used in medicine can be manufactured by three main 

techniques; melt spinning [2], dry spinning and wet spinning [3].  All those techniques 

are based on an extrusion of a polymer melt or solution. The final properties of the 

produced fibers can be controlled by using different finishing methods for instance 

stretching [4] or drying treatments with different solvents [5]. Besides those main 

techniques, some special methods such as electrospinning [6], gel spinning [7] were 

also used in fiber processing. As we will discuss below, due to the structural 

similarity of electrospun polymeric mats to the natural extracellular matrix, the 

electrospinning process has attracted a great deal of attention in scaffold processing 

for tissue engineering [8]. In a brief, this process is based on the generation of an 

electrical field between a polymeric solution (or a polymer melt) placed in a capillary 

tube with a pipette or needle of small diameter and a metal collector. When the 

electrical field reaches its critical value, repulsive electrostatic force overcomes the 

surface tension of the polymer solution and a charged jet is produced. This charged 

polymeric jet then undergoes a stretching process which is accompanied by the 

rapid solvent evaporation and results the formation of long and thin nano fibers. 

Electrospinning have been used to fabricate nanofibrous structures from a number of 

both natural synthetic polymers, such as collagen[9], chitosan [10] , chitin[11] , silk 

fibroin[12], hyaluronic acid [13] and poly(DL-lactide-co-glycolide) [14], poly(L-lactide) 

[15], and polycaprolactone [16], among many others. Within last few years, these 

nanofibrous structures have been used as a scaffold in many different tissue 

engineering applications.   

 



 4

2. Fiber Structures 

Fibers can be manufactured as monofilaments or multifilaments, they find, for 

instance, application as a suture in surgery. Sutures are the oldest and simplest 

example of the textiles used in medicine. They are made of both biodegradable and 

non-degradable polymers, either natural or synthetic origin.  Dexon® (polyglycolide; 

multifilament), Dexon Plus® (polyglycolide, braided), Vicryl® (poly[glycolide-L-

lactide]; multifilament), Maxon® (poly[glycolide-co-trimethylene carbonate]; 

monofilament), Biosyn® (poly[glycolide-co-L-lactide-co-trimethylene carbonate]), and 

PDS® (poly-p-dioxanone; monofilament) are the some examples for commercially 

available biodegradable sutures [17, 18].  

For more complex applications, fibers can also be formed in 3D structures 

such as knitted, braided, woven, and non-woven. The orientation of fibers into these 

structures may range from highly regular to completely random. The final structure of 

the fibers affects the behaviors of the fibers when they are applied. For example, 

woven structures show more stable and porous structure than the other fiber 

structures. As a disadvantage, they can be unraveled at the edges when they cut 

squarely or obliquely for implantation. However, knitted structures have inherent 

ability to resist unraveling when they cut. Moreover, they are very flexible and 

porous. But sometimes their flexibility is reduced when the additional yarns are used 

to interlock the loops in order to obtain more stable structures. Additionally, 

difficulties of reducing their high porosity below a certain value are another clear 

disadvantage for some applications. Braided structures are mostly used as a suture. 

They can be designed using several different patterns, either with or without core. 

The spaces between the yarns, which cross each other, make them porous and help 

the fluid flow during the healing process. Non-woven structures may have a wide 

range of porosity. Their isotropic structure provides good mechanical and thermal 

stability. They can easily compress and expand. These advantages make them a 

suitable material for many tissue engineering applications.    

3. Applications in Tissue Engineering 

Tissue engineering offers a promising new approach to create biological alternatives 

for regenerating different tissues. It involves typically the use of  stem/progenitor 
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cells seeded in a scaffold which can guide the cell growth and tissue formation in 

three dimensions. Several requirements must be considered in the design of tissue 

engineering scaffolds, including high porosity, large surface area, adequate pore 

size, and uniformly distributed interconnected porous structures throughout the 

matrix [19-21].  

Biodegradable polymeric fiber structures can provide a large surface area, 

and a relatively large porosity which can be optimized for specific applications. 

Besides these, many tissues, such as nerve, muscle, tendon, ligament, blood vessel, 

bone, and teeth, have tubular or fibrous bundle architectures and anisotropic 

properties. Therefore, fiber-based structures find a number of applications in tissue 

engineering, including soft tissue repair, vascular prostheses, bone and cartilage 

scaffolds, nerve guides, among others. On the other hand, many parameters must 

be considered in the design of fiber architectures, such as optimal fiber diameter and 

linear density, overall porosity and pore size distribution, influence of fiber orientation 

on cellular response and influence of degradation on the properties of the structures. 

3.1. Soft Tissue Engineering 

Skin Replacement 

Skin is a complex organ and mainly consisting of a superficial and an inner layer 

which are called epidermis and dermis, respectively. It is well known that most 

wounds can heal naturally. However, the replacement becomes a serious problem 

when it is irreversibly damaged by burns, trauma or disease. The most common 

approach for skin replacement is the use of autografts or allografts [22-24]. But they 

have many limitations including the creation of a donor site, risk of infection and slow 

healing. Over the past two decades, tissue engineering approach have been studied 

to construct a three dimensional skin architecture using a temporary scaffold 

combined with fibroblast, keratinocytes and endothelial cells [25, 26].   

Biodegradable fiber-based structures have been proposed to use for healing 

or dermal or epidermal injuries. The most successful fiber-based dermal equivalents 

are the commercialized products Dermagraft® and Dermagraft-TC®. Dermagraft® is 

a structure consisting of fibroblasts, extracellular matrix and a biodegradable fiber 

mesh [27]. In this product, polyglactin (PLGA) mesh is used as a scaffold for 

fibroblasts. The fibroblast proliferated into the scaffolds secrete human dermal 
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collagen, matrix proteins, growth factors and cytokines and create a dermal 

substitute. It has been already applied clinically to the patients with diabetic foot 

ulcers. It was found that healing was faster and better in patients with Dermagraft® 

treatment compared to the control patients (debridement and moist wound healing) 

[28, 29]. Dermograft-TC® is a Silastic covered form of Dermagraft®  and act as a 

non-biodegradable form due to that covering. It has been also apporoved by FDA to 

use as a dermal substitute. More recently, the PLGA knitted mesh has been 

combined with collagen microsponges for three-dimensional culturing of skin 

fibroblast [30]. In this new hybrid approach, the PLGA knitted mesh serves as a 

scaffold to support the forming tissue while collagen microsponges help the new and 

homogenous dermal tissue formation.    

Besides those commercialized synthetic fiber structures, natural fibers, such 

as chitin, chitosan, alginate and a benzyl ester of hyaluronic acid (Hyaff 11®), are 

also proposed for wound healing due to their wound healing ability [31].  For 

instance, Hirano et al. [32] developed a new biocompatible dressing material made 

of wet spun chitin-acid gylcosaminoglycan fibers that released a portion of the 

glycosaminoglycan in the body. Softness and easy handling of these fibers could be 

useful to heal epidermal tissue injuries. 

Engineering of dermal tissue with using a non-woven scaffolds based on a 

benzyl ester of hyaloronic acid has been studied by many researchers [29, 33-35]. In 

order to obtain a nonwoven mesh structure hyaluronan benzyl ester thread is 

produced by phase separation extrusion technology, then cut, carded and needle-

punched. For instance, Tonello et al. [34] studied the co-culturing of fibroblast and 

endothelial cells into a hyaluronan-based fiber mesh to create microcappillary like 

structures in a dermal graft. Such structure could benefit the healing of deeper 

lesions where the tissue vascularization is clearly needed.  

Electrospun nanofibrous mats have been also investigated as novel wound 

dressing material. Nanofiber matrices show high oxygen permeability due to their 

high surface area (ranging 5-100m2/g) which also allows fluid accumulation at the 

wound site. On the other hand, their pore size is small enough to prevent bacterial 

penetration and making them a promis1ing candidate for wound dressing. For 

instance, Katti et al. [36] used electrospining method to produce antibiotic loaded 

Poly(lactide-co-glycolide) nanofibrous membranes for wound healing. Collagen-
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based electrospun mats were also studied for using in tissue engineering 

applications including wound healing [37]. 

Vascular Grafts 

Biomedical textiles can find an application in the cardiovascular area namely as 

vascular grafts. In order to mimic the soft and flexible structure of natural blood 

vessels, they have been used in woven, knitted, or microporous tubular structures. 

Early attempts to develop a vascular graft focused on the use of bypass grafts made 

of nondegradable or degradable synthetic materials. Most used non-biodegradable 

synthetic polymeric fiber structures for this purpose are Dacron® and Teflon® [38-

40]. Later, fiber structures made of biodegradable polymers were applied as a 

temporary scaffold for the regeneration of blood vessels. The first proposed totally 

biodegradable vascular graft was Polyglactin 910 knitted mesh (Vicryl® ) in 1979. 

The woven PGA structures have been also evaluated in a rabbit model, as a 

vascular graft [41].  

After many studies based on directly implantation of biodegradable grafts, 

tissue engineering approaches have been started to be applied to the cardiovascular 

system for namely in the development of a blood vessel substitute. For example, Kim 

et al. [42] studied the use of nonwoven PGA matrices, which were coated with PLLA 

in order to eliminate stability lack of PGA mesh, to design tissue engineering 

constructs. The smooth muscle cells (SMCs) seeded onto these matrices has 

showed high cellular viability and produced high amount of extracellular matrix 

proteins. Others have attempted to utilize surface hydrolyzed nonwoven PGA 

scaffolds for culturing smooth muscle cells [43].  In another study, Shum-Tim et 

al.[44] created a new vascular graft combined of nonwoven PGA mesh and 

biodegradable polyhydroxyalkanoate (PHA) as a inner and outer layer, respectively. 

After one week of culturing a mixed cell population of endothelial cells, smooth 

muscle cells and fibroblasts in these tubular structures, the final construct have been 

implanted into a lamb. It has been observed that these tissue engineered constructs 

could resemble the native aorta and be used as vascular substitutes. In a later study 

, tubular scaffolds have been designed from nonwoven PGA fabrics which were 

coated with a poly(L-lactide-co-caprolactone) (50/50) porous membrane. The 

autografts made of these scaffolds and mixed cells have shown no occlusion or 
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aneurismal formation when they were implanted in dogs. Moreover, a line of 

endothelial cells has been observed at the luminal surface of each autograft. More 

recently, these scaffolds with bone marrow cells have been successfully implanted 

into patients [45].    

In order to mimic natural structure of blood vessels, Xu et al. [46] suggested 

the use of aligned nanofibrous poly(L-lactide-co-ε-caprolactone) scaffolds produced 

by electrospinning, and proposedf these systems to use for blood vessel 

engineering. They have reported that nanofibers could provide aligned attachment 

migration of smooth muscle cells along the axis of nanofibers In addition, it has been 

also found that distribution and organization of smooth muscle cytoskeleton proteins 

inside SMCs were parallel to the direction of the nanofibers.   

Prosthetic heart valves 

The other application of biodegradable polymeric fibers in the cardiovascular field is 

on the tissue engineered of heart valves. The clinically used prosthetic heart valves 

include xenograft valve, mechanical valve and homograft valve. But there are 

limitations as to the long term benefits of these valve prostheses such as poor 

durability, foreign body reaction, infection, anticoagulation problem or donor scarcity. 

Recently, many studies have been undertaken to determine if tissue engineering 

principles could be used to develop valve tissue substitutes. Seeding of human 

fibroblasts, endothelial cells or marrow stromal cells on biodegradable fiber mesh is 

a new approach for the creation of human autologous tissue engineered heart 

valves. Poylglycolide (PGA) non-woven scaffolds are the most widely used materials 

for this purpose [47-49]. In order to improve cell attachment and proliferation, PGA 

and PLA non-woven fiber mesh structures have been coated with poly-4-

hydroxybutyrate and their performance have been tested under dynamical conditions 

[50].  

Stents 

Biodegradable fiber structures have also been proposed for using as a stent [51-54]. 

A stent is a expandable mesh tube which mechanically supports vessels against 

elastic recoil and reduces the restenosis rate in percutanous coronary interventions 

[52]. Biodegradable stents are only used when a temporary airway stenting is 
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needed. For instance, Paclitaxel loaded melt extruded poly-L-lactide fibers have 

been tried as a temporary stent [52].  Furthermore, Saito et al. [54] studied a 

biodegradable knitted stent made by poly-L-lactide in rabbit airways. The results 

have showed that the knitted tubular PLLA stents could be used like commercially 

available silicone stents.  Nuutinen et al. [51] developed a biodegradable stent from 

PLLA fibers using a braiding technique. These stents showed the similar radial 

pressure stiffness as compared to commercial metallic stents. They have also 

studied the mechanical properties and in vitro degradation of biodegradable knitted 

stents made of polylactide, poly(L-lactide-co-DL-lactide) and pol(L-lactide-co-

glycolide) fibers [53]. It has been shown that different chemical composition of these 

fiber structures provided for different degradation rates which can be tailored for 

specific applications.  

Nerve Tissue Regeneration  

The nervous system is a complex, sophisticated system that regulates and 

coordinates body activities. It has two major divisions: central nervous system (CNS) 

and peripheral nervous system (PNS). The central nervous system consists of the 

brain and the spinal cord, while the peripheral nervous involves all the nerves that 

branch off from the spinal cord to the extremities. Neurons in central nervous system 

have different characteristics and cannot regenerate by themselves. Therefore, 

restoring their function is a major challenge in neurology. Recently, engineering of 

neural tissue by means of using scaffolds with or without cells become an alternative 

to traditional transplantation methods. For example, Yang et al.[15] developed highly 

porous and fibrous PLLA scaffolds prepared by liquid-liquid phase separation 

methods to be used on nerve tissue engineering. These nanofibrous scaffolds 

showed an ability to support nerve stem cell differentiation and neurite outgrowth.   

In peripheral nervous system, injuries generally affect axons and can be 

regenerated by a variety of methods, depending on how far the stumps are apart 

from each other. To avoid the problems of the autografts and allografts, artificial 

nerve guidance channels have been developed. A nerve guide can be defined as a 

conduit that bridges the gap between the nerve stumps and directs and supports 

nerve regeneration. Most of nerve guides reported in literature have a rigid solid 

structure. Recently, nerve guides based on biodegradable fibers have been studied. 
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For instance, Bini et al. [55] fabricated a nerve guide from microbraided poly(L-lctide-

co-glycolide) fibers, which allowed for a good nutrient transfer due to its microbraided 

structure. They observed a successful regeneration in rats after one month of 

implantation. Later, they used the same approach to produce microbraided chitosan 

conduits [56]. However, chitosan based conduits did not show the same success as 

poly(L-lactide-co-glycolide) conduits due to the swelling characteristic of chitosan. A 

nerve guide from poly(L-lactide-co-glycolide) was also fabricated by using a 

electrospinning method [57].    

A nerve guide made of collagen filaments has been proposed as an 

alternative to the tube type nerve conduits [58]. The collagen conduits consisting of 

two thousand collagen filaments showed better regeneration than the collagen tubes 

(as a control) in regeneration of rat static nerve. In another study, synthetic 

biodegradable fibers made of poly-L-lactide have been examined using dorsal root 

ganglia in vitro [59]. PLLA filaments oriented the growth of Schwann cells and 

neuritis along the longitudinal axis of the filament. In addition, it has been observed 

better neurite growth when the filaments were coated with laminin [59]. Steuer et al. 

[60] also studied in vitro axonal outgrowth using polylactide filaments coated with rat 

Schwann cells.  They demonstrated that axonal outgrowth on polylactide sheets 

coated with Schwann cells (+SC) was 15-fold better than that on sheets without 

Schwann cells (−SC). 
As another engineering approach, Cheng et al. [61] have also reported a 

successful axonal regeneration in rats as a result of implantation of a construct 

consisting of Schwann cells seeded on polyglactin 910 fiber scaffolds and 

biomembrane.   

3.2. Hard Tissue Engineering 

Articular Cartilage 

Articular cartilage of the knee is a highly specialized connective tissue responsible 

for cushioning and lubricating. It is an avascular, anueral, alymphatic tissue and 

contains only one cell type, chondrocytes. Due to this avascular and low cellular 

nature, self-healing capacity of articular cartilage is very limited. Various techniques 

for repairing cartilage defects have been developed, including abrasion [62], drilling 

[63], microfracture [64], osteochondral grafting [65] and transplantation of tissue 
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engineering constructs [66-68]. Many different types of polymeric matrices 

with/without cells have been tested in vitro, as well as in experimental animals, and 

in human patients for their ability to promote articular cartilage repair. Recent trends 

are toward to use of fiber based structures for engineering of articular cartilage. Most 

used biodegradable fiber structures are made by poly-α-hydroxy acids and 

hyaluronic acid. In embryonic tissue, hyaluronan is the main component of 

extracellular matrix and plays an important role in chondrogenic condensation during 

limb formation [69]. It has been shown that HA can affect the differentiation of 

chondrocytes [70]. However, HA can not form easily without any modification and 

usually can be modified by means of esterification. As it was previously described, 

Hyaff® is a derivative of HA and is being investigated as a scaffold for articular 

cartilage repair. For example, Brun et al. [71] have compared Hyaff® 7 and Hyaff® 

11 nonwoven meshes which have the same fiber thickness, 20µm, but different in 

vitro and in vivo degradation rates. Chicken embryo chondrocytes seeded in both 

structures maintained their phenotype and secrete ECM for up to 3 weeks of in vitro 

culture. On the other hand, Hyaff®11 nonwoven scaffolds with a slower degradation 

rate promoted a higher cell proliferation rate. They latter reported on the use of 

Hyaff® 11 non-woven scaffolds as a support for mesenchymal progenitor cells which 

produced the main extracellular matrix molecules, accompanied by an occasional 

synthesis of mature type II collagen [72]. Moreover, when those structures were 

implanted in the rabbit knees, with or without cells, there was no inflammatory 

response and they degraded within 4 months after implantation. Other studies with 

human chondrocytes and mesenchymal stromal cells also confirmed that Hyaff® 11 

nonwoven meshes could promote the growth and differentiation of chondrocyte and 

production of collagen type II, aggrecan and downregulate the production of collagen 

type I [73-75].  

Poly-α-hydroxy acid based fibrous matrices have been widely investigated to 

serve as cartilage grafts. For instance, Freed et al. [76-79]have performed several 

studies where they used PGA fiber meshes and freshly isolated chondrocytes to 

investigate the influence of scaffold properties as well as seeding and culture 

methods on the development of cartilage constructions. Ma et al. [80] have also 

investigated ways to engineer the cartilage tissue by seeding articular chondrocytes 

onto polyglycolic acid non-woven scaffolds. They reported that after the aggregate 
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modulus of the engineered cartilage reached 179+9 kPa after 20 weeks of in vitro 

cultivation, which was 40% that of natural articular cartilage.  

In order to provide the ability of the cells to suspend and making it possible to 

distribute cells within the polymeric mesh, synthetic non woven mesh structures have 

been combined with some natural derived materials such as alginate, collagen, and 

fibrin. Using this approach, Ameer at al. [81] have prepared a composite, which was 

composed by a polyglycolide non-woven mesh coated by fibrin gel, for use them in 

meniscal surgery. At 4 weeks in culture, glycosaminoglycan (GAG) content in fibrin 

coated PGA mesh scaffolds has been found to be better than the uncoated PGA 

mesh scaffolds. In another similar study, PLGA meshes with two different 

compositions which are slower resorbing 47.5/52.5 PGA-PLA and faster resorbing 

90/10 PGA-PLA have been combined with chondrocyte suspended alginate gel and 

tested in vitro and in vivo. Both types of coated copolymer pads have shown uniform 

cell distribution and same performance regarding expression of aggrecan, type I 

collagen and type II collagen [82]. However, the construct consisting of 47.5/52.5 

PGA-PLA, alginate and chondrocytes have exhibit a better performance when they 

have been implanted to osteochondral defects of rabbits. It has been also shown that 

alginate stimulates the chondrogenic phenotype of the transplanted chondrocytes 

and prevents cells from floating out of the defects. Other researchers have used type 

I collagen for chondrocyte encapsulation and tried to combine this gel with a 

nonwoven polylactide (PLLA) scaffolds [83]. This method allowed for encapsulating a 

high number of chondrocytes into the scaffolds, quite homogeneously.            

More recently, collagen type I has been also used to create a web-like structures 

within the PLGA knitted meshes in order in order to achieve a uniform cell 

distribution [84]. The bovine chondrocytes seeded on these scaffolds have shown a 

homogenous distribution, maintained their phenotype and regenerated cartilaginous 

matrix filling the void spaces in the scaffolds. To obtain thicker scaffolds, the cell/ 

composite constructs have been laminated or rolled after 1 day of culture and 

implanted subcutaneously in the dorsum of athymic nude mice. In vivo results have 

demonstrated the formation of articular cartilage after 12 weeks of implantation. 

These new approaches have promised to generate structurally regular cartilage.    

The use of biorectors is a great challenge to obtain a homogenous 

scaffold/cell construct for cartilage and bone regeneration. Such systems can 

provide a good nutrient transfer throughout the porosity of the scaffolds which results 
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in a better cell migration and production of extracellular matrix at interior part of the 

scaffolds. These systems have been successfully applied for creating a tissue 

engineered cartilage construct by using fiber based scaffolds. Davisson  et al. [85] 

have been reported the positive effect of perfusion on cell content and extracellular 

matrix production of bovine articular cartilage cultured polyglycolic acid scaffolds. 

The synthesis of sulphated glycosaminoglycan has been found to be 40% higher 

when compared with static conditions. Griffon et al. [86] compared two different 

dynamic culturing techniques for culturing porcine chondrocytes on a scaffold 

composed of polyglycolic acid mesh or chitosan sponge. A better and uniform cell 

attachment has been found where PGA scaffolds used in the vacuum-reactor 

system.  

Finally, within the last few years, biodegradable non-woven nanofibers, which 

are produced by electrospinning, have been started be to used as scaffolds for 

regeneration of cartilage. 3D matrix made of polycaprolactone nanofibers with 

diameter of 700 nm have been proposed as a scaffold for cartilage tissue 

engineering [87]. The primary chondrocytes that were seeded onto these scaffolds 

proliferated and efficiently maintained their differentiated phenotype, as indicated by 

the expression of cartilage-associated genes. In a latter study [88], the same authors 

demonstrated that PCL nanofibrous scaffolds could significantly enhanced the 

chondrogenic differentiation of human mesenchymal stem cells (MSC) compared to 

the cell pellet culture system, which is a widely used culture protocol for studying 

chondrogenesis of MSC. Collagen based nanofibrous scaffolds have been also 

purposed for cartilage tissue engineering. It is well known that collagen is a naturally 

occurring polymer and one of the major components of extracellular matrix of animal 

tissues. It is found in ECM as fibrillar form with a diameter of 50-300nm. It has been 

shown that collagen type II could be electrospun in a nonwoven mats with a fiber 

diameter between 110nm-1.8µm and use as a scaffold for chondrocyte seeding [89].  

Bone  

Bone is a complex, dynamic and highly vascular tissue with a large amount of 

extracellular matrix and limited cell population. As in all tissue engineering fields, 

many researches [90-94] have been carried out to recreate complexity, stability, and 

biologic function of bone tissue. The most common strategy for engineering of bone 
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is to use a scaffold combined with osteoblast or the cells that can 

mature/differentiate into osteoblasts and regulating factors that promote cell 

attachment, differentiation and mineralized bone formation [95]. The requirements for 

the design and production of an ideal scaffold for bone regeneration are very 

complex and not yet fully understood. It is generally agreed that it must be a 

biocompatible, porous (more than 90% and pore sizes between 100-350µm), 

interconnected, and permeable structure to in order permit the ingress of cells and 

nutrients. Clearly, the structures designed with biodegradable fibers can meet all 

these criteria and serve as a scaffold for the engineering of bone. Many different 

fiber-based polymeric matrices have been tested with different cell types to create a 

bone construct. For instance, bone marrow cells seeded in a nonwoven HA 

polymeric scaffold (Hyaff 11) in a mineralizing medium, and basic fibroblast growth 

factor (bFGF) have shown mineralization through the expression of the markers Ca, 

alkaline phosphatese, osteopontin, bone sialprotein and collagen I [96, 97]. Recently, 

Mikos and co-workers [90, 98] have been reported a study where they used 

biodegradable fiber mesh scaffolds to create bone substitutes in dynamic culture 

conditions. In this study, rat bone marrow cells were seeded onto nonwoven poly(L-

lactic acid) scaffolds which was with a thickness of 1.7mm, a volumetric porosity of 

99% and a fiber diameter of 17mm [90]. These constructs have been cultured either 

in a flow perfusion biorector or under static conditions. It has been found that 

nonwoven PLLA scaffolds could support the attachment, growth and differentiation of 

rat bone marrow cells. Moreover, it has been reported that flow perfusion could 

accelerate calcified matrix deposition and provide a homogenous cell distribution 

though the interior part of the scaffold. Gomes, Reis et al. [98] used the same 

approach to culture rat bone marrow cells in starch-based fiber mesh scaffolds. They 

have observed an increased osteogenic differentiation of bone marrow stromal cells 

when they culture on starch-based fiber mesh scaffolds under dynamic conditions. 

They also reported that fiber-based structures were more advantageous than 

extruded porous structures due to their highly interconnected structure which 

provides a homogenous tissue formation.         

Also in our group, we developed chitosan based non-woven structures as 

bone tissue engineering scaffolds, using a traditional wet spinning technique [99]. 
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We demonstrated that chitosan non-woven scaffolds had an ability to support 

osteoblast cell attachment. 

 As a new trend in the tissue engineering field, nanofibrous scaffolds 

produced by electrospining process have been also suggested for bone tissue 

engineering. For example, non-woven polycaprolactone nanofibrous scaffolds have 

been tested with mesenchymal stem cells derived from the bone marrow of neonatal 

rats under dynamic culture conditions [16]. After 4 weeks of culture, it has been 

found that at least the surfaces of the cell-polymer constructs were covered with cell 

multilayers. Additionally, it has been shown that these structures could support 

mineralization and production of type I collagen under dynamic culture conditions. 

However, colonization by cells of 3D electrospun scaffolds is a major problem due to 

the pore size of the scaffolds which is typically less than average cell size.   Li et al. 

[100] have presented the next step in such nanofibrous PCL scaffolds by culturing 

human mesenchymal stem cells that can differentiate adipogenic, chondrogenic, and 

osteogenic lineage in the same matrix. This very promosing result underscores the 

potential of using both stem cell and nanofibers in bone tissue engineering. More 

recently, Jin et al [101] used the electrospinning technique to produce nanofibrous 

fiber mats with average fiber diameter 700±50nm from silk fibroin with PEO. In vitro 

culture studies with human bone marrow stromal cells have shown that these 

matrices, especially after PEO extraction, could support initial cell attachment and 

ingrowth. 

Tuzlakoglu, Reis et al. [102] have suggested a new approach to design a 

structure which combines polymeric micro and nanofibers in the same construct.  

This novel structure is aimed to serve as a scaffold and mimic the physical structure 

of ECM for bone tissue regeneration, but simultaneously still providing the macro 

support that cells do require. Nano and micro fiber combined scaffolds have been 

originally produced from starch based biomaterials by means of a fiber bonding and 

a electrospinning, two step methodology. The cell culture studies with SaOs-2 

human osteoblast-like cell line and rat bone marrow stromal cells demonstrated that 

presence of nanofibers influenced cell shape and cytoskeletal organization of the 

cells on the nano/micro combined scaffolds as well as cell viability and ALP activity.       

Besides the use of polymeric fiber structures as a scaffold, they also find an 

application for a special kind of bone regeneration in dentistry, as a membrane for 

guided tissue regeneration (GTR). These barrier membranes prevent epithelial 
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migration and promote the regeneration of new connective tissue attachment. 

Vicryl® periodontal mesh and Gore Resolut® (composed by polyglycolide fiber and 

trimethylene carbonate) are successfully used for this application [103, 104]. A PLA 

coated knitted PGA mesh was developed and suggested for using as a barrier 

membrane in GTR [105]. Another GTR membrane composed of polycaprolactone 

and calcium carbonate has been developed by Fujihara et al. [106], using again a 

electrospining process. 

Anterior Cruciate Ligament 

Ligaments are bands or sheets of fibrous connective tissue between two or more 

bones, being responsible for providing the motion and stability of joints and 

transmitting the tensile loads in the musculoskeletal system. Ligaments are mainly 

consisting of collagen fibers which are formed into large bundles with specific 

orientation. The anterior cruciate ligament (ACL) connects the femur to the tibia and 

acts as a primary stabilizer of the knee motion. A rupture of the ACL can not heal 

and a surgically reconstruction is required to restore normal joint function. Tissue 

engineering offers a potential technique to design ligament replacement grafts by 

using a biodegradable scaffold with/without cells. An ideal scaffold for ACL must 

provide a high degree of mechanical strength initially and loose its strength by 

gradually degradation while a new tissue is remodelling. Due to the natural structure 

of ACL, collagen-based fiber scaffolds are widely used for ACL replacement [107, 

108]. The mechanical strength and the control of degradation rate of collagen 

scaffolds could be improved by crosslinking for instance with UV or carbodiimide 

(EDC) [108]. However, it has been shown that both crosslinking methods had 

different advantages on with regards to the final mechanical strength and the 

correspondent cell attachment.  Silk is another natural polymer that has been 

proposed for tissue engineering of anterior cruciate ligaments[109]. When they are 

properly prepared, silk fiber matrices, which have good mechanical properties as 

well as biocompatibility and slow degradation, can serve as a suitable matrices to 

support adult stem cell differentiation toward ligament lineages. Hyaluronic acid 

based fibers are another natural origin alternative for ACL replacement.  Cristino et 

al. [110]  have designed a prototype scaffold with a multilayered knitted cylindrical 

array of Hyaff 11 fibers oriented in two directions. They indicated that mesenchymal 
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stem cells grown on these scaffolds could express collagen type I, type III, laminin, 

fibronectin, and actin which are the characteristic markers for the ligament tissue.  

Alternative biodegradable materials in anterior cruciate ligament 

reconstructions are the synthetic polymers, namely polydioxanone, polylactide, 

polyglycolide and their copolymers. These materials have been purposed either as 

an implant for using directly or a scaffold for creating three-dimensional tissue 

engineering constructs. Based on the first approach, commercially available 

polydioxanone (PDS®) has been suggested for ACL replacement [111] . However, 

this material shows very fast degradation that can be a problem for this application. It 

has been reported that PDS loose the half of its tensile strength in about 4-6 weeks, 

whereas the process for replacements can take up to 12 months [112]. A similar 

problem has occurred when braided polyglycolide (Dexon®) ligaments were used for 

the replacement. For example, Cabaud et al. [113] used braided polyglycolide 

(Dexon®) ligaments, which showed 828N max. linear load at 22.6% strain, for the 

repair of ACL of dogs. Although they showed high initial strength, degradation time 

was not long enough to protect the repaired ligament. In a later study, Laitinen et al. 

[114] tested the mechanical properties of braided poly(L-lactide) implants in vitro and 

after subcutaneous implantation in rabbits. These implants have shown a better 

mechanical strength and slower degradation rate than PDS and PGA that would be 

advantageous for reconstruction of ACL. Within the last few years, biodegradable 

synthetic fibers have been formed into 3-D scaffolds for engineering of ACL. Cooper 

et al. have developed a new braiding procedure to create 3-D scaffolds with a 

desired pore diameter, porosity, mechanical properties and geometry from different 

polyesters, namely PLLA, PGA and PLAGA [115, 116]. Although PGA scaffolds have 

showed a highest tensile strength, they have supported lowest level of ACL cell 

attachment and growth compared to PLAGA and PLA due to their fast degradation 

time and released degradation product during cell culture. On the other hand, 

fibronectin coated PLLA scaffold have provide for a better cell viability than PGA and 

PLAGA and maintained their structural integrity and high mechanical properties over 

culturing period [115]. These results confirm that tissue engineering of ACL using 

fiber based scaffolds and ACL cells is a promising approach for ACL reconstruction.  
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4. Conclusions and Future Aspects 

Tissue engineering is a relatively new approach that purposes the regeneration of 

tissues by using stem/progenitor cells and scaffolds or artificial extracellular 

matrices. The design of an ideal scaffold still remains as a problem in most of the 

tissue engineering fields. Although it is specific for each tissue, it is generally agreed 

that biocompatibility, biodegradability, porosity and interconnectivity, as well as 

surface properties are main requirements for an ideal scaffold. Fiber-based 

architectures described in this review seem to be quite promising scaffolds in many 

different tissue engineering applications due to their highly porous and 

interconnected pore structures as well as mechanical strength and structural 

integrity, combined with a large surface area. However, there are still many issues to 

be addressed, including the choice of a proper material, the combination and 

diameter of fibers (distinct for different applications and cell sources), and scaffold 

geometry for each specific application.  
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               No amount of experimentation can ever prove me right;  
               a single experiment can prove me wrong.  
                                                                                    Albert Einstein 
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I. Materials: 

The materials used in the studies described in the present thesis were the 

following: 

A. Chitosan 

The chitosan used in the studies of the present thesis was a medium molecular 

weight with a deacetylation degree of 87%. It was obtained from Aldrich 

Chemical Co. 

Chitosan is a deacetylated derivative of chitin which is the second most 

abundant natural biopolymer after cellulose, being commonly found in shells of 

marine crustaceans and cell walls of fungi [1]. It is a linear polysaccharide, 

composed of glucosamine and N-acetyl glucosamine linked in a β(1-4) manner. 

(Figure 1). 

 

 

 

 

 

Figure 1. Chemical structure of chitosan  

The degree of deacetylation of chitosan refers to the ratio between 

glucosamine and N-acetyl glucosamine.  Depending on the source and 

preparation procedure, its molecular weight may range from 300 to over 

1000kDa with the degree of deacetylation from 30% to 95%. Chitosan is typically 

not soluble in aqueous solutions above pH 7. However, chitosan solutions can be 

obtained in dilute acids which protonates amino groups on glucosamine, 

rendering the polymer positively charged. Above the pH 6.2, the chitosan solution 

shows a gel-like precipitation due to the neutralization of free amine groups and 

the consequent removal of repulsive interchain electrostatic forces which allows 

for hydrogen bonding and hydrophobic interaction between chains. This 
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behaviour of the chitosan allows for the wet spinning (which is based on 

solution/precipitation) of the polymer  

B. Starch/Polycaprolactone Blend 

In the present studies, a starch/polycaprolactone (30/70 wt/wt) blend was used 

for the production of the fibers.  

Starch is a natural polymer which occurs widely in plants such as corn, 

potato and rice. It consists of two types of molecules, amylose and amylopectin 

(Figure 2). Amylose is a linear polymer and makes up about 20% wt of the 

starch. The other component, amylopectin, has a branched structure and made 

up about 80% of the starch. The relative proportions of amylose to amylopectin 

depend on the source of the starch [2].  

   

 

 

 

 

  

 

 

Figure 2. Chemical structure of starch.  

Starch is an inexpensive, totally biodegradable polymer found in a wide 

variety of environments and used in many industrial applications, mainly as a raw 

material for packaging. However, starch itself has poor mechanical properties 

and it is difficult to process. Moreover, pure starch articles and even those 

derived from the so-called thermoplastic starch (starch with disrupted granular 

structure), are usually brittle and moisture sensitive, thus strongly limiting their 

potential fields of application. To overcome this problem, starch can be blended 

with different polyesters such as polycaprolactone, polylactide, etc [3, 4]. 
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In the present studies, the synthetic part of the used blend was 

polycaprolactone which is a biodegradable polyester synthesized by a ring 

opening polymerization of a cylic lactone monomer (i.e. ε-caprolactone) (Figure 

3).  

 

 

 

 

Figure 3. Chemical structure of polycaprolactone.  

It is a hydrophobic and a semicrystalline polymer with a glass transition 

temperature about -60°C. High permeability of polycaprolactone to various 

substances makes it capable for long-term implantable drug delivery 

applications. However, it shows slower in vivo degradation than poly(α-hydroxy 

acids). It has been reported that the biodegradation rate of PCL can significantly 

increase in the presence of starch [5]. 

C. Bioglass® 

Bioglass® with a particle size of 5µm was supplied by US Biomaterials Corp. 

(Florida, USA), being used in biomimetic coating studies as a nucleation-inducing 

agent.  

II. Production Methods 

A. Wet Spinning 

Wet spinning is the oldest method of fiber spinning. This process is based on 

solution/precipitation. Basically, the polymer is dissolved in a suitable solvent. 

After passing through the spinneret, the solution enters into a coagulation bath. 

Either the bath reacts chemically to coagulate the polymer, or it draws out the 

solvent from the polymer stream so that the filament can harden. In most cases, 

the second liquid is aqueous. A main difference between wet spinning and either 
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melt or dry spinning is that one is spinning into a fluid with a much higher 

viscosity. Due to this higher viscosity, higher shearing stress occurs on fiber 

surfaces which introduce very high tension into the filaments. Figure 4 shows the 

schematic presentation of the production of wet spun fibers in large scale. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Schematic diagram of wet-spinning process. 

The extrusion may be out directly into the coagulating liquid or through a 

small air-gap. In the second case it is known as dry-jet wet spinning or air-gap 

wet spinning.   

Wet spinning method is mostly used to produce fibers from natural 

polymers, such as chitin and chitosan fibers which can not be formed by either 

melt or dry spinning methods. The strong inter-chain forces as derived from the 

hydroxyl, acetamido and amino groups, raise the melting point of chitin and 

chitosan to well above their thermal degradation temperatures. Therefore, melt 

spinning is typically not possible for chitin and chitosan. Besides that, these two 

natural polymers can only be dissolved in polar solvents which have high boiling 

points. As a consequence, dry spinning is also not practical for producing chitin 

and chitosan fibers.  

In the studies described in present thesis, the wet spinning technique was 

used to produce chitosan fibers and fiber mesh scaffolds, as well as SPCL fiber 
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mesh scaffolds. Figure 5 shows the schematic representation of the production of 

chitosan fibers and fiber mesh scaffolds.  

 

 

 

 

 

 

 

 

 

Figure 5. Shematic representation of the production of chitosan fibers and fiber 
mesh scaffolds.  

Briefly, chitosan was dissolved in aq. 2% (v/v) acetic acid solution in 5% 

(w/v) concentration at room temperature overnight. Methanol was added to dilute 

the viscous solution for easy injection until reaching 3% (w/v) final concentration. 

Glycerol was used as a plasticizer (2.5% (w/w)). After filtration with a cloth filter, 

the solution was placed in an ultrasonic bath to remove the air bubbles. The clear 

solution was injected into a coagulation bath (30% 1N Na2SO4, 10% 1N NaOH 

and distilled water) by using a syringe pump (Word Precision Instruments, UK). 

The formed fibers were kept in this coagulation medium for one day and then 

washed several times with distilled water. In the case of chitosan fibers, they 

were suspended in an aq. 30% methanol for 4-5h and subsequently in aq. 50% 

methanol overnight. The filaments are then the wounded onto a cylindrical mould 

and dried at room temperature. In order to obtain fiber meshes, the suspended 

fibers were treated with aq. 50% methanol and 100% methanol for 1 and 3 h 

respectively. The fibers were then put in a plastic cylindrical mould and dried at 

60°C overnight.  

The fiber mesh scaffolds from SPCL were also prepared by wet spinning 

technique. In this case, the polymer solution with a high viscosity (40% (w/v)) 
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was prepared by dissolving SPCL in chloroform. The homogenous polymer 

solution was subsequently extruded into the coagulation bath containing 

methanol. The high viscosity of the polymer solution and high extrusion rate were 

chosen to provide the fall of the polymer solution stream to the bottom of the 

bath. This approach allowed to form 3-D scaffolds in the bottom of the 

coagulation bath by means of a random movement. The scaffolds were kept in 

the bath until coagulation is completed and dried at room temperature to remove 

the remaining solvents 

B. Electrospinning 

Electrospinning is another fiber processing method which allows to obtain 

submicron size fibers (below 3nm) from a polymer solution or melt. This process 

is based on an electrostatic potential (typically up to 30kV) that is applied 

between a spinneret and a collector [6]. Both the spinneret and the collector must 

be electrically conductive and separated at a distance of around 10-25cm. In a 

typical electrospinning process, a fluid is slowly pumped through the spinneret. 

This fluid is usually a solution, whereby the solvent can evaporate during the 

spinning process. The spinning of the polymeric melt is more complicated due to 

the fast solidification process under a dynamic spinning condition at high 

temperatures and usually does not allow for the forming of uniform submicron-

sized fibers. The electrical charge is subjected to the spinneret tip that contains 

the fluid droplet held by its own surface tension. As the intensity of electrical 

charge increases, the polymer droplet becomes as a conical shape, known as 

the Taylor cone [7]. When the surface tension of the fluid can be overcome, the 

droplet becomes unstable and charged jet fluid is ejected from the tip. This 

charged jet then goes to a stretching process that leads the formation of nano-

size fiber by evaporation of the solvent. In the case of polymer melt the 

discharged jet solidifies during the travel in the air.  The final fiber diameter 

depends on various parameters, including applied voltage, the distance between 

the tip and the collector, used solvent, concentration of the polymer solution, etc 

[8]  
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In the present thesis, electrospinning was used for the development of 

nano- and micro-fiber combined scaffolds as described in detail in Chapter VI. In 

brief, the polymeric solution with a concentration of 10% was prepared by 

dissolving starch/polycaprolactone (SPCL, 30/70) in a solvent system consisting 

of chloroform and dimethylformamide (DMF) with a ratio of 7/3, respectively. 

Dimethylformamide was used to enhance the conductivity of the polymer solution 

for this process. Electrospinning apparatus used in the study is presented 

schematically in Figure 6. 

 

 

 

 
 
 

 

Figure 6. Experimental set-up for electrospinning of SPCL nano-fibers onto SPCL 
micro-fiber meshes. 

The polymer solution was vertically placed in a simple capillary tube. 

SPCL scaffolds produced by fiber bonding method were put onto a special 

design metal collector which is movable through the electrospun polymeric jets. 

The distance between the tip of capillary and collector was adjusted to 10 cm. A 

high voltage of 15kV was applied by a high voltage supplier (Gamma High 

Voltage, USA) for 10s. The time was selected by considering the proportion 

between the spinning time and the amount of electrospun nano-fibers. The final 

constructs were allowed to dry overnight at room temperature. 

C. In vitro Bioactivity Testing and Biomimetic Coatings 

C. 1. In vitro Bioactivity 

In vivo bioactivity of a material can be predicted by assessing the bone-like 

apatite formation on its surface in simulated body fluid (SBF) in vitro. The 



 37

bioactivity test for the chitosan fibers was carried out with the use of standard in 

vitro procedure described by Kokubo et al. [9]. The ion concentrations of SBF 

solution used in this study were similar to human blood plasma as presented in 

Table 1.  

 

Table 1. Ion concentrations of human blood plasma and SBF. 

Solution                                           Concentrations (mM) 

                              Na+      K+      Ca +     Mg2+      Cl-      HCO3-     HPO42-     SO42- 

Human plasma     142       5        2.5       1.5        103         27         1.0           0.5 

SBF (1.0x)            142       5        2.5       1.5        142.8     4.2         1.0           0.5 

 

In order to perform the bioactivity test, chitosan fibers were immersed in 

SBF solution and incubated at 37°C during 30 days. The fibers were removed 

and washed carefully with distilled water at different time intervals (3, 7, 14, 30 

days). They were then dried at room temperature before analysis.  

C. 2. Biomimetic Coating 

When a material is not bioactive or showing delayed bioactivity, a biomimetic 

coating approach can be used to obtain a bone-like apatite layer on its surface 

before in vivo implantation. Different functional groups can be introduced on to 

the materials surfaces, such as Si-OH, Ti-OH and carboxyl or carboxylate [10]. In 

the present thesis, Bioglass® was used to introduce functional Si-OH groups on 

the chitosan fiber mesh scaffolds.  

Regarding the biomimetic coating experiments, an innovative and simple 

Bioglass® spraying method was developed in order to obtain Ca-P layers on the 

scaffolds. The spraying approach was chosen to have a homogenous distribution 

of the Bioglass® particles on the complex fiber mesh structure. Figure 7 presents 

schematically the experimental procedure followed in this study. In brief, the 

Bioglass® particles were suspended in ultra-pure water and the suspension was 

placed into a simple container with a spray. The chitosan scaffolds were wet with 
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this suspension in all sides and dried under air flow before immersion in SBF(x) 

solution in polyethylene tubes at 37°C. The solution and the tubes were renewed 

the following day. After 7 days of immersion, the samples were removed from the 

solution, washed several times with distilled water and dried at room temperature 

before analysis.  

 

 

 

 

 

Figure 7. Schematic representation of a novel biomimetic coating process using 
Bioglass/water suspension. 
 

The mechanism of Ca-P formation by this method is given in Figure 8.  

 

 

 

 

Figure 8. The mechanism of Ca-P formation on chitosan fiber meshes immersed 
in SBF solution after Bioglass spraying. 

D. Plasma Treatment 

Plasma treatment, using different inert gases or monomers, is one of the most 

commonly used techniques for surface modification of the materials. As it is 

discussed in Chapter V, Ar plasma treatment was applied to wet-spun SPCL fiber 

mesh scaffolds to enhance the cell attachment and proliferation capability on 

them. The plasma reactor (Gala Instrument GmbH, Germany) used in this study 

allows for a fully automated process and has a control reactor with a chamber 
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size of 15 cm diameter and 31 cm length (5L). The scaffolds were hanged onto a 

metal wire with a distance of 1cm between them and then placed into the 

chamber. The air present in the system was first displaced with argon, by 

flushing argon through the reactor. The outlet was then closed, and the reactor 

was filled with argon with a controlled pressure of 0.18 mbar. The power of the 

plasma was set at 30W and the scaffolds were exposed to plasma for 15 min. In 

the end of this period, they were kept at ambient conditions before using in 

further studies. 

III. Characterization Methods for the Developed Structures: 

A. Morphology  

Morphologies of the scaffolds developed in the studies were analyzed under an 

optical microscope and a scanning electron microscope (SEM). In order to 

examine the nanofiber amount and distribution on the developed nano- and 

micro-fiber combined scaffolds, both sides of the samples were observed under 

an optical microscope (Olympus, MIC-D). Light transmission microscopy images 

were taken for HA/chitosan multichannel structures in order to see the placement 

of the components within the structure. SEM (Leica Cambridge S360 

microscope) was used for all developed scaffolds to analyze the overall structure 

as well as the surfaces. All the samples were sputtered coated with gold and the 

analysis were performed at an accelerating voltage 15 kV and magnifications 

between 15-5000 times. 

In the case of wet spun starch-based fiber meshes, a µCT imaging system 

(µCT40, Scanco Medical AG, Bassersdorf, Switzerland) with a nominal resolution 

of 12 µm was also used to determine the mean pore size, total porosity, surface-

to volume ratio, mean fiber diameter of the wet-spun SPCL fiber mesh scaffolds. 

The reconstructed images were filtered using a constrained 3D Gaussian filter to 

partially suppress noise in the volumes (σ = 1.2 voxel, support = 1 voxel), and 

binarized using a global threshold. Standard 3D morphometry as developed for 

trabecular bone was used to assess structural parameters for the scaffolds. Pore 
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size and fiber thickness were determined using the distance transformation 

method. In this method, each pore (fiber) is filled with a non-redundant set of 

maximal spheres. Mean pore (fiber) size was then calculated as the volume-

averaged diameter of all spheres making up the pore (fiber).  

B. Surface Analysis 

B. 1.  Energy Dispersive Spectroscopy (EDS):  

Energy Dispersive Spectroscopy (EDS) is an analytical technique that is used to 

identify the elemental composition of the specimen. It is based on utilization of x-

rays that are emitted from the specimen when bombarded by the electron beam 

of SEM. In the present thesis, EDS technique was employed to determine Ca 

and P elements on the surface of the samples after either bioactivity test or 

biomimetic coating. All the samples were coated with carbon by ion sputtering 

before analysis.  

B. 2.  Fourier Transform Infrared Attenuated Total Reflectance 
Spectroscopy (FTIR-ATR): 

Fourier transform infrared attenuated total reflectance spectroscopy (FTIR-ATR) 

was used to evaluate the presence of Ca-P bioactive layer on chitosan fiber 

mesh scaffolds after biomimetic coating. FTIR spectra were recorded at least at 

32 scans with a resolution of 2cm-1 in a FTIR spectrophotometer (Perkin Elmer 

System 1600) with an attenuated total reflectance device from SPECAC (MKII 

Golden Gate, diamond crystal, penetration depth 20µm, active area 0.8 mm2).  

B. 3.  Thin film X-Ray Diffraction (TF-XRD) 

X-ray diffraction technique (XRD) is used to provide information on structure, 

phases, crystal orientation and other structural parameters such as crystallinity, 

strain, and crystal defects for the crystalline materials. In this thesis, TF-XRD 

(Philips X'Pert MPD, The Netherlands) was utilized for identifiying the crystalline 

phases present, and characterizing the crystalline/amorphous nature of the 
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formed Ca-P layer on chitosan fiber mesh scaffolds after biomimetic coating. The 

data collection was performed by 2θ  scan method with 1º as incident beam 

angle using CuKα X-ray line and a scan speed of 0.05º/min in 2θ. 

B. 4. X-Ray Photoelectron Spectroscopy (XPS) 

XPS is used in major and minor elemental identification and chemical bonding 

information at the surface. It provides information about elemental composition of 

the surface approximately the top 100 Å. 

 In Chapter V, XPS analysis was performed to determine the chemical 

changes on the surface of SPCL wet-spun fiber mesh scaffolds after plasma 

treatment, using an 250 iXL ESCA instrument (VG Scientific) equipped with two 

X-Ray sources: a source with Al Ka1,2 monochromatized radiation at 1486.92 eV 

and another one (Dual) equipped with two anodes: Mg and Al. Further details of 

the analysis are discussed in Chapter V.  

C. Inductively Coupled Plasma- Optical Emission Spectroscopy (ICP-OES) 

One possible way to follow Ca-P layer formation during bioactivity test is to 

measure the changes in Ca and P ion concentration of SBF solution. In the case 

of bioactivity test for chitosan fibers, the immersion solutions were analyzed after 

each time interval by Inductively Coupled Plasma- Optical Emission 

Spectroscopy (ICP-OES, JY 70 plus, Jobin Yvon, France).   

D. Swelling test 

The swelling ratios of samples were determined in 0.154M NaCl aqueous 

isotonic saline solution (pH=7.4) at 37°C. The immersed samples were taken out 

from the solution at various time intervals, and wet weight of the samples were 

determined by blotting them with filter paper to remove the excess water on the 

surface  and then immediately weighing on an analytical balance. The 

experiment was continued until reaching of an equilibrium value. The equilibrium 

swelling percentage of samples was calculated as follows: 
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S%= (mw-mi)/mi x 100 

where S% is the percentage of swelling, mw  donates the swollen weight of the 

samples and mi is the initial weight of the sample. Five samples were used for 

each experiment and the average values were taken as the swelling percentage.  

E. Mechanical Analysis 

E. 1. Tensile test 

The stress-strain curve of developed chitosan fibers was recorded on a Universal 

Mechanical Testing machine (Lyloyd Instruments, LR %K Serensworth Fareham, 

England) at room temperature and under room humidity. The measurements 

were performed with a 500N load cell. The crosshead speed and the gauge 

length were set to be 20mm/min and 20mm, respectively. Average values of 

tensile strength and maximum strain were determined after repeating the test for 

five samples. 

E. 2. Dynamical Mechanical Analysis (DMA) 

Dynamical Mechanical Analysis (DMA) provides information about the stiffness 

and damping properties of the materials. DMA is the most sensitive technique for 

monitoring relaxation event as the mechanical properties change dramatically 

when relaxation behaviour is observed. 

In the present thesis, this technique was used to analyze short-time swelling, 

creep and rheological behaviour of chitosan fiber mesh scaffolds. All the 

experiments were carried out while the samples were in an isotonic saline 

solution in a DMA7e Perkin-Elmer apparatus, in compression mode, using 

parallel plates with 10mm diameter. The details for each kind of measurements 

are given in Chapter III. 
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IV. In Vitro Cytotoxicity and Cell Culture Studies 

A. Cell type 

A.1. Cell lines: Mouse lung fibroblast cell line (L929) and a human 
osteoblast-like cell line (SaoS-2) 

Cell lines can be easily maintained in culture and employed in the experiments 

which are conducted outside of the living system or the host body. In the present 

studies, mouse lung fibroblast cell line (L929) was selected for use in cytotoxicity 

tests. Cell culture studies on the developed scaffolds were performed by using a 

human osteoblast-like cell line (SaoS-2).   

A. 2.  Rat Bone Marrow Stromal Cells (isolation) 

Although the cell lines are quite useful to test the tissue engineering scaffolds in 

vitro, they have major limitations for the use in vivo. The use of primary cells 

appears to be a more realistic approach for tissue engineering.  

Based on this fact, rat bone marrow stromal cells were also used in some part of 

the cell culture studies. Rat bone marrow stromal cells were isolated from 4 

weeks-old male Wistar rats (Charles River, Spain). Surgical procedure was as 

follows: The rats were euthanized by placing them in a plastic bag in CO2  

atmosphere. Their femurs and tibia were excised under aseptic conditions and 

washed within α-MEM (Eagle, Sigma, St. Louis, MO) containing 10 times more 

amount of normal antibiotics concentrations. Soft tissues were removed from the 

bones and their epiphyses were cut off and the marrow residing in the midshaft 

was flushed out with 5ml of complete medium (α-MEM containing 10% foetal 

bovine serum (FBS, Biochrome), 50 µg/ml ascorbic acid (Sigma), 50 µg/ml 

gentamycin, 1% antibiotics, 100mM β-glycerolphosphate (Sigma) and 10-8 M 

dexamethasone (Sigma) using a syringe and collected in a 50 ml sterile 

centrifuge tube. Then, the cells were put in a culture flask and cultured at 37°C in 

a humidified atmosphere containing 5% CO2. These primary cultures were 

incubated for 2 days. After 2 days of incubation, hematopoietic and other 
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unattached cells were removed from the flasks by repeated washes with PBS 

and the complete medium of the flasks was renewed every other day until 

reaching confluency.     

B. Indirect Cytotoxicity Evaluation 

Cytotoxicity test is a first step towards screening the biocompatibility of a 

biomaterial. Indirect cytotoxicity tests are a rapid, standardized, sensitive, and 

inexpensive method to determine whether a material contains significant 

quantities of biologically harmful extracts. 

In the present thesis, a mouse lung fibroblast cell line (L929) was used in 

the cytotoxicity assessment to comply with the ISO/EN 10993-5 standard test 

method [11].  This standard test method is based on exposing the cells to the 

fluid extract of the test material and control materials. Ultra High Molecular 

Weight Polyethylene (UHMWPE) and latex rubber were used as negative and 

positive control, respectively. The extracts were obtained by placing the test and 

control materials (n=3) in cell culture medium (2.5cm2/ml or 0.2/ml) for 24 hours 

at 37°C under constant agitation.  In the end, the extract fluids were filtered 

(45µm of pore size). Each fluid extract obtained were then applied to cultured-cell 

monolayer, replacing the medium that had nourished the cells to that point, and 

incubated for 72h at 37°C in a humidified atmosphere containing 5% of CO2.  

Cells were then observed morphologically under a light microscope in response 

to the test and control materials’ extraction fluids. A score for confluency of the 

monolayer, degree of floating cells and change of cellular morphology was then 

calculated based on the values given in Table 1.  
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Cytotoxic Response Reactivity Pass/Fail 

0-1 None Pass 

1-3 Slight Pass 

3-5 Mild Retest 

5-7 Moderate Fail 

7-8 Severe Fail 

Table 2. Quantitative and qualitative scores used in the cytotoxicity tests. 

 

 

In the end of the test, cells were trypsinized and the percentage of growth 

inhibition was determined through trypan blue exclusion test. The final cytotoxic 

indexes of the samples were then obtained by combining all the scores. The 

scores used in the test are given in Table 3.  

 

Table 3. Different cytotoxicity indexes used to classify the reactivity of tested 
samples. 
 
 
 
 
 
 
 
 
 
 

Score 
Confluency  

(%) 

Floating cells 

(%) 

Change of cellular 
morphology 

Inhibition of cell 
growth 

 (%) 

0 100 0 No changes during 
test period 0-10 

1 90-100 0-5 Slight changes, few 
cells affected 10-30 

2 60-90 5-10 
Mild changes, some 
cells round/spindle 

shaped 
30-50 

3 30-60 10-20 
Moderate changes, 

many cells 
round/spindle 

50-70 

4 0-30 > 20 

Severe changes, 
about all cells show 

morphological 
changes 

70-100 
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C. Cell seeding and culture on the developed scaffolds  

In order for a scaffold to be considered successful, it should support to cells 

which are already seeded into the scaffolds prior the implantation, as well as the 

cells that might migrate into the scaffolds from the host.  

 To evaluate the cell supporting ability of the scaffolds developed in this 

thesis, a direct contact method was used. The parameters for the different 

scaffolds were given in Table 4. All the scaffolds were incubated with a culture 

medium without serum overnight prior to cell seeding. The determined number of 

cells was suspended in a low amount of culture medium (50-300µl) and the 

suspension was then dropped over the scaffolds carefully. After 1.5h incubation, 

1-3 ml (depending on the culture well used) of medium was added up to each 

well. All the experiments were performed at 37°C with 5% CO2 in humidified 

atmosphere with medium changes every 2-3 days.  

 

Table 4. The parameters used in cell culture experiments for different scaffolds. 

 

 

 

Scaffold Dimensions Cell type
Number of 

cells seeded 
per scaffold 

Culture Medium Culturing time 
intervals (days) 

SPCL 
 nano- and 
micro- fiber 
combined  

φ= 0.8cm, 
h= 1.5 mm 

 
 
SaOs-2 
 
 
 
 
 
RBMSc 
 

 
 

 
 
    3x105 

 
 

 
 
 
    3x105 

 
DMEM low glucose 

with 10% FBS, 
1%antibiotics/antimicotics 
 

α-MEM 
with 10% FBS, 

1%antibiotics/antimicotics 
10-8 dexamethasone, 

10mM βglycerophosphate 
 

7 and 14 
 
 
 
 
 

7 and 14 
 
 
 

Ca-P coated 
chitosan fiber 

meshes 

φ= 1 cm, 
h= 1 cm SaOs-2 2x106 

DMEM low glucose  
with 10% FBS, 
1%antibiotics/antimicotics 

14 and 21 

Wet-spun 
SPCL fiber 

meshes 

φ= 0.8 cm, 
h= 1mm  SaOs-2 3x 105 

DMEM low glucose  
with 10% FBS, 
1%antibiotics/antimicotics 

7 and 14 
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D. Characterization 

D. 1. Cell Morphology 

The morphology of the cells cultured on the developed scaffolds were examined 

with scanning electron microscopy (SEM, Leica Cambridge S360) at 15 V. After 

each time interval, cell/scaffold constructs were fixed with 2.5% glutaraldehyde 

for 30 min and washed excessively with PBS. They were then dehydrated 

through graded series of ethanol, dried and mounted onto brass stubs. Before 

the analysis, all the samples were sputtered coated with gold.    

D. 2. Cell viability and proliferation 

D. 2. 1. MTS 

MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymetyhoxyphenyl)-2(4-sulfophenyl)-

2H tetrazolium) is a substrate that is converted by NADPH or NADP produced by 

dehydrogenase enzymes in metabolically active cells to yield a brown formazan 

product . The intensity of the colour is directly related to the number of viable 

cells, and thus their proliferation in vitro. Cell viability on the scaffolds after 

different time intervals was determined by using Cell Titer 96® Aqueous One 

Solution Cell Proliferation Assay kit (Promega, USA). According to the standard 

procedure, the triplicates of the samples were washed with sterile PBS and 

placed in new culture wells. Fresh medium without phenol red and MTS reagent 

were added to each well in 5/1 ratio. The reaction was carried out by incubating 

the cell/scaffold constructs with this medium for 3h at 37°C in a humidified 

atmosphere containing 5% of CO2.  In the end of the reaction, 100 µl of incubated 

medium was transferred to 96-well plate and optical density was read at 490nm 

in a micro-plate reader (Synergy HT, Bio-tek). The results are expressed as the 

average absorbance of triplicate samples.     
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D. 2. 2. DNA 

DNA assay is one of the most used measurements to evaluate cell proliferation 

by quantifying DNA content of cells cultured on the scaffolds. In order to 

determine the cell proliferation on wet-spun SPCL fiber mesh scaffolds, 

PicoGreen dsDNA kit (Molecular Probes, USA) was used. PicoGreen dsDNA 

Quantitation Reagent is an ultra-sensitive fluorescent nucleic acid stain for 

quantitative analysis of double-stranded DNA (dsDNA) in solution. 

For the assay, the samples were prepared by rinsing with sterile PBS and 

incubated with sterile ultra pure water at 37°C for 1h. They were then frozen at -

80°C and thawed.  Before starting the assay, they were sonicated 15min in an 

ultrasonic bath. An aliquot of each sample was transferred to the 96-well plate. A 

certain ratio of Tris-EDTA buffer and PicoGreen reagent prepared in the same 

buffer was added to the each well. The fluorescence was read at 485nm and 

528nm excitation and emission, respectively. The DNA amount of each samples 

was then calculated using a standard curve.  

D. 3. ALP Enzyme Activity 

Alkaline phosphatase, an ectoenzyme produced by osteoblasts, is believed to 

involve in the degradation of inorganic pyrophosphate to provide a sufficient local 

concentration of phosphate or inorganic pyrophosphate for mineralization to 

proceed. Among the various biological functions of osteoblasts, secretion of 

alkaline phosphatase (ALP) is an important indicator determining the activity of 

the cells on a scaffold.  

In order to determine the extent of osteoblast phenotype expression, 

amount of alkaline phosphatase produced by the cells were determined. ALP 

activity of the cultured cells on the scaffolds was analyzed by either in weekly 

collected supernatant (culture medium) of the samples or lysed cells. In both 

experiments, the enzyme activity determination was based on the specific 

conversion of p-nytrophenyl phosphate (pNPP) into p-nytrophenol (pNP).   
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To determine the activity of the secreted enzyme in the culture medium, 

supernatants were collected at each time point and frozen at -80°C until further 

analysis. For the assay, the collected supernatant were thawed and mixed with 

substrate solution (0.2% w/v p-nytrophenyl phosphate (pnPP) in 1M 

diethanolamine HCl (pH=9.8)) at the ratio of 1/3. The enzyme reaction was 

carried out by incubation of the mixture at 37°C for 1h and then stopped by 

adding a solution containing 2M NaOH and 0.2mM EDTA in distilled water. The 

final mixture was vortexed and dispensed in a 96 well-plate. The absorbance of 

p-nytrophenol formed was measured at 405nm. A standard curve was made 

using pNP values ranging from 0-600µmol/ml. The results were expressed in 

µmol of pNP produced/ml/h. 

The ALP activity could also be measured in lysed cells. In this case, the 

determined enzyme is the one which is present in cells at the moment of the test. 

For this assay, scaffolds seeded with cells were washed three times with PBS 

and transferred into an eppendorf containing ultra pure water.Then, the samples 

were frozen and thawed, and sonicated for 15 min . The same reaction 

procedure was followed. Briefly,  an aliquot of 50 µL of each sample was added 

to 150 µL of p-nitrophenyl phosphate solution at room temperature in the well of 

a 96-well plate and incubated for 1h at 37 oC in the incubator. The absorbance of 

p-nytrophenol reduced in the presence of alkaline phosphatase was measured at 

405nm. Calibration curve of p-nitrophenol at 37oC is used to determine the 

enzyme activity in units of µmol substrate converted to product per hour.  
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The best scientist is open to experience and begins with 
romance - the idea that anything is possible.  

Ray Bradbury 
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Chapter III 

PRODUCTION AND CHARACTERIZATION OF CHITOSAN FIBERS AND 3-D 
FIBER MESH SCAFFOLDS FOR TISSUE ENGINEERING APPLICATIONS 
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Abstract 

This study reports on the production of chitosan fibers and 3-D fiber meshes for using 

as tissue engineering scaffolds. Both structures were produced by means of a wet 

spinning technique. Maximum strain at break, and tensile strength of developed 

fibers were found to be 8.5%, 204.9 MPa, respectively. After 14 days of immersion in 

simulated body fluid (SBF); scanning electron microscopy (SEM), energy dispersive 

spectroscopy (EDS), and inductively-coupled plasma emission (ICP) spectroscopy 

analyses showed that a bioactive Ca-P layer was formed on the surface of the fibers, 

meaning that they exhibit a bioactive behaviour. The samples showed around 120% 

max. swelling in physiological conditions.  

The pore sizes of 3-D chitosan fiber mesh scaffolds were observed to be in 

the range of 100-500µm by SEM. The equilibrium-swelling ratio of the developed 

scaffolds was found to be around 170% (w/w) in NaCl solution at 37°C. Besides that, 

the limit swelling strain was less than 30%, as obtained by mechanical spectroscopy 

measurements in the same conditions. The viscoelastic properties of the scaffolds 

were also evaluated by both creep and dynamic mechanical tests.  

By means of using short-term MEM extraction test both types of structures 

(fibers and scaffolds) were found to be non-cytotoxic to fibroblasts. Furthermore, 

osteoblasts directly cultured over chitosan fiber mesh scaffolds presented good 

morphology and no inhibition of cell proliferation could be observed.  
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1. Introduction 

Tissue engineering needs the development of better polymeric scaffolds, which 

among other characteristics should be biodegradable and biocompatible. The 

scaffolds can be applied simultaneously as a carrier matrix for bioactive agents and 

as a support to seed primary undifferentiated cells. A number of natural [1-3] and 

synthetic polymers are currently in use as tissue scaffolds [4]. Depending on the 

applications, scaffolds can be presented in different forms, such as for instances 

membranes, and several types of 3-D architectures. Within the last years, non-woven 

mesh-like scaffolds have been started to be used in tissue engineering applications 

due to their highly porous structures. Polyglycolide (PGA) [5, 6], 

polylactide/polyglycolide (PLA/PGA) [7], and chitosan meshes [8] have been used as 

a scaffold for different tissue engineering applications. 

Chitosan, a (1→4)-2-amino-2-deoxy-β-D–glucose, is derived from chitin, which 

is found in the exo-skeleton of shellfish like shrimp or crabs. Because of its stable, 

crystalline structure, chitosan is normally insoluble in aqueous solutions above pH 7. 

However, in dilute acids, the free amino groups are protonated and the molecule 

becomes fully soluble below pH 5 [3]. Viscous solutions can be formed into fibers in 

different coagulation solution with high pH, such as aq. NaOH [9], aq. KOH [10], aq. 

NaOH-40% methanol [11], and aq. NaOH-NaSO4 (or AcONa) mixture [12]. Chitosan 

fiber forming properties have been investigated by several researchers [13]. A 

number of methods have been tried in order to produce chitosan fibers with good 

mechanical properties [10, 14, 15].   

Chitosan is a well known natural polymer that is biodegradable, biocompatible 

and nontoxic [16]. It has been shown [3, 17] to aggressively bind to a variety of 

mammalian and microbial cells. Binding on cells and biodegradability of chitosan may 

lead to a variety of biomedical applications such as wound dressing [18], carriers for 

drug delivery systems [19, 20] and space filling implants [21, 22]. Recent studies of 

chitosan confirm the utility of chitosan for promoting the bone growth [23, 24]. 

Muzzarelli et al. [23] reported the formation of mineralized bone-like tissue in 

osseous defects in rats, sheep and dogs when using chitosan plugs. 

In the present study, chitosan fibers were produced for being used 

subsequently to process tissue engineering scaffolds. The developed scaffolds 
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should ideally combine an adequate porous structure with proper mechanical and 

degradation properties. Furthermore, this study aimed for the analysis of this 

materials cytotoxicity as a first screening of its biocompatibility by means of using 

mouse fibroblast (L929) and human osteoblast (SaOs-2) cell lines. 

2. Experimental 

2.1. Materials 

Medium molecular weight chitosan with an 85% degree of deacetylation was 

obtained from Sigma-Aldrich. All other chemicals were analytical grade and used as 

received. 

2.2. Methods 

2.2.1. Chitosan fiber preparation 

Chitosan fibers were produced by a wet spinning method as described elsewhere 

[12]. In a typical procedure; chitosan was dissolved in aq. 2% (v./v) acetic acid in 5% 

(w./v) concentration by stirring at room temperature overnight. The solution was 

diluted with methanol to reach 3% (w./v) final solution concentration. Glycerol at 2.5% 

wt/wt concentration was added into this solution as a plasticizer. The solution was 

filtered through a cloth filter and put in ultrasonic bath to remove the air bubbles. The 

solution was injected into a coagulation bath at 40°C containing a mixture of 30% 0.5 

M Na2SO4, 10% 1M NaOH and 60% distilled water. The fibers were kept in this 

coagulation medium for one day and washed several times with distilled water. They 

were then suspended in aq. 30% methanol for 4/5 h and then in aq. 50% methanol 

overnight. The chitosan filaments were wounded on the cylindrical support. The 

fibers were dried at room temperature/humidity conditions for one day. 
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2.2.2. Chitosan fiber meshes preparation 

A similar production method was used to produce 3-D chitosan fiber meshes. 

However, a different drying method and a thinner needle were used. After fibers were 

formed in coagulation medium at room temperature, they were kept in this solution 

overnight. The fibers were then washed several times with distilled water before 

being suspended in 50% methanol for 1h. Then they were suspended 100% 

methanol for 3h and put in the oven at 55°C for drying in a mould.  

2.3. Characterization 

2.3.1. Chitosan fiber 

Scanning Electron Microscopy 

The morphology of fibers was visualized by Scanning Electron Microscopy (SEM) in 

a Leica Cambridge S360 microscope. Samples were sputter coated with gold. 

Mechanical Properties 

Tensile tests were performed on a Universal Test Machine (Lyloyd Instruments, LR 

%K Serensworth Fareham, England), with a 500N load cell, using a cross-head 

speed of 20mm/min and a gauge length 20mm. Average values of tensile strength 

and maximum strain were determined after repeating the test five times. 

Swelling Tests  

Swelling behaviours of fibers have been investigated in 0.154M NaCl aqueous 

isotonic saline solution at pH=7.4. Fibers with different glycerol ratios were used, in 

order to observe the effect of glycerol on swelling ratio. The samples were immersed 

in the solution, taken out from it at various time intervals, and then weighted with an 

electronic balance. The experiment was continued until samples reach the 

equilibrium. Swelling degree was calculated according to the following equation: 

 

%S = (mw – mi) / mi x 100 
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where %S is the percentage of swelling, mw is the weight of the wet sample after 

immersion in the NaCl solution.  

Bioactivity Tests 

Chitosan fibers were immersed in 15 ml simulated body fluid (SBF) in a plastic bottle 

at 37°C. SBF solution was proposed initially by Kokubo et al [25], present an ionic 

composition similar to human blood plasma, and has been widely used [26, 27] to 

test the bioactivity of different materials in-vitro. After various periods of incubation (3, 

7, 14, 30 days) in SBF, samples were removed from the solution, washed carefully 

with water and dried at room temperature in a desiccator. The apatite formation on 

the fiber surface of a calcium-phosphate film was visualized by SEM (Leica 

Cambridge S360). EDS spectra were obtained after the observation. Changes in 

concentration of calcium and phosphorus of SBF solution due to soaking of fibers 

were measured using inductively-coupled plasma emission (ICP) spectroscopy. 

Cytotoxicity: Short Term MEM Extraction Test using Fibroblast Cells 

To establish the cytotoxic rate of leachables, a MEM Extract test, a cytotoxicity test 

laid down in European and International standards (ISO/EN 109935 Guidelines) was 

performed [28]. For this assay, a cell line of mouse lung fibroblasts (L929) was 

selected. Growth to confluency was performed in controlled atmosphere (37ºC, 5% 

CO2, 100% humidity) using Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma), 

supplemented with 10% Foetal Bovine Serum (FBS, Biochrome) and 1% 

antibiotic/antimicotic solution (Sigma). In order to achieve 80% of confluency, cells 

seeded in cell culture polystyrene plates (10 000 cells/cm2) were incubated for 24h. 

According to ISO/EN 109935 Guidelines, surface area of the different samples was 

determined and immersion in the correspondent cell culture media volume was 

performed (37ºC, 60 rpm). The same procedure was carried out for a negative 

control Ultra High Molecular Weight Polyethylene (UHMWPE), and positive control 

Latex Rubber. After 24 hours, fibroblasts were morphologically analysed, and culture 

media was replaced by the extraction one. Test samples and controls were incubated 

in triplicate (n=3). After 24, 48 and 72 h testing, the reaction of cells to extracts was 

evaluated by means of light microscopy and compared to the positive control and 
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negative control. A score for confluency of monolayer, degree of floating cells and 

changes in cellular morphology was calculated based on the scores posted on Table 

1. In the end of the test, cell number was measured and the percentage of cell 

growth inhibition determined. By means of combining the different quantitative and 

qualitative parameters scores, the obtained cytotoxic index defines if samples fail or 

pass the cytotoxicity test (used scores can be seen in Table 2). 

Table 1. Quantitative and qualitative scores used in the cytotoxicity tests. 

 

Table 2. Different cytotoxicity indexes used to classify the reactivity of tested 

samples. 

 

 

 

 

 

 

 

Cytotoxic Response Reactivity Pass/Fail 

0-1 None Pass 

1-3 Slight Pass 

3-5 Mild Retest 

5-7 Moderate Fail 

7-8 Severe Fail 

Score 
Confluency  

(%) 

Floating cells 

(%) 

Change of cellular 
morphology 

Inhibition of cell 
growth 

 (%) 

0 100 0 No changes during 
test period 0-10 

1 90-100 0-5 Slight changes, few 
cells affected 10-30 

2 60-90 5-10 
Mild changes, some 
cells round/spindle 

shaped 
30-50 

3 30-60 10-20 
Moderate changes, 

many cells 
round/spindle 

50-70 

4 0-30 > 20 

Severe changes, 
about all cells show 

morphological 
changes 

70-100 
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2.2.2. Chitosan fiber meshes: 

Scanning Electron Microscopy 

The mesh structure of chitosan fibers was analysis by Scanning Electron Microscopy 

(Leica Cambridge S360) again after coating with gold. 

Mechanical Properties 

Short-time swelling, creep and dynamic mechanical analysis (DMA) experiments 

were carried out in a DMA7e Perkin-Elmer apparatus, in the compression mode, 

using parallel plates with 10 mm diameter. The analysed samples, with cylindrical 

shape, were typically 2 mm high. All experiments were performed while the samples 

were immersed in an isotonic saline solution. In order to implement such runs, a 

metallic cylindrical vessel was fitted into the inner part of the furnace of the 

apparatus. The vessel was filled with isotonic saline solution. The calibration of the 

force was performed with the top plate immersed, in order to take into account the 

impulsion effect of the solution. Before the runs have been carrying out on the 

samples, the temperature of the bath was stabilised at 37 ºC, using the own 

temperature sensor of the apparatus. 

The short-time monitoring of the swelling of the studied mesh was carried out 

using the thermal mechanical analysis (TMA) mode of the Perkin-Elmer dynamic 

mechanical analysis (DMA) apparatus. Briefly, the temperature of the dry sample is 

kept at 37 ºC in an external furnace, near the DMA equipment. The sample is quickly 

positioned between the plates and the furnace with the bath is immediately raised up. 

The height of the sample starts to be recorded less than 10 seconds after the sample 

contacts with the liquid. During the experiment a small stress of 10 Pa is imposed to 

the sample by the top plate, in order to maintain the contact between the sample and 

the plates. 

In the creep experiments, previously swelled samples are positioned between the 

plates and immersed until the temperature equilibrates at 37ºC. The creep stress was 

0.1 MPa. A program of creep/recovery was used, where the strain, ε, was measured 

against time. 
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DMA experiments were performed in the immersed samples (with equilibrated water 

content) at 37 ºC. The real (storage modulus), E’, and the imaginary (loss modulus), 

E”, of the complex modulus, E*=E’+iE” (with i=(-1)1/2), were recorded against 

frequency, that varied between 0.5 and 10 Hz. A static stress of 36 kPa and a 

dynamic stress of 30 kPa were used in such experiments. 

Swelling Tests 

The swelling ratios of the samples were calculated using the same experimental set-

up and method that was described above. 

Cytotoxicity and Biocompatibility: Direct Contact Test with Osteoblast-like Cells 

Cytotoxicity assay was performed for chitosan fiber meshes by following the same 

methodology as described for chitosan fibers in part 2.2.1. 

In order to study cell morphology, attachment and proliferation onto the chitosan fiber 

meshes scaffolds a human osteoblasts SaOs-2 cell line was selected. Former 

described culture conditions were also used for osteoblast-like cells. Cells cultured in 

DME Media (Sigma), enriched with 10% FBS (Biochrome) and 1% 

antibiotic/antimicotic solution (Sigma) were seeded directly over samples in a 

concentration of 3.3 x 104 cell/ml. Incubation was performed at 37 ºC (5% CO2, 100% 

humidity) for 24 hours and 7 days. Tissue culture grade polystyrene (TCPS) discs 

were used as control and replicates were always prepared. After each incubation 

period, samples were washed with Phosphate Buffer Saline (PBS, Sigma) solution 

and fixed in gluteraldehyde 2.5% (v/v). For Scanning Electronic Microscopy (SEM) 

observation, samples were previously dehydrated in crescent alcohol concentrations 

(50%, 70%, 90% and 100%), air-dried and sputter coated with gold. 

 

 

 

 

 



 61

3. Results and discussion 

3.1. Chitosan fibers  

Scanning Electron Microscopy 

 

 

 

 

 

 

 

 

Figure 1. SEM micrographs of chitosan fibers; A) x360, B) x3000. 

 

Figure 1.A and B present SEM images of the developed chitosan fibers. As it can be 

seen here in, chitosan fibers have been oriented in one direction due to the stretching 

process. Additionally, the images show that the fibers have a smooth and uniform 

striated surface even though using drying elements and rolling up the fiber on 

cylindrical support following a methanol drying bath may damage a fiber surface. For 

instance, Knaul et al. [15] have reported the effects of different drying elements on 

chitosan fiber surfaces.  

Mechanical Properties 

With regard to tensile tests maximum strain at break, and tensile strength of fibers 

were found 8.5± 2.3% and 204.9± 9.7 MPa, respectively. 

Swelling Tests 

Figure 2 shows the swelling behaviour of produced fibers. As it can be seen in the 

graph, the fibers showed a rapid swelling in the first 30 minutes, and then they 

gradually tend to equilibrium that is achieved in about 120 min.  

A B 
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Figure 2. Swelling ratio vs. time for chitosan fibers. 

Bioactivity Tests 

Figure 3.A, B, C present SEM micrographs of chitosan fibers before (Figure 

3.A) and after a bioactivity test for 30 days (Figure B, C). In Figure 3.A it is possible 

to observe the typical oriented morphology of the fiber. Similar morphology was 

observed in the first days of immersion in SBF. However, after 14 days of immersion, 

a number of nucleus started to form on the surface of the fibers, that by EDS analysis 

were found to correspond to the formation a calcium phosphate (Ca-P) (Data not 

shown). This nucleus have grown with increasing immersion times and after 30 days 

a compact and well-defined Ca-P layer could be observed, as presented in Figures 

3.B and 3.C For higher magnifications (Figure 3.C) this layer tended to the typical so-

called cauliflower like morphology of Ca-P films.  
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Figure 3. Sem micrographs of chitosan fibers; A) before, B) after 30 days of 
immersion in SBF (x1000), C) after 30days of immersion in SBF (x3000). 

A commercial polyamide fiber was used as a control and for this case no Ca-P 

film could be observed even after 30 days of immersion in SBF (Figure 4). This 

clearly indicates the bioactive of the developed fibers, confirming what has been 

observed by authors such as Muzzarelli in-vivo [25].  

 

 

 

 
 
 
 
Figure 4. SEM micrograph of commercial available polyamide fibers after 30 days 
immersion in SBF (x1000). 

A 

B C 
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This result is supported by EDS and ICP analysis (Figure 5 and 6, 

respectively). Ca and P elements in the formed layers can be clearly seen in EDS 

spectra. In addition, ICP results showed that there was a decreasing of Ca and P 

concentration in the SBF solution after 14 days leading to the precipitation and 

growth of the Ca-P layer that was observed by SEM. 

 

 

 

 

 

 

 
Figure 5 – EDS spectra of the Ca-P coatings on the surface of chitosan fibers (after 
30 days in SBF). 
 

 

 

 

 

 

Figure 6 – Evolution of the Ca and P elemental concentrations in the SBF as a 
function of immersion time of chitosan fibers in SBF. 

Cytotoxicity Test 

Regarding the in vitro study of the cytotoxic effect of chitosan fibers; results indicate 

that the material passed the test with a cytotoxic index of 0 (see Table 3). This 

means that as for tissue culture polystyrene surfaces and UHMWPE, when cell 
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culture media was replaced by extracts of materials in study good fibroblast 

proliferation and no cell morphology modifications were observed. This is not typically 

at all of biodegradable polymers. 

Table 3. Results comparing fibroblasts cytotoxic response and reactivity to chitosan 
materials and controls. 

 

3.2. Chitosan fiber meshes  

Scanning Electron Microscopy 

SEM images of fiber meshes are presented in Figure 7.A, B, C. As it can be seen in 

the micrograhps, the chitosan fibers could be formed into mesh structures having an 

average pore size in range of 100-500 µm. In addition, it was possible to see that 

fibers have sticked to each other. This structure gives them good mechanical 

strength as well as it will enable cell ingrowth, as required for tissue engineering 

scaffolding applications. 

 

 

 

Sample Total Cytotoxic 
Response 

Reactivity Pass/Fail 

Chitosan fiber 0 None Pass 

Chitosan fiber 
mesh scaffolds 

0 None Pass 

UHMWPE 0 None Pass 

TCPS 0 None Pass 

Latex 8 Severe Fail 
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Figure 7 – SEM micrographs of the structure of the developed chitosan fibers 
meshes; A) x33.4, B) x50, C) x250 

Mechanical Properties 

Swelling experiments are usually carried out by means of measuring the sample’s 

weight after different periods of immersion. It is then very difficult to access the 

swelling data during short-time immersion periods, which would be rather relevant for 

materials having a fast swelling rate. The studied chitosan meshes are among such 

systems, where the equilibration of water content occurs mostly in the first hour after 

immersion. The innovative procedure described here in permits to follow this process 

by continuously monitoring the height of the samples immediately after the moment 

they are immersed. Obviously, considering an isotropic swelling, the height of the 

sample is easily correlated with the increase of volume 

 

 

 

A B 
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Figure 8 – Evolution of the strain of a dry chitosan mesh after it was immersed at 37 
ºC (symbols). The solid line corresponds to the best fit of the data according to Eq. 
(2). 
 

The sample’s strain (ε=(h-h0)/h0, where h and h0 are the measured and initial 

heights of the sample) is measured against time. The results obtained with an initially 

dry sample with h0=2.351 mm are shown in Figure 8. The increase of the strain is 

faster in the first 20 minutes and the limit strain seems to be less than 30%. 

The data in Figure 8 was fitted according to the stretched exponential function: 

 

[ ]))/(exp(1)( β
∞ τ−−ε=ε tt  

 

where ε∞ is the limit swelling strain, τ is a characteristic swelling time and β is an 

exponent parameter that measures the deviation from a first-order swelling kinetics 

(β=1). This function appears in this context as an empirical model that may be useful 

to characterise the strain at equilibrium and the swelling rate. This equation has been 

often used to follow relaxational processes, i.e., the isothermal evolution to the 

equilibrium when a system is subjected to an external perturbation (see, for example, 

ref. [29]); in that case the model has physical significance. The results in Figure 8 

were fitted using a Levenberg-Marquard algorithm and the adjusted parameters 

were: ε∞= 29,4±0.08%, τ= 9.8±0.1 min and β=0.54±0.003. 
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The meshes may be subjected to static loads if used in different biomedical 

applications. In polymer-based materials an applied static stress usually results in a 

continuous, long term deformation under the applied stress, called creep. Such 

phenomenon may be relevant in the clinical use of the studied meshes, being 

associated with changes on the mechanical performance of the material and in 

variations in the dimensions of the implant. In this work creep/recovery of the 

immersed chitosan mesh was studied in simulated in-vitro conditions. 

The “instantaneous” increase of the strain is mainly associated with the expulsion of 

water within the mesh and thus is weakly assigned with the changes of geometry of 

the chitosan fibres, but rather is to the quantity of water initially in equilibrium and to 

the original cellular geometry of the sample. Please note that the initial strain value 

(≈35%) is higher than the plateau in the swelling experiments (≈30%, as suggested 

by Figure 8). The excess strain (≈5%) is then basically due to the deformation of the 

mesh geometry of the chitosan sample. 

After the initial deformation a clear delayed response is observed in the creep 

experiment (see inset graphics in Figure 9). The approximately linear relationship 

found in the log time graphics may be in accordance with the power-law for the time 

dependence found in the viscoelastic creep response found in another system [30]. 

Therefore, it is possible to assign this delayed creep to the viscoelastic properties of 

the chitosan fibres. 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure 9 – Creep (60 min) followed by a recovery stage (60 min) and, finally, a 
second short creep run performed at 37 ºC in the immersed chitosan mesh. The inset 
graphics shows the viscoelastic component of the first creep run, in a log time scale. 
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The removing of the strain results in a quick decrease of strain that occurs 

with a similar time-scale of the swelling experiment (τ ≈ 10 min). Therefore, most of 

the strain recovery is related with the swelling of the mesh. After 1 h of recovery, it is 

found that the strain is far to converge to 0. This may be an indication that part of the 

mesh structure was irreversibly transformed during the creep state, leading to a more 

compact cellular arrangement. 

After this creep/recovery experiment the sample was again subjected to the 

same creep stress. The strain appears to respond similarly to the first creep 

exposition, being an indication that neither apparent complex memory effects nor 

drastic structural occurs in the sample. 

 The rheological behaviour of the immersed mesh was also characterised by 

DMA. Both storage and loss moduli (E’ and E”) were measured at 37 ºC in the 

frequency range 0.5-10 Hz, which are typical frequencies found in physiological 

stress-variation situations (blood pumping rate, masticatory frequency, time for 

patient movements…). The results are shown in Figure 10. It is to be noticed that the 

values may change if the experiment is carried out at different stresses, due to the 

variation of the water content in equilibrium inside the mesh. Please also note that E’ 

and E” may be transformed into other viscoelastic parameters [31], such as 

compliance, D*=D’-iD”=1/E*, shear complex modulus, G*=G’+iG”==E*/[2(1+ν*)], 

where ν* is the complex Poisson’s ratio, shear compliance, J*=J’-iJ”=1/G*, or the real 

and imaginary components of the dynamic viscosity, η’=G”/ω and  η”=G’/ω. 

The storage modulus increases with increasing frequency, being E’ typically 

above 1 MPa. The loss modulus shows the inverse tendency. This results in a 

decrease of the loss factor, tan δ=E”/E’ with increasing frequency (inset graphics in 

Figure 10). This parameter measures the fraction of the imposed mechanical stress 

that is dissipated in the form of heat. As tan δ is typically above 0.15 for f<1 Hz, one 

may conclude that the damping capability of the system is significant, which may be 

important for some biomedical application that require dissipation of mechanical 

energy. It was found that living cells behaves as soft glassy materials existing close 

to a glass transition, implying that cytoskeletal proteins may regulate cell mechanical 

properties [32]. This kind of evidences leads one to speculate on the existence of 

some advantages upon biological functions when the materials of the implant that will 
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be in contact with living tissues, also present a viscoelastic character, as is the case 

for the studied chitosan mesh. 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10 – Storage and loss moduli (E’ and E”) as a function of frequency (f) at 37 
ºC of the immersed chitosan mesh. The inset graphics shows the frequency 
dependence of the loss factor. 
 
Swelling Tests 

 

 

 

 

 

 

 

 

 

Figure 11 – Swelling ratio vs. time for the developed 3D chitosan fiber meshes. 

 

Figure 11 shows the swelling behaviour of chitosan fiber meshes. In this 

figure, it is possible to observe the typical swelling behaviour of chitosan scaffolds [7]. 

Samples reach the equilibrium water uptake ratio, which is around 170% (w/w), after 
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about 3h in NaCl solution. Although fiber meshes were swelled up to high ratio, they 

preserved their physical integrity upon incubation in aqueous solution. This property 

of chitosan fiber meshes may enable for easy handling of the scaffold material in 

practical clinical applications. This result has been confirmed by DMA tests. 

Cytotoxicity and Biocompatibility: Direct Contact Test with Osteoblast-like Cells 

Cytotoxicity test results for chitosan fiber mesh scaffolds can be seen in Table 3. 

They showed no cytotoxic effect, and behaviour very similar to tissue culture and 

UHMWPE surfaces 

In order to observe cell morphology and proliferation of an osteoblast cell line 

over chitosan fiber mesh scaffold surfaces SaOs-2 cells were directly cultured and 

incubated for 1 and 7 days. By means of observing Figures 12.A and B it is possible 

to verify that scaffolds allowed for very significant cell proliferation from day 1 to day 

7, respectively. After 7 days, it was clearly seen that cells have been attaching to the 

scaffolds and bridging each other by means of filapodia structures which is typical for 

osteoblast-like cells (Figure 13) [33]. Furthermore, a detailed analysis of osteoblastic-

like cells morphology confirmed short-term cytotoxic results performed with 

fibroblasts, and allowed for observing extensive lamellipodium structure formation. 

 

 

 
 

 

 

 

 

Figure 12 – Osteoblast-like cells A)adhering to chitosan based fibres after 1 day of 
culture, B) proliferating over chitosan based fibres after 7 days of culture. 
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4. Conclusions 

In this paper attention has been focused on the preparation and properties of 

chitosan fiber and fiber meshes for potential use in tissue engineering applications. In 

the present study, chitosan fibers could be produced by a wet spinning technique. A 

subsequent drying treatment with methanol was used to improve the mechanical 

strength of fibers. Mechanical tests showed that the fibers had enough tensile 

strength to be used to produce scaffolds with good mechanical performance. 

Unexpectedly, the developed fibers showed a bioactive behaviour, which is also very 

important for biomaterials aimed to be used for instances in bone tissue engineering 

scaffolding. Fibers could also be formed into 3D structure aimed to be used as tissue 

engineering scaffolds. One could observe that mesh structure of the scaffold was 

suitable for cell ingrowth. This was confirmed by the results obtained on the in-vitro 

cell culture studies. Both types of samples extracts were comparable to UHMWPE 

clearly passing the test. In addition, osteoblasts growing over scaffold surfaces 

presented adequate morphology and good proliferation, proofing that the developed 

scaffolds might be used for bone tissue engineering applications.  
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The most exciting phrase to hear in science, the one that heralds 
new discoveries, is not "Eureka!" (I found it) but "That's funny..." 

    Isaac Asimov 
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CHAPTER IV 

MULTICHANNEL MOULD PROCESSING OF 3D STRUCTURES FROM 
MICROPOROUS CORALLINE HYDROXYAPATITE GRANULES AND 
CHITOSAN SUPPORT MATERIALS FOR GUIDED TISSUE 
REGENARATION/ENGINEERING 
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Abstract 

A 3D composite material was produced from microporous coralline origin 

hydroxyapatite (HA) microgranules, chitosan fibers and chitosan membrane. 

Cylindrical HA microgranules were oriented along channel direction within 

multichannel mould space and aligned particles were supported with fibers and 

a chitosan membrane. The positive replica of mould channels was clasp fixed to 

produce thicker scaffolds. Light microphotographs of the developed complex 

structure showed good adhesion between the HA particles, the fibers and the 

supporting membrane. The composite material showed 88 % (w/w) swelling in 

one hour and preserved the complex structure of the original material upon 

long-term incubation in physiological medium. MEM extract test of HA chitosan 

complex showed no cell growth inhibition and cell viability assay (MTS) 

indicated over 90 % cell viability.  
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1. Introduction 

The new and rapidly developing tissue engineering field is requiring novel 

processing methods and designs of scaffold and membranes for guided tissue 

regeneration. The scaffolds have been fabricated using conventional techniques 

such as fiber bonding, solvent casting, particulate leaching, membrane 

lamination and melt molding [1-4]. The disadvantage of the above technologies 

includes the intensive fabrication process, the limitation to thin structures, and 

residual particles in the polymer matrix, irregularly shaped pores, and 

insufficient interconnectivity. Recently, rapid protyping technologies such as 

fused deposition modelling, laminated object manufacturing, three dimensional 

printing and 3D plotting have also been applied to process biodegradable and 

bioresorbable materials with controllable and reproducible porosity and well-

defined 3D microstructures  [5-8].  

Marine skelatal material is usually made of CaCO3 in the crystalline form 

of calcite and aragonite and silicated SiO2 materials combined with Mg(OH)2. 

Organisms from different species of corals and hydrocorals have a wide variety 

of skeletal architectures and crystalline structures [9]. Coralline carbonate 

derivatives, mostly coralline hydroxyapatite, are currently being used mostly as 

bone filler or nonweight-bearing areas and orbital implants [10].  The internal 

structure of some coral species is very similar to porous structure of bone and 

replica of porous calcium carbonate can be converted to highly biocompatible 

and osteogenic tricalcium phoshate and/or hydroyapatite by a hydrothermal 

process  [11, 12]. 

Chitin and chitosan are biologically renewable, biodegradable, 

biocompatible, non-toxic and biofunctional [13]. The use of chitosan together 

with bioceramics such as calcium phosphate as a scaffold material for tissue 

engineering applications has been reported previously by a number of 

researchers [14-16]. The incorporation of bioceramics has been shown to 

increase osteoconductivity and improved mechanical strength greatly  [17, 18]. 

Chitosan fibers, which can be easily extended into three-dimensional 

structures of woven, knitted and nonwoven are widely used in a variety of 

biomedical applications, including sutures, wound dressing, and artificial hair 

[19, 20]. This interest is mainly derived from the fact that chitosan is a natural 
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polymer that shows well-known wound acceleration ability and a biological 

aptitude to stimulate cell proliferation. Depending on the processing conditions, 

chitosan fibers can present good mechanical properties. Several authors have 

described the improving the mechanical strength of fibers from chitosan [21-23]. 

Adequate mechanical properties can make chitosan based materials adequate 

for the developing of tissue engineering scaffolds that can be used for bone or 

cartilage regeneration.   

The aim this study is the development of a composite material from 

coralline origin hydroxyapatite (HA) particles and chitosan fibers for use in 

tissue engineering or in guided tissue regeneration. By orienting the cylindrical 

coral particles (microchannels run parallel along the particle length) in one 

direction, an anisotropic material similar to biologic structure of bone can be 

produced. The bone forming cells osteocytes are known to be arranged in 

concentric layers called lamellae. In turn, lamellae surrounds central 

microscopic channels known as haversian canals, through which run capillaries 

and nerves. Haversian canals and surrounding lamellar structure are oriented 

parallel to bone structure. It is believed that a scaffold structure mimicking these 

arrangements can provide a guided bone ingrowth and correct vascularization 

of biomaterial inside the body. 

Since coralline origin HA granules are prone to damage from mechanical 

stirring or harsh handling procedure, a new processing method was suggested 

in order to blend cylinder shaped coralline HA particles with chitosan fibers. In 

this method, semi-cylinder parallel channels (1 mm in width and deep) were 

prepared in a mould for holding and orienting the particles in one direction. This 

composite material was reinforced with chitosan fibers along and right angle to 

channels and finally, a membrane was used to cover the material in the mould. 

After obtaining a replica of mould channels over the membrane, thicker 

scaffolds can be produced by physical clamp fixing of subsequent replicas of 

coralline HA to each other. 

2. Materials&Methods 

Chitosan (deacetylation degree 87 %), acetic acid, and sodium hydroxide were 

obtained from Sigma Chemical Co. (St. Louis, USA). Methanol was obtained 
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from Merck Chemical Co. (Germany). Sodium sulphate was obtained from 

Aldrich Chemical Co. All the other chemicals used were of analytical grade. 

2.1. Preparation of coralline origin HA reinforced composite material 

2.1. 1. Chitosan fiber preparation  

Chitosan fibers were produced as previously reported [24]. In brief, chitosan 

was dissolved in aq. 2 % (v/v) acetic acid solution in 5 % (w/v) concentration by 

stirring magnetically at room temperature overnight. Methanol was added to 

dilute the viscous solution for easy injection until reaching 3 % (w/v) final 

concentration. Glycerol was used as a plasticizer (2.5 % (w/w)). After filtration 

with a cloth filter, solution was placed in an ultrasonic bath to remove the air 

bubbles. The solution was allowed to remain at room temperature overnight for 

aging. The clear solution was injected into a coagulation bath at 40 °C, (30 % 

1N Na2SO4, 10 % 1N NaOH and 60 % distilled water). The formed fibers were 

kept in this coagulation medium for one day and then washed several times with 

distilled water. They were suspended in aqueous 30 % methanol for 4-5 h and 

then in aqueous 50 % methanol overnight. The chitosan filaments were wound 

on the cylindrical support and the fibers were dried at room for one day.  

2.1.2. Chitosan membrane preparation 

Chitosan membranes were made by a simple solvent casting technique. The 

chitosan was dissolved in aqueous acetic acid solution (1 % (w/v)), and then 

was casted onto a plastic petri dishes in a ratio of 0.25g/cm2. Membranes were 

then allowed to dry slowly in an incubator at 37 °C for 3 days.  

2.1.3. Assembly of coralline origin HA granules, chitosan fibers, and 
membrane 

A chitosan-coralline origin HA slurry was obtained by careful mixing chitosan 

solution (3 %, (w/v)) with prewetted HA microgranules in 1/1 ratio (w/w). The 

slurry was then placed into channel spaces by means of a gentle smear 

process (Figure 1). 
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TCP/HA 
particles 

chitosan 
fibers 

mold 

Over the coralline origin HA filled spaces, chitosan fibers were aligned as one 

set parallel and another set right angle to channel direction to produce a chess 

like pattern (Figure 2). Finally, a chitosan membrane was placed over the 

coralline origin HA particles and the fiber network. In order to provide good 

adhesion between membrane and wet particles, a weight was applied over the 

membrane and let to act overnight. The assembly with the mould was placed to 

an oven at 37 oC to dry the material. Special care was given to peel off the 

composite material from the mould. Released material was stored in desicator 

until further assembly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Shematic representation of the preparation method of coralline origin 
HA-chitosan fiber composite using a multichannel mould (A); Principle of 
production of thicker scaffolds by clasp fixing of TCP/HA replica complexes (B, 
C). 

 

 

(A) 

(B) 

(C) 
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2.2.Cytotoxicity assays 

The cytotoxicity of leachables of the tested material was evaluated by using cell 

culture methods, namely short MEM (minimum essential medium) extraction 

test (72 hours), according to ISO/EN 109935 guidelines [25]. 

2.2.1. Cell culture 

A cell line of mouse long fibroblasts (L929) was selected for all cytotoxicity 

assays. Cells were grown in Dulbecco’s modified eagle medium (DMEM, 

Sigma), supplemented with 10 % of Foetal Bovine Serum (Biochrome) and 1 % 

of antibiotics/antimicotics solution (Sigma) until they reach confluency. Twenty-

four hours before the cytotoxicity tests start, cells were trypsinized and seeded 

(n= 3 per tested condition) on 24 and 96 well plates using a density of 7x104 

cells/cm2. 

2.2.2. MEM extraction test (72 hours) 

The materials (n= 3) were incubated in 10 ml of complete culture medium (2.5 

cm2/ml) (1) for 24 hours at 37 ºC under constant agitation. In the end of the 24 

hours the extraction fluids were filtered (45 µm of pore size). 

Morphological evaluation 

For morphological evaluation, culture medium present in the 24 well plates was 

replaced by 2 ml of extraction fluid and incubated for 72 hours at 37 ºC in a 

humidified atmosphere containing 5 % of CO2. After 72 hours the reaction of the 

cells to the extracts was evaluated by means of light microscopy and compared 

to the negative control (cells incubated with standard culture medium) and 

positive control (latex rubber). A score for confluency of the monolayer, degree 

of floating cells and change of cellular morphology was then calculated based 

on the values posted on Table 1. Cells were also trypsinized, the percentage of 

growth inhibition was determined through trypan blue exclusion test and a score 

was obtained after correction for the value of positive and negative controls. 

The scores were then combined (four parameters have equal weight) resulting 

in a final cytotoxic response index ranging from 0 to 8 (Table 2). 
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Score 
Confluency  

(%) 

Floating cells 

(%) 

Change of cellular 
morphology 

Inhibition of cell 
growth 

 (%) 

0 100 0 No changes during 
test period 0-10 

1 90-100 0-5 Slight changes, few 
cells affected 10-30 

2 60-90 5-10 
Mild changes, some 
cells round/spindle 

shaped 
30-50 

3 30-60 10-20 
Moderate changes, 

many cells 
round/spindle 

50-70 

4 0-30 > 20 

Severe changes, 
about all cells show 

morphological 
changes 

70-100 

 

Table 1. Quantitative and qualitative scores used in the cytotoxicty tests. 

 

Table 2. Cytotoxicity index 

 

 

 

 

 

Cell viability assay 

After 24 hours of cell seeding culture medium was replaced by 200 µl of 

extraction fluid and incubated for 72 hours at 37 ºC in a humidified atmosphere 

containing 5 % of CO2. After 72 hours cell viability was assessed by using Cell 

Titer 96® One solution Cell proliferation Assay kit (Promega, USA). This test is 

based on the bioreduction of the substrate, (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2(4-sulfophenyl)-2H tetrazolium) (MTS), into a brown 

formazan product by NADPH or NADP produced by dehydrogenase enzymes in 

Cytotoxic Response Reactivity Pass/Fail 

0-1 None Pass 

1-3 Slight Pass 

3-5 Mild Retest 

5-7 Moderate Fail 

7-8 Severe Fail 
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metabolically active cells  [26, 27]. For the assay to occur extraction fluids were 

removed and 100 µl of a mixture of culture medium without FBS and MTS in 5:1 

ratio were added into each well. Cells were then incubated for three hours at 37 

ºC in a humidified atmosphere containing 5 % of CO2, in the end of which 

optical density was read at 490 nm in a plate reader (Molecular Devices, USA). 

Results are plotted as percentage of negative control. 

2.3. Swelling test 

In order to test the swelling behaviour, the scaffold was cut into five small 

pieces and each piece was immersed in 0.154 M NaCl aqueous isotonic saline 

solution (pH 7.4).  The samples were taken out from solution at various time 

intervals being weighted with an analytical balance. The experiment was 

continued until reaching of an equilibrium value. 

 The swelling ratio of the samples was calculated according to the 

following equation: 

 

% S = (mw – mi) / mi  x 100   (1) 

 

where % S is the percentage of swelling, mw is the weight of the wet sample 

after immersion in the NaCl solution. Average values were used to determine 

the swelling ratio of scaffold for each of the time points. 

3. Results and discussion 

3.1. Coralline origin HA/chitosan composite material preparation 

Light transmission microscopy analysis of the composite material showed that 

most of coralline origin HA cylinder bodies were aligned along channel direction. 

Chitosan microfibers are seen to be running along coralline origin HA granules 

and making chess structure between coralline origin HA replica and chitosan 

membrane (Figure 2.B). Chitosan membrane was observed to hold both 

granules and fibers securely. The strength of composite materials can be 

increased greatly with the incorporation of fibers. In this respect, the coralline 

origin HA filled channels were supported by parallel chitosan fibers. A chess-like 
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structure was produced, so that the load can be distributed evenly over the 

complex. 

 

 

 

 

 

 

 

 

 

Figure 2. Light transmission microphotographs of HA granules (white cylinder 
bodies) and chitosan fibers (indicated by arrows) over chitosan membrane:  
(A) Front view of complex and (B) back view of complex. 

The parallel distribution of coralline origin HA particles is especially 

important because, fine microchannel architecture of cylindrical structures align 

in longitudinal direction of ceramic structure. By that way, highly oriented 

channel networks can be created through the composite material. This pattern 

would mimic the haversian network of natural bone and as a result, a correct 

remodelling of biomaterial by infiltration of bone tissue and extensive 

vascularization at implantation site can be expected. This will be analysed in 

future in-vivo studies. 

3.2. Cytotoxicity assays 

With regard to short-term MEM extract test there was no cell growth inhibition 

detected after the trypan blue exclusion test (0.00 + 0.00). Moreover cells 

revealed similar morphologies and proliferation patterns when compared with 

the negative control, obtaining a score of 1 in the cytotoxicity index (Table 2) 

showing in this sense that these materials were non-toxic. This type of result is 

not typical at all for biodegradable polymers.  

Regarding cell viability assay (MTS test), cells produced large amounts 

of the brown formazan product, which indicates a normal metabolism (Figure 3). 

L929 cells incubated with composite extracts showed a good incorporation and 

1 mm 1 mm 

A B 



  86

0

10

20

30

40

50

60

70

80

90

100

CHI/TCP Positive control

%
 n

eg
at

iv
e 

co
nt

ro
l

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

time (min.)

sw
el

lin
g 

ra
tio

 (%
)

 

metabolization of MTS, displaying only a slight inhibition of the metabolism 

when compared to negative control.   

 

 

 

 

 

 

 

 

 

 

Figure 3. Cell viability of L929 cells after incubation with test and control 
extracts over a period of 72h. Results based on optical measurements. 

 

As a result of the cytotoxicity experiments it can be said that the 

chitosan/coralline origin HA scaffolds are non-toxic and hence can be used for 

further studies within the biomaterials/tissue engineering field. 

3.3. Swelling test 

 

 

 

 

 

 

 

 

 

 

Figure 4. Swelling curve of coralline HA-chitosan composite in physiological 
saline (pH 7.4). 
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Figure 4 shows that the composite material was swelled up to 88 % and no 

further swelling was observed afterwards. Upon long-term incubation of scaffold 

material in a physiological saline solution, no physical alteration or deformation 

in coralline origin HA replica or fiber alignment was detected. Chitosan material 

is known to swell in aqueous solutions and sometimes this property can be 

used to secure biomaterial inside the implantation space [28], taking advantage 

of a press–fitting mechanism. The developed composite materials maintain their 

integrity when immersed in physiological media, even though they showed a 

brief swelling. Consequently, it can be expected that in implantation site it will 

show no further change in structure due to swelling. 

4. Conclusions 

A 3D composite of coralline origin HA microgranules was obtained by using a 

multichannel mould processing and chitosan as reinforcing material. The 

composite material showed parallel orientation of cylindrical coralline origin HA 

bodies along channel direction and good adhesion of particles to chitosan fibers 

and the outer chitosan membrane. MEM extraction test indicated no cell growth 

inhibition as determined by the trypan blue exclusion method. MTS test with the 

composite showed more than 90 % cell viability compare to negative controls. 

The cytotoxicity assays confirmed that the composite material is non-toxic. The 

swelling test in physiological medium indicated 88 % (w/w) swelling in one hour 

and afterwards no further change was observed. Long-term incubation of the 

composite in aqueous medium showed no change in integrity of the 

constituents of the composite material. Consequently the developed complex 

architectures presents a range of properties that might allow for their use in 

guided tissue regeneration and as tissue engineering scaffolds. 
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I am among those who think that science has a great beauty. A 
scientist is a child placed before a natural phenomena which 
impress him like a fairy tale 

        Marie Curie 
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CHAPTER V  

FORMATION OF BONE-LIKE APATITE LAYER ON CHITOSAN FIBER MESH 
SCAFFOLDS BY A BIOMIMETIC SPRAYING PROCESS  
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Abstract 

Bone-like apatite coating of polymeric substrates by means of biomimetic 

process is a possible way to enhance the bone bonding ability of the materials. 

The created apatite layer is believed to have an ability to provide a favorable 

environment for osteoblasts or osteoprogenitor cells.  

The purpose of this study is to obtain bone-like apatite layer onto chitosan 

fiber mesh tissue engineering scaffolds, by means of using a simple biomimetic 

coating process and to determine the influence of this coating on osteoblastic cell 

responses. Chitosan fiber mesh scaffolds produced by a previously described 

wet spinning methodology were initially wet with a Bioglass®-water suspension 

by means of a spraying methodology and then immersed in a simulated body 

fluid (SBF) mimicking physiological conditions for one week. The formation of 

apatite layer was observed morphologically by scanning electron microscopy 

(SEM). As a result of the use of the novel spraying methodology, a fine coating 

could also be observed penetrating into the pores, that is clearly within the bulk 

of the scaffolds. Fourier Transform Infrared spectroscopy (FTIR-ATR), Electron 

Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD) analysis also 

confirmed the presence of apatite-like layer. A human osteoblast-like cell line 

(SaOs-2) was used for the direct cell contact assays. After two weeks of culture, 

samples were observed under the SEM. When compared to the control samples 

(unmodified chitosan fiber mesh scaffolds) the cell population was found to be 

higher in the Ca-P biomimetic coated scaffolds, which indicates that the levels of 

cell proliferation on this kind of scaffolds could be enhanced. Furthermore, it was 

also observed that the cells seeded in the Ca-P coated scaffolds have a more 

spread and flat morphology, which reveals an improvement on the cell adhesion 

patterns, phenomena that are always important in processes such as 

osteoconduction. 
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1. Introduction 

Bone is a complex, dynamic and highly vascular tissue with a large amount of 

extracellular matrix. In nanoscale, bone matrix consists of highly organized 

collagen fibers surrounded by apatite crystals [1]. Due to this very specialized 

structure, repair or replacement of damaged or traumatized bone still remains as 

a serious problem in surgery. For many years, autografts and allografts have 

been used for bone repair. However, there are many limitations and 

complications in the use of autogratfs and allografts, including limited supply, 

donor site morbidity and transfer of diseases.      

Engineering of bone tissue is a new approach to recreate complexity, 

stability, and biologic function of bone tissue. The most common strategy for the 

tissue engineering of bone is to use a scaffold combined with osteoblast or the 

cells that can mature/differentiate into osteoblasts and regulating factors that 

promote cell attachment, differentiation and mineralized bone formation [2]. To 

serve as a scaffold for bone tissue engineering, the material should be 

biocompatible, biodegradable, and porous with an interconnective pore structure 

in order to allow nutrients and metabolites to permeate. Furthermore, it must also 

be osteoconductive, so that osteoblasts and osteoprogenitor cells can attach and 

migrate in the scaffold.    

Calcium phosphate ceramics and bioactive glasses have been proposed 

to be used as a scaffold for bone tissue engineering due to their excellent 

osteoconductivity [3, 4]. It has been shown that they can bind to bone trough an 

apatite layer at the interface or bind directly to bone [5]. However, they can not 

serve alone as a scaffold because of their brittleness and low resistance against 

impact loading.  

Biodegradable polymers have been proposed as possible alternatives and 

received much attention as bone replacement materials [6-8]. They can be easily 

processed into 3-D porous structures with a proper degradation rate and 

mechanical strength. However, most of them are not show bioactivity without any 

surface modification. To overcome this problem, the surface of the material can 

be coated with HA or apatite. A number of methods, such as plasma spraying [9], 
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ion sputtering [10], laser deposition [11], sol-gel deposition [12], dip coating 

sintering [13], have been used for apatite coating of the material surfaces. 

However, these processes need very high temperatures or very high/low pH that 

can not be applied to the polymeric materials. In addition, the apatite formed by 

these processes is usually highly crystalline and has different crystal structure 

than that in natural bone apatite. Another drawback in these processes is the 

difficulties in obtaining a homogenous and a thin layer of coating on the surface 

of the material.  

Biomimetic coating using simulated body fluid (SBF) has been developed 

by Kokubo and co-workers as an alternative to the methods discussed above 

[14]. They have reported that the formed apatite, so-called bone-like apatite, is 

more similar to natural bone with a low crystallinity and nano-cyrstal size which is 

also an important issue in its degradation. Moreover, the conditions that are used 

in this process are very mild and allow applying a variety of polymeric and non-

polymeric surfaces [15, 16]. For instance, Reis et al. [17-19] adapted and used 

this methodology for starch-based biodegradable polymers. Regarding the 

mechanism, it has been shown that the functional groups on the polymer surface, 

such as Si-OH, Ti-OH and carboxyl or carboxylate, are the responsible for the 

apatite nucleation in SBF. Once the material with a functional surface immersed 

in SBF, which is already supersaturated with ions that constitute apatite, apatite 

nuclei starts to form and grow into a dense and uniform bone-like apatite layer 

[15]. One way to introduce functional Si-OH group on the polymeric surfaces is to 

face the polymer with Bioglass® particles before immersion in SBF [20].  

The objective of the present study is to obtain bone-like apatite layer on chitosan 

fiber mesh scaffolds by using the biomimetic approach.  We developed a new 

methodology based on a simple spraying process in order to have a 

homogeneous coating on these complex structures. Moreover, we also tested 

the scaffolds with human osteoblast-like cell line (SaOs-2) to determine the 

influence of bone-like apatite coating on cell adhesion and viability.  
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2. Materials&Methods 

Chitosan (deacetylation degree 87 %), was obtained from Aldrich Chemical Co.  

Bioglass® with particle size of 5µm was kindly supplied by US Biomaterials Corp. 

(Florida, USA). All the other chemicals used were of analytical grade.  

2.1. Production of Chitosan Fiber Mesh Scaffolds 

Chitosan fibers were produced as previously reported [21]. In brief, chitosan was 

dissolved in aq. 2% (v/v) acetic acid solution in 5% (w/v) concentration at room 

temperature overnight. Methanol was added to dilute the viscous solution for 

easy injection until reaching 3% (w/v) final concentration. Glycerol was used as a 

plasticizer (2.5% (w/w)). After filtration with a cloth filter, the solution was placed 

in an ultrasonic bath to remove the air bubbles. The clear solution was injected 

into a coagulation bath (30% 1N Na2SO4, 10% 1N NaOH and distilled water). 

The formed fibers were kept in this coagulation medium for one day and then 

washed several times with distilled water. They were then suspended in an 

aqueous 50% methanol solution for 1h and subsequently in 100% methanol for 

3h. The fibers were then put in a plastic cylindrical mould and dried at 60°C 

overnight.  

2.2. Biomimetic Coating 

A simple methodology was developed for the biomimetic coating experiments. 

The method is basically based on spraying a Bioglass®/water suspension on the 

surface of the scaffolds. This spraying methodology allows for the coating of the 

bulk of the scaffold. Briefly, a certain amount of Bioglass® was suspended in 

ultra-pure water. Produced scaffolds could then be wet with this Bioglass®-water 

suspension by using this simple methodology. After drying for a certain time 

under air flow, each sample was immersed in 40ml of simulated body fluid (SBF) 

(x1) (see Figure 1).  

The ion concentrations of SBF were approximately equal to those of human 

blood plasma.  The tubes were put in an incubator at 37°C for 7 days. The 
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solution and the tubes were renewed next day. After the first day of immersion, 

renewal was every 2 days for the solution. In the end of the immersion period, 

samples were washed with distilled water and dried at room temperature. 

 

 

 

 

 
Figure 1. Shematic representation of a novel biomimetic Ca-P coating process 

using a simple spray. 

 

2.3. Characterization of Ca-P Coated Scaffolds 

In order to analyze the morphology of the Ca-P layer formed on the scaffolds, the 

samples were mounted onto brass stubs, sputter coated with gold and analyzed 

under a Scanning Electron Microscope (SEM) at an accelerating voltage 15kV. 

Electron Dispersive Spectroscopy (EDS) was also used to determine the 

presence of Ca and P in bioactive layers. To evaluate the changes on the 

chemical structure of sample surface, Fourier Transform Infrared Spectroscopy 

(FTIR-ATR) was used. Thin Film X-ray diffraction (TF-XRD) was used for 

identifying the crystalline phases present, and characterizing the 

crystalline/amorphous nature of the formed Ca-P bioactive layers. 

2.4. Cell Culture Studies with Osteoblasts 

A human osteoblasts SaOs-2 cell line was selected to study cell morphology, 

attachment and proliferation onto Ca-P coated chitosan fiber meshes scaffolds. 

Cells cultured in DME Media (Sigma), enriched with 10% FBS (Biochrome) and 

1% antibiotic/antimicotic solution (Sigma) were seeded directly over samples in a 

concentration of 2x106 cells/scaffold. Incubation was performed at 37 ºC (5% 
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CO2, 100% humidity) for 3 weeks. Uncoated samples were used as a control. 

After each incubation period, samples were washed with Phosphate Buffer 

Saline (PBS, Sigma) solution and fixed in gluteraldehyde 2.5% (v/v). For 

Scanning Electronic Microscopy (SEM) observation, samples were previously 

dehydrated in increasing alcohol concentrations (50%, 70%, 90% and 100%), air-

dried and sputter coated with gold.  

Cell viability  

A MTS assay was carried out to determine the cell viability after 3 weeks of 

culture by using Cell Titer 96® Aqueous One Solution Cell proliferation Assay kit 

(Promega, USA). This test is based on the bioreduction of the substrate, (3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2(4-sulfophenyl)-2H 

tetrazolium) (MTS), into a brown formazan product by NADPH or NADP 

produced by dehydrogenase enzymes in metabolically active cells. According to 

the standard procedure, the triplicates of samples were placed in a new plate and 

fresh medium was added to each well. MTS reagent in 5/1 ratio was added to 

each well and then incubated for three hours at 37 ºC in a humidified atmosphere 

containing 5% of CO2.  A 100µl of incubated medium was transferred to 96-well 

plate culture plate and the optical density was read at 490nm in a micro-plate 

reader (Synergy HT, Bio-tek). 

Alkaline Phosphatase (ALP) Activity 

In order to determine the amount of alkaline phosphatase (ALP) produced by the 

cells seeded on the scaffolds, scaffolds/ cells constructs were washed, freeze-

thawed and sonicated after 3 weeks of culture. p-Nitrophenyl phosphate (pNPP) 

was added to the supernatant in the ratio of 1/3 and incubated at 37°C for 1 h. 

The enzyme reaction was then stopped by a solution containing 2 M NaOH and 

0.2 mM EDTA in distilled water. The absorbance of p-nitrophenol (pNP) formed 

was determined at 405 nm with a reference filter at 620 nm. A standard curve 

was made using pNP values ranging from 0 to 600 µmol/ml. The results were 

expressed as µmol of pNP produced/ml/h. 
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3. Results&Discussion 

3.1. Biomimetic Coating 

The scaffolds used in this study were porous chitosan fiber meshes of a 

cylindrical shape with a diameter of 1cm (Figure 2).  

 

 

 

 

 

Figure 2. Chitosan fiber mesh scaffolds produced by wet spinning 

 The structure is made of randomly oriented fibers with an average 

diameter of 100µm and these fibers form a highly interconnected nest-like 

structure as it can be seen from SEM micrographs (see Figure 3.A and B). As we 

have reported before [21], these scaffolds have a very high water uptake ability, 

which can of course provide better adhesion of Bioglass® particles on the 

surface of the fiber during the biomimetic coating process. However the coating 

of biodegradable scaffolds with biomimetic Ca-P layers is rather difficult and not 

many examples of this can be found on the literature [22, 23]. 

 

  

 

 

 

Figure 3. SEM micrographs of chitosan fiber mesh scaffolds; A) x15, B) x200 

A B 
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SEM micrographs of Ca-P coated chitosan fiber mesh scaffolds were given in 

Figure 4.  

 

 

 

 

 

 

 

 

 

Figure 4. SEM micrographs of the developed coated scaffolds, exhibiting a fine 
and homogenous Ca-P layer onto chitosan fiber meshes surfaces; A) x100, B) 
x300, C) 500, D) x5000 

 After Bioglass® spraying to the samples, a fine and homogenous Ca-P 

layer was observed on their surface after 7 days soaking in SBF solution. Kokubo 

et al. [24, 25] proposed the mechanism of bone-like apatite formation on 

polymeric surfaces when CaO-SiO2 glass particles are used as a nucleation-

inducing agent. According to this mechanism, silicate ions released from the 

glass particles are attached on the polymer surface and Si-OH groups in the 

silicate ions induce the apatite nucleation on the surface. At the same time, the 

release of calcium ions from glass particles increases the ionic activity product of 

SBF with respect to apatite and accelerates the apatite nucleation. Finally, the 

apatite nuclei formed on the surface grow spontaneously by consuming Ca and P 
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ions from the fluid. Using this approach, many flat polymeric surfaces have been 

coated with bone-like apatite by rolling the samples in Bioglass®/water 

suspension [26]. However, the rolling process is not suitable for more complex 

surfaces due to the non-homogenous distribution of Bioglass® particles. 

Therefore, we developed a simple spraying method which allowed a 

homogenous distribution of glass particles on the scaffold surface as well as 

inside the structure. As a result of this method, a homogenous bone-like apatite 

layer was observed on the individual fibers. Moreover, it was also possible to see 

the typical cauliflower morphology of bone-like apatite layer in SEM micrographs 

with a higher magnification (Figure 4.D).  

 The EDS spectra of the coated samples confirmed the formation of apatite 

layer by showing the Ca and P elements (Figure 5). The typical Ca-P ratio was 

around 1.6 ±0.10 which is similar to natural bone apatite.  

 

 

 

 

 

 

 

 

 

Figure 5. EDS spectra of Ca-P coated chitosan fiber mesh scaffolds. 

 

Figure 6 shows FTIR spectra of control (uncoated chitosan fiber meshes) 

and biomimetic Ca-P coated chitosan fiber meshes. Uncoated samples 

presented the characteristic absorption bands of chitosan which are a wide band 

associated with –OH group at around 3400cm-1 and a band associated with 

glycosidic linkage at around 1050cm-1. After Ca-P coating of the surface, the 

characteristic band attributed to –OH tend to disappear while a sharp band 
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appeared at 1030cm-1 which is a characteristic P-O stretching band. The 

decrease in the intensity of –OH stretching group might be due to the increase in 

the carbonate substitution as has been reported by the others [27, 28]. It has 

been suggested that when the carbonate substitution increase, carbonate ions 

replace with hydroxyl ions [28]. These results demonstrated that the surfaces of 

the chitosan fibers were completely coated by a carbonated apatite layer. 

 

 

 

 

 

 

 

 

 

 

Figure 6. FTIR spectra of Ca-P coated sample and uncoated sample. 

 

 

 

 

 

 

 

 

 

 

Figure 7. Thin-film XRD patterns of the chitosan fiber meshes immersed in SBF 
for 7 days. 
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Thin-film XRD of the samples immersed in SBF for 7 days is presented in 

Figure 7. The main diffraction peak at 2θ=32° is a contribution of (211), (300) and 

(202) planes of apatite. Another main diffraction peak at 2θ=26° indicated the 

(002) lattice plane of apatite crystals. Other diffraction peak of apatite appeared 

around at 2θ=40° as it was marked in Figure 7. The broad peak at around 2θ=20° 

was due to the chitosan. The intensity of this peak decreased after coating which 

confirms once again the apatite layer on the surface of fibers.  

3.2. Cell Culture Studies with Osteoblasts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8. Human osteoblast like cells seeded on A) Ca-P coated (x2000), B) Ca-
P coated (x3000) and C) uncoated (x2000) chitosan fiber mesh scaffolds after 2 
weeks of culture. 
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Figure 9. Human osteoblast like cells (SaOs-2) seeded on A) Ca-P coated 
(x1000), B) Ca-P coated (x4000) and C) uncoated (x1000) chitosan fiber mesh 
scaffolds after 3 weeks of culture. 

 

Figure 8 and 9 exhibit the SEM micrographs of osteoblasts seeded on the 

surface of Ca-P coated and uncoated samples after 2 and 3 weeks of culture, 

respectively. The cells were observed to be able to attach and to proliferate in 

both surfaces. However, they seemed to be more spread and presented a 

different morphology when the surface was pre-coated with a Ca-P layer. This is 

a result of the changes in the surface chemistry of the scaffolds. Several 

investigators have reported that the surface chemistry and the topography can 

directly affect the osteoblast response and determine cell attachment and 

alignment [29-31]. Depending on the surface composition and the topography, 

protein, ligands and integrins can adsorb to the surface in different structures and 

adhesion kinetics [32]. Due to the different interaction between the adhesion 

ligands adsorbed to different surfaces and the adhesion receptors of the cells, 

cells can generate different adhesion signals. These adhesion signals influence 
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further cell attachment and morphology. In the present study, it was not possible 

to evaluate the effect of surface topography because of the irregular surface 

structure of the chitosan fibers. However, we can say that the surface chemistry 

has a clear clear influence on cell attachment and morphology. The difference on 

the cell spreading behaviour could also be observed clearly with a longer 

culturing time. The osteoblasts started to form a complete layer on the surface of 

fibers after 3 weeks of culture (Figure 9. B).  

The Ca-P coating also influenced the long-term cell viability on the 

scaffolds. Figure 10 shows the MTS results after 3 weeks of culture. MTS is an 

indirect assay to determine the metabolic activity and number of the cells. As it 

can be seen, osteoblasts seeded on the Ca-P coated scaffolds showed higher 

O.D. value than control samples which means metabolic activity and number of 

cells were higher in the Ca-P coated samples. This can be related to the 

enhanced cell attachment on the Ca-P coated samples. In fact, it has been 

reported that initial cell attachment affects further proliferation of the cells [33].  

 

 

 

 

 

 

 

 

 

Figure 10. Cell viability and proliferation of human osteoblast like cells 
determined by MTS after 3 weeks of culture. Error bars represent means ± SD 
for n=3.   

 

ALP is a well-known enzyme used as a marker of the osteogenic 

phenotype, which catalyzes the hydrolysis of phosphate esters at an alkaline pH 

[34]. It has been also demonstrated that it plays an important role in bone matrix 

mineralization process. Figure 11 presents the ALP activity of the cells cultured 
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on the coated and control scaffolds. ALP activity of the cells seeded on the Ca-P 

scaffolds were found significantly higher than that on control. One possible 

reason for that can be the release of the Ca2+ ions from the coating to the culture 

medium. Matsuoka et al. [35] showed that ALP activity and osteogenic 

differentiation of osteoblastic cells increased if there is an increase of Ca 

concentration in culture medium by release from the apatite. However, further 

studies are still needed to understand the details of mechanism of the cellular 

response to Ca-P coating that is described herein.  

 

 

 

 

 

 

Figure 11. The ALP activity of human osteoblast like cells seeded on Ca-P 
coated scaffolds and control (uncoated scaffolds). Error bars represent means ± 
SD for n=3 

4. Conclusions 

A novel and simple biomimetic approach was described for the preparation of 

bone-like apatite coated chitosan scaffolds. Fiber mesh type scaffolds could be 

prepared from chitosan by a wet spinning method. A homogenous Ca-P coating 

was produced on the surface and the bulk of chitosan scaffolds by means of 

using the proposed methodology. After 7 days of immersion in the SBF solution, 

a fine and homogenous bone-like apatite layer was observed on the surface of 

chitosan fibers. Furthermore, osteoblasts adhered on Ca-P coated samples 

showed a more spread and distinct morphology. Higher cell numbers were 

observed on the caoted scaffolds as compared to the uncoated samples. On the 

basis of these results, Ca-P coated scaffolds obtained by the proposed 
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biomimetic process can be useful to be used as a bone tissue engineering 

scaffolds.   
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Your theory is crazy, but it's not crazy enough to be true.  
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CHAPTER VI 

A NEW ROUTE TO PRODUCE STARCH-BASED FIBER MESH SCAFFOLDS 
BY WET SPINNING AND SUBSEQUENT SURFACE MODIFICATION AS A 
WAY TO IMPROVE CELL ATTACHMENT AND PROLIFERATION  
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Abstract 

This study proposes a new route for producing fiber mesh scaffolds from a 

starch-polycaprolactone blend. It was demonstrated that the scaffolds with 77% 

porosity could be obtained by a simple wet spinning technique based on 

solution/precipitation of a polymeric blend. In order to enhance the cell 

attachment and proliferation, Ar plasma treatment was applied to the scaffolds. 

It was observed that the surface morphology and chemical composition were 

significantly changed due to the etching and functionalization of the fiber 

surfaces. XPS analyses showed an increase of the oxygen content of the fiber 

surfaces after plasma treatment (untreated scaffolds O/C:0.26 and plasma 

treated scaffolds O/C:0.32). Both untreated and treated scaffolds were 

examined using a SaOs-2 human osteoblast-like cell line during 2 weeks of 

culture. The cell seeded on wet-spun SPCL fiber mesh scaffolds showed high 

viability and alkaline phosphatase enzyme activity, being those values were 

even higher for the cells seeded on the plasma treated scaffolds.  
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1. Introduction 

Tissue engineering offers a promising new approach to create biological 

alternatives for regeneration of different tissues. It involves the use of tissue-

specific cells seeded in a scaffold which can guide the cell growth and tissue 

formation in three dimensions. To bring about the desired biological response, a 

scaffold should possess a number of characteristics such as three dimensional 

highly porous and interconnective structure, large surface area, adequate pore 

size, suitable surface chemistry and mechanical properties, etc. [1] 

Biodegradable polymeric fiber structures can provide a large surface 

area and a relatively large porosity which can be optimized for specific 

applications. Besides these, many tissues, such as nerve, muscle, tendon, 

ligament, blood vessel, bone, and teeth, have tubular or fibrous bundle 

architectures and anisotropic properties. Therefore, fiber-based structures find a 

number of applications in tissue engineering, including soft tissue repair [2], 

vascular prostheses [3], bone [4, 5] and cartilage scaffolds [6], among others.  

There are three main techniques to produce fibers to be used in 

biomedical applications: melt spinning, dry spinning and wet spinning. Melt 

spinning is based on the extrusion of polymeric melt while the spinning process 

starts from polymeric solution in the case of dry and wet spinning. Most of the 

synthetic polyester fibers used in tissue engineering are produced by a 

conventional melt spinning technique [7, 8]. However, excessively high 

processing temperatures may result in monomer formation during extrusion 

process. The excess monomer can catalyze the hydrolysis of the material. The 

wet spinning technique is an alternative way to produce biodegradable 

polyester fibers for the use in tissue engineering [9-12]. The fiber properties can 

be tailored depending on the spinning rate, the concentration of the polymer 

solution and coagulation bath. A highly viscous solution and high spinning rate 

allow fiber precipitation at the bottom of the coagulation bath. This approach 

could be used to form scaffolds during the processing. 

In design of a tissue engineering scaffold, surface physicochemistry is 

one of the most important issues to be considered. The physicochemical 

properties of the surface directly influence the scaffold performance by effecting 

the cellular response and ultimately effecting the new tissue formation [13]. In 
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order to improve the cell affinity, the surface hydrophilicity, surface energy, 

surface roughness and surface charge can be modify by different methods, 

including mechanical treatments, wet chemical treatments and plasma 

treatments. Chemical treatments have been widely used to modify the 

biomaterial surfaces [14, 15]. However, the main problem of these treatments is 

the influence of the treatment on the bulk properties of the material. The surface 

of the materials can be modified by plasma tretment without altering the bulk 

properties of the material [16, 17]. By this technique, it is possible to introduce 

or graft desired functional groups and polymer chains onto the surface. The 

surface roughness which plays an important role for cell attachment can be also 

changed by plasma treatment. Therefore, plasma is a valuable method for 

improve cell affinity to the tissue engineering scaffolds.  

In the present study, we describe a new route for the production of 

starch-based fiber mesh scaffolds which allows forming of scaffolds during 

spinning. This new route also avoids polymer degradation which is the main 

problem of melt-based systems. The surface properties of the produced 

scaffolds are tailored by plasma treatment in order to enhance cell attachment 

and proliferation 

2. Materials&Methods 

2.1. Materials 

A blend of starch/poycaprolactone (SPCL) (30/70 wt %) was used to produce 

fiber mesh scaffolds. More information on these materials can be found 

elsewhere. All the reagents used were analytical grade unless specified 

otherwise.   

2.2. Wet Spinning Process 

Starch-based fiber mesh scaffolds were originally produced by wet spinning. In 

order to obtain a polymer solution with proper viscosity, SPCL was dissolved in 

chloroform at a concentration of 40% (w/v). Please note that, it was possible to 

obtain a homogenous suspension of starch particles into the solution even 

though the only the synthetic part of the blend was soluble in the chloroform. 

Methanol was used as a coagulant. The polymer solution was loaded into a 
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syringe and placed in a syringe pump (World Precision Instruments, UK). A 

certain amount of polymer solution was subsequently extruded into a 

coagulation bath. The fiber mesh structure was formed during the processing by 

the random movement of the coagulation bath. The formed scaffolds were then 

dried at room temperature overnight in order to remove any remaining solvents. 

After spinning, the internal architecture of the produced fiber meshes was 

characterized by micro-computed tomography (µCT) [18]. The surface 

morphology of the fibers was analyzed under a scanning electron microscope 

(SEM, Leica Cambridge S360 microscope). Specifically, three specimens were 

scanned in air using a µCT imaging system (µCT40, Scanco Medical AG, 

Bassersdorf, Switzerland) with a nominal resolution of 12 �m. The 

reconstructed images were filtered using a constrained 3D Gaussian filter to 

partially suppress noise in the volumes (µ = 1.2 voxel, support = 1 voxel), and 

binarized using a global threshold. Standard 3D morphometry as developed for 

trabecular bone was used to assess structural parameters for the scaffolds. 

These parameters included porosity and scaffold surface-to-volume ratio and 

were derived from a triangulated mesh allowing for computation of surface and 

volume [19]. In addition, pore size and fiber thickness were determined using 

the distance transformation method [20]. In this method, each pore (fiber) is 

filled with a non-redundant set of maximal spheres. Mean pore (fiber) size was 

then calculated as the volume-averaged diameter of all spheres making up the 

pore (fiber).  

2. 3. Plasma Surface Treatment 

In order to improve cell attachment and proliferation, a plasma treatment was 

performed using a plasma reactor PlasmaPrep5 (Gala Instrument GmbH, 

Germany) with a chamber size of 15 cm diameter and 31 cm length (5L) and 

with a fully automated process control. In order to maximize the surface area to 

be exposed to the plasma, the samples were wired (necklace like) with a 

distance of 1 cm between them. The wire was fixed to a metal support which 

was placed into the chamber. The chamber was flushed with argon five times 

prior to treatment. A radio frequency (RF) source was used and a power of 30 

W was applied for 15 minutes. Argon was used as a working gas and the 
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pressure in the reactor was controlled (0.18 mbar) by adjusting its flow rate. The 

samples were kept 24 hours after being removed from the reactor and then 

characterized. 

X-ray Photoelectron Spectroscopy (XPS) 

X-ray photoelectron spectroscopy (XPS) was used to quantitatively determine 

the surface composition of the scaffolds. The XPS analysis were performed 

using an 250 iXL ESCA instrument (VG Scientific) equipped with two X-Ray 

sources: a source with Al Ka1,2 monochromatized radiation at 1486.92 eV and 

another one (Dual) equipped with two anodes: Mg and Al. 

The nonconductive nature of the samples required the use of an electron 

flood gun to minimize surface charging. Charge compensation at the surface 

was performed by using both a low energy flood gun (electrons in the range 0 to 

14 eV) and an electrically grounded stain steel screen placed directly on the 

sample surface.  

 The first attempt to measure the samples was the use of the 

monochromatic X-ray source. However, this was impossible due to the high 

roughness of the samples which caused problems to build up the charge. 

Generally, charge neutralization for 3D surfaces is more difficult because of the 

“holes” on the surface. The best choice for these cases is Mg source which 

helps to neutralize the surface charge. Therefore, the measurements were 

carried out using non-monochromatic Mg-Kα radiation (hν=1253.6 eV). 

Photoelectrons were collected from a take off angle of 90º relative to the sample 

surface. The measurements were performed in the constant analyzer energy 

mode (CAE) with a 100 eV pass energy for survey spectra and 20eV pass 

energy for high resolution spectra. C1s high resolution scans were taken before 

and after experiments in order to check out the efficiency of charge 

compensation. 

 Charge referencing was done by setting the lower binding energy C1s 

hydrocarbon (CHx) peak at 285.0 eV.  

 The atomic composition of the samples was determined from the survey 

spectra using the standard Scofield photoemission cross sections. The 

chemical functional group identification was obtained from the high-resolution 
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peak analysis of C1s envelopes. The spectra fitting were performed using the 

“Chi-squared” algorithm to determine the goodness of a peak fit.  

2. 4. Cell Culture Studies 

A human osteoblast-like cell line (SaOs-2) was used to test the cell attachment 

and proliferation on the scaffolds. A 1ml of cell suspension containing 3x105 

cells in a culture medium (DMEM low glucose supplemented with 10% Fetal 

Bovine Serum and 1% antibiotics/antimicotics) were dropped onto scaffolds 

(n=3).  The cells on scaffolds were then allowed to grow for 2 weeks at 37°C in 

humidified atmosphere containing 5% CO2 with medium changes every 2-3 

days. 

Morphological Analysis 

For the morphological examination, cell/scaffold constructs were rinsed with 

Phosphate Buffer Saline (PBS, Sigma, USA) and then fixed in 2.5% 

glutaraldehyde. The samples were dehydrated through graded series of ethanol 

and dried before mounting onto brass stubs, sputter coated with gold. Finally, 

the samples were analyzed under a scanning electron microscope (SEM) at an 

acceleration voltage of 15kV. 

Cell Proliferation-DNA Assay 

Cell proliferation was evaluated by quantifying DNA content using the 

PicoGreen dsDNA kit (Molecular Probes, USA). PicoGreen dsDNA Quantitation 

Reagent is an ultra-sensitive fluorescent nucleic acid stain for quantitative 

analysis of double-stranded DNA (dsDNA) in solution. 

For the assay, the scaffold/cell constructs (n=3) were rinsed with PBS 

and incubated with sterile ultra pure water at 37°C for 1h before putting at -

80°C. The samples were then thawed and put in an ultrasonic bath for 15 min. 

An aliquot of each sample was transferred to the 96-well plate. A certain ratio of 

Tris-EDTA buffer and PicoGreen reagent prepared in the same buffer was 

added to the each well. The fluorescence was read at 485nm and 528nm 

excitation and emission, respectively. The DNA amount of each samples was 

then calculated using a standard curve.  
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Alkaline Phosphatase (ALP) Activity 

Alkaline phosphatase (ALP) activity from the scaffolds/cells constructs (n=3) 

was quantified by the specific conversion of p-nitrophenyl phosphate (pNPP) 

into p-nitrophenol (pNP). To perform the assay, the seeded scaffolds were 

rinsed with PBS and transferred individually into eppendorf containing sterile 

ultra pure water. They were then frozen at -80oC and defrosted at room 

temperature before starting the assay. A buffer solution containing 0.2% w/v p-

nitrophenyl phosphate was added to the samples in a ratio of 1:3. The enzyme 

reaction was carried out at 37°C for 1 h and then stopped by a solution 

containing 2 M NaOH and 0.2 mM EDTA in distilled water. The absorbance of 

p-nitrophenol formed was determined at 405 nm with a reference filter at 620 

nm. A standard curve was made using pNP values ranging from 0 to 600 

µmol/ml. The results were expressed as µmol of pNP produced/ml/h.  

Statistical Analysis 

All the quantitative results were obtained from triplicate samples. Data were 

expressed as a mean ±SD. For statistical analysis, a two-tailed Student's t-test 

was used. Differences were considered to be significant at p< 0.05.  

3. Results and Discussion 

3.1. Morphology of the scaffolds 

 

 

 

 

 

 

 

 

 

Figure 1. Morphology of the wet-spun SPCL fiber mesh scaffolds analysed by; 
A) µCT, showing thin section of sample, B) SEM  
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Figure 1.A and B present respectively the µCT and SEM images of SPCL 

fiber mesh scaffolds produced by wet spinning. It can be clearly seen that, the 

SPCL fibers were randomly formed into a 3D structure. The porosity of the 

scaffolds, determined by µCT, was 77%. µCT morphometry showed that fiber 

diameter was 100µm; mean pore size was 250µm, which is in the range of ideal 

pore size for bone regeneration [21]. The scaffolds have a high surface to 

volume ratio: the specific scaffold surface was 29 mm2/mm3, similar to that of 

native bone [20]. Moreover, µCT showed that wet-spinning was a very 

reproducible procedure; the coefficient of variation (CV) for fiber thickness was 

4.2%; for the other parameters, CV was 1.2% or below. 

Previous studies have reported that 2D polymer surfaces could be easily 

modified by different plasma techniques [22-24]. However, it becomes more 

complicated in the case of 3D porous polymeric structure due to the pore 

structures and low interconnectivity which do not allow the penetration of 

plasma exposition in the interior part of the structure because of the shadow 

effect. In the present study, the wet-spun scaffolds produced presented a highly 

porous and interconnected structure that can overcome this problem of plasma 

surface modification. In the case of wet-spun scaffolds, the treatment is very 

similar to treatment of a single fiber. As a result, the surface exposed to the 

plasma is much higher, which allows for a more uniform and effective surface 

treatment. 

3.2. Plasma Treatment 

 

 

 

 

 

 

Figure 2. The surface of the SPCL fiber mesh scaffolds; A) before (x3000) and  
B) after Ar plasma treatment (x3000). 
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Due to phase inversion during precipitation, the surface of the fibers 

exibited a non-smooth morphology (Figure 2.A). After plasma treatment, a 

significant difference on the fiber surfaces was observed (Figure 2.B). It is well 

known that the surface roughness typically tends to increase after a plasma 

treatment due to the so-called etching process [25]. When the plasma is 

composed of an inorganic gas such as argon, helium, hydrogen, nitrogen, and 

oxygen, it leads to the etching reactions on the topmost layer of the polymer 

surface [26]. This etching is a result of stripping off the topmost layer of the 

polymer because of the weight loss of the polymer during the plasma exposure. 

However, the SPCL fiber surfaces showed a denser and smaller nano-size 

roughness after plasma treatment. Since SPCL has a very low glass transition 

temperature (-60°C), it can be explained by melting and etching that 

consecutively occured on the surface during the plasma process.  

X-ray photoelectron spectroscopy (XPS) analysis was performed in order 

to obtain more detailed information for the chemical structures and groups 

presented on the surface before and after the performed modification. The 

results obtained are summarized in Table 1.  

 

Table 1. XPS data for wet spun SPCL scaffolds before and after modification 
 

 C% O% O:C/C:O ratio 

Theoretical PCL 69.2 30.8 0.45/2.25 

Theoretical SPCL 62.7 37.3 0.59/1.68 

Fiber mesh, 

untreated 
76.9 20.4 0.26/3.77 

Fiber mesh 

modified 
69.7 22.1 0.32/3.15 

 

As it can be seen from the table the measured oxygen content on the 

surface is lower than the theoretical one calculated for PCL. The difference 

between the bulk and surface composition of the material is not a surprise. It 

has been reported [27, 28] that in polymeric systems, the composition near to 

the surface can be markedly different from the bulk. In fact, due the high 

complexity of blend chemistry, different components may predominate at the 
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surface, depending on the blend composition, crystallinity of the components, 

complexity and degree of miscibility of the system, processing conditions and 

also the nature of surrounding environment [27-29]. However, after plasma 

modification the oxygen content on the surface increase and an O/C ratio of 

0.32 was measured (compared to 0.26 for the untreated material). Oxidation is 

not the only process which is taking place on the surface during the plasma 

treatment. As can be seen from the table the percentage of carbon was also 

changed after the treatment; it reduced from 76.9 to 69.7 confirming the 

presence of some etching. 

More detailed analyze of C1s core level spectra of SPCL fiber mesh 

samples (Figure 3) showed that they contain three main peaks – at 285 eV, 

which was assigned to the main carbon backbone, at 286.4 eV for −C−O− and 

at about 288.8eV for carboxyl bonded carbons. This is not unexpected since the 

main component of the blend poly(ε-caprolactone) has all of those bonds 

present in its structure.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. C1s core level spectra for wet-spun SPCL fiber meshes A) before and 
B) after Ar plasma treatment 
 

The intensity of the peaks at 286.4 eV and 288.8 eV increased after 

treatment as it can be seen from Figure 3. The created active species on the 

surface by Ar plasma are very reactive and can recombine with the oxygen from 
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the air. As a result surface functionalization with different oxygen containing 

groups occurs on the surface and this is the reason for the observed differences 

in the C1s core level spectra. It should be noted that the occurred surface 

oxidation is not as powerful as the one in which oxygen plasma is employed; in 

the latter case much more hydrophilic surfaces are produced which do not 

promote protein adsorption and consequently do not favour cell adhesion. 

3.3. Cell Culture  

Morphological Analysis 

The morphology and the shape of the osteoblast seeded onto both untreated 

and plasma treated fiber meshes showed a clear difference after different time 

of culturing (Figure 4, 5, and 6). It was observed that the cells were able to grow 

and making a film on the treated surface while they were in spindle-like shape 

with cytoplasmic extension on the untreated surface after 3 days of culture 

(Figure 4).  

 

 

 

 

 

 

 

 
Figure 4. SEM micrographs of osteoblast-like cells seeded on SPCL fiber mesh 
scaffolds after 3 days of culture; A) untreated, B) Ar plasma treated scaffold 
 

This was more evident after 7 days of culture (Figure 5.A and B). Both scaffolds 

were completely covered by cells, which indicate the ability of the scaffolds for 

osteoblast cell attachment and proliferation.  
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Figure 5.B. SEM micrographs of osteoblast-like cells seeded on A) untreated 
and B) Ar plasma treated SPCL fiber mesh scaffolds after 7 days of culture. 
(Picture at right shows the cells on the surface with higher magnification, 
(x1000)) 
 
However, the osteoblasts seeded on the treated fiber meshes were able to 

bridge between the fibers after 14 days of culture (Figure 6.A).  

 

 

 

 

 

Figure 6. SEM micrographs of osteoblast-like cells seeded on SPCL fiber mesh 
scaffolds after 3 days of culture; A) untreated, B) Ar plasma treated scaffold 
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Cell Viability 

Besides the cell morphology, changing the surface chemistry and topography 

also influenced the metabolic activity of the cells. As it was discussed above, 

the oxygen content of the fiber surfaces significantly increased after plasma 

treatment due to degradation and functionalization of the fiber surfaces. It is 

known that osteoblasts are attachment-dependent cell [30]. They can only 

produce and mineralize their extracellular matrix if they attach in a proper 

surface that allows specific cell-surface interaction. They also can recognize the 

changes in the surface topography if it is above 0.5 µm [31]. Therefore, DNA 

amount was significantly different between untreated and treated scaffolds after 

3 and 7 days of culture (p=0.045 and p=0.015 for 3 and 7 days, respectively) 

while it was not significant after 14 days (Figure 7). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Cell viability and proliferation of human osteoblast like cells 

determined by DNA. Error bars represent means ± SD for n=3.   

 

This can be explained by the effect of plasma treatment in the initial 

stage of culture. By plasma treatment, it is possible to increase the serum 

protein adsorption on the surfaces which would be resulted in an increase of 

initial cell attachment. Once they reached confluency, the rate of cellular death 

and proliferation becomes equal and hence the proliferation stops. This fact can 

explain the decrease in the difference between untreated and treated samples 

after 14 days of culture.  
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ALP activity 

Alkaline phosphatase is an enzyme which is used as an early marker for 

osteoblast differentiation. Although its exact role is not very clear, it is known 

that it plays an important role in bone matrix mineralization process [30]. 

Regarding the present experiments, ALP activity of the cells cultured onto the 

SPCL fiber meshes increased with the culture period (Figure 8). The enzyme 

activity of the cells was found to be even higher if the scaffolds were treated by 

plasma. On the other hand, the differences in the enzymatic activity between 

the cells seeded on untreated and treated scaffolds decreased after 14 days of 

culture. It has been reported that the deposition of extracellular matrix occurs 

before the mineralization starts [32]. This latest stage of cell differentiation 

precedes mineralization and thereby ALP enzyme activity which is associated 

with calcification tends to decrease [33, 34]. This phenomenon can explain the 

ALP results from the present study indicating that the cells cultured on 

untreated and treated scaffolds might be in different stage of differentiation. 

 

 

 

 

 

 

 

Figure 8. The ALP activity of human osteoblast like cells seeded on untreated 
and Ar plasma treated wet-spun SPCL fiber meshes. Error bars represent 
means ± SD for n=3. 

4. Conclusions 

A new route was described to produce starch-based fiber mesh scaffolds. The 

results of this study indicated that a simple wet-spinning technique could be 

used to obtain highly porous fiber mesh scaffolds from a biodegradable starch-
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polycaprolactone blend. The scaffolds could be formed, in a very reproducible 

manner, during the process by means of optimizing the processing conditions. 

Furthermore, the developed scaffolds were able to support osteoblast-like cell 

attachment and proliferation. As a second step, the scaffolds surfaces were 

modified by using Ar plasma. After plasma treatment, the surface morphology 

and surface chemical composition of the fibers were significantly changed. 

Osteoblast-like cells were able to recognize these physical and chemical 

changes on the surface and they showed higher cell viability and ALP enzyme 

activity on the treated scaffolds. 

As a final conclusion, these results suggested that starch-based fiber mesh 

scaffolds can be easily processed by a wet spinning technique into adequate 

scaffolds. Subjecting these scaffolds to Ar plasma can enhance their suitability 

for tissue engineering applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 



  127

References 

1. Hutmacher, D.W., Scaffold design and fabrication technologies for 

engineering tissues - state of the art and future perspectives. Journal of 

Biomaterials Science-Polymer Edition, 2001. 12(1): p. 107-124. 

2. Chen, G.P., et al., Culturing of skin fibroblasts in a thin PLGA-collagen 

hybrid mesh. Biomaterials, 2005. 26(15): p. 2559-2566. 

3. Gafni, Y., et al., Design of a filamentous polymeric scaffold for in vivo 

guided angiogenesis. Tissue Engineering, 2006. 12(11): p. 3021-3034. 

4. Gomes, M.E., et al., Influence of the porosity of starch-based fiber mesh 

scaffolds on the proliferation and osteogenic differentiation of bone 

marrow stromal cells cultured in a flow perfusion bioreactor. Tissue 

Engineering, 2006. 12(4): p. 801-809. 

5. Tuzlakoglu, K., et al., Nano- and micro-fiber combined scaffolds: A new 

architecture for bone tissue engineering. Journal of Materials Science-

Materials in Medicine, 2005. 16(12): p. 1099-1104. 

6. Woodfield, T.B.F., et al., Design of porous scaffolds for cartilage tissue 

engineering using a three-dimensional fiber-deposition technique. 

Biomaterials, 2004. 25(18): p. 4149-4161. 

7. Schmack, G., et al., Biodegradable fibers of poly(3-hydroxybutyrate) 

produced by high-speed melt spinning and spin drawing. Journal of 

Polymer Science Part B-Polymer Physics, 2000. 38(21): p. 2841-2850. 

8. Yuan, X.Y., Mak, A. F. T. Kwok, K. W. Yung, B. K. O., Yao, K. D., 

Characterization of poly(L-lactic acid) fibers produced by melt spinning. 

Journal of Applied Polymer Science, 2001. 81(1): p. 251-260. 

9. Williamson, M.R. and A.G.A. Coombes, Gravity spinning of 

polycaprolactone fibres for applications in tissue engineering. 

Biomaterials, 2004. 25(3): p. 459-465. 

10. Nelson, K.D., et al., Technique paper for wet-spinning Poly(L-lactic acid) 

and poly(DL-lactide-co-glycolide) monofilament fibers. Tissue 

Engineering, 2003. 9(6): p. 1323-1330. 

11. Williamson, M.R., H.I. Chang, and A.G.A. Coombes, Gravity spun 

polycaprolactone fibres: controlling release of a hydrophilic 



  128

macromolecule (ovalbumin) and a lipophilic drug (progesterone). 

Biomaterials, 2004. 25(20): p. 5053-5060. 

12. Williamson, M.R., R. Black, and C. Kielty, PCL-PU composite vascular 

scaffold production for vascular tissue engineering: Attachment, 

proliferation and bioactivity of human vascular endothelial cells. 

Biomaterials, 2006. 27(19): p. 3608-3616. 

13. Mwale, F., et al., The effect of glow discharge plasma surface 

modification of polymers on the osteogenic differentiation of committed 

human mesenchymal stem cells. Biomaterials, 2006. 27(10): p. 2258-

2264. 

14. Pashkuleva I., Reis R.L., Surface activation and modification- a way for 

improving the biocompatability of degradable biomaterails, in 

Biodegradable Systems in Tissue Engineering and Regenarative 

Medicine. 2004, CRC Press: Boca Ranton. p. 429-454. 

15. Garbassi F., M.M., Occhiello E, Polymer Surfaces: from Physics to 

Technology. 1994: John Willey&sons. 241-274. 

16. Huang, F.L., et al., Dynamic contact angles and morphology of PP fibres 

treated with plasma. Polymer Testing, 2006. 25(1): p. 22-27. 

17. Tsal, P.P., Surface modification of fabrics using a one-atmosphere glow 

discharge plasma to improve fabric wettability. Tex. Res. J., 1997: p. 

359. 

18. Ruegsegger, P., B. Koller, and R. Muller, A microtomographic system for 

the nondestructive evaluation of bone architecture. Calcified Tissue 

International, 1996. 58(1): p. 24-29. 

19. Muller, R., T. Hildebrand, and P. Ruegsegger, Noninvasive Bone-Biopsy 

- a New Method to Analyze and Display the 3-Dimensional Structure of 

Trabecular Bone. Physics in Medicine and Biology, 1994. 39(1): p. 145-

164. 

20. Hildebrand, T., et al., Direct three-dimensional morphometric analysis of 

human cancellous bone: Microstructural data from spine, femur, iliac 

crest, and calcaneus. Journal of Bone and Mineral Research, 1999. 

14(7): p. 1167-1174. 



  129

21. Maquet, V. and R. Jerome, Design of macroporous biodegradable 

polymer scaffolds for cell transplantation. Porous Materials for Tissue 

Engineering, 1997. 250: p. 15-42. 

22. Pashkuleva I., M.A.P., Vaz F. and Reis R. L., Surface modification of 

starch based biomaterails by oxgen plasma or UV-radiation. submitted, 

2006. 

23. Khang, G., et al., Cell and platelet adhesions on plasma glow discharge-

treated poly(lactide-co-glycolide). Bio-Medical Materials and Engineering, 

1997. 7(6): p. 357-368. 

24. Gugala, Z. and S. Gogolewski, Attachment, growth, and activity of rat 

osteoblasts on polylactide membranes treated with various 

lowtemperature radiofrequency plasmas. Journal of Biomedical Materials 

Research Part A, 2006. 76A(2): p. 288-299. 

25. Tahara, M., N.K. Cuong, and Y. Nakashima, Improvement in adhesion of 

polyethylene by glow-discharge plasma. Surface & Coatings Technology, 

2003. 174: p. 826-830. 

26. Inagaki, N., Plasma surface modification and plasma polymerization. 

1996, Pennsylvania: Technomic Publishing company. 22-28. 

27. Cho, K., J. Lee, and P.X. Xing, Enzymatic degradation of blends of poly 

(epsilon-caprolactone) and poly(styrene-co-acrylonitrile) by 

Pseudomonas lipase. Journal of Applied Polymer Science, 2002. 83(4): 

p. 868-879. 

28. Vikman, M., et al., Morphology and enzymatic degradation of 

thermoplastic starch-polycaprolactone blends. Journal of Applied 

Polymer Science, 1999. 74(11): p. 2594-2604. 

29. Duguay, D.G., et al., Development of a Mathematical-Model Describing 

the Enzymatic Degradation of Biomedical Polyurethanes.1. Background, 

Rationale and Model Formulation. Polymer Degradation and Stability, 

1995. 47(2): p. 229-249. 

30. Boyan, B.D., et al., Mechanisms involved in osteoblast response to 

implant surface morphology. Annual Review of Materials Research, 

2001. 31: p. 357-371. 

31. Anselme, K., Osteoblast adhesion on biomaterials. Biomaterials, 2000. 

21(7): p. 667-681. 



  130

32. Chim, H., et al., Efficacy of glow discharge gas plasma treatment as a 

surface modification process for three-dimensional poly (D,L-lactide) 

scaffolds. Journal of Biomedical Materials Research Part A, 2003. 

65A(3): p. 327-335. 

33. Salgado, A.J., et al., Preliminary study on the adhesion and proliferation 

of human osteoblasts on starch-based scaffolds. Materials Science & 

Engineering C-Biomimetic and Supramolecular Systems, 2002. 20(1-2): 

p. 27-33. 

34. Holy, C.E., M.S. Shoichet, and J.E. Davies, Engineering three-

dimensional bone tissue in vitro using biodegradable scaffolds: 

Investigating initial cell-seeding density and culture period. Journal of 

Biomedical Materials Research, 2000. 51(3): p. 376-382. 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A straight line may be the shortest distance between two points, 
but it is by no means the most interesting.                                                             
                      Dr. Who 
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CHAPTER VII 

NANO- AND MICRO-FIBER COMBINED SCAFFOLDS:  

A NEW ARCHITECTURE FOR BONE TISSUE ENGINEERING 
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Abstract 

One possible interesting way of designing a scaffold for bone tissue engineering 

is to base it on trying to mimic the biophysical structure of natural extracellular 

matrix (ECM). This work was developed in order to produce scaffolds for 

supporting bone cells. Nano and micro fiber combined scaffolds were originally 

produced from starch based biomaterials by means of a fiber bonding and a 

electrospinning, two step methodology. The cell culture studies with SaOs-2 

human osteoblast-like cell line and rat bone marrow stromal cells demonstrated 

that presence of nanofibers influenced cell shape and cytoskeletal organization 

of the cells on the nano/micro combined scaffolds. Moreover, cell viability and 

Alkaline Phosphatase (ALP) activity for both cell types was found to be higher in 

nano/micro combined scaffolds than in control scaffolds based on fiber meshes 

without nanofibers.   

Consequently, the developed structures are believed have a great potential on 

the 3D organization and guidance of cells that is provided for engineering of 3-

dimensional bone tissues. 
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1. Introduction 

Bone tissue engineering has become a rapidly expanding research area since it 

offers a new and promising approach for bone repair and regeneration. Several 

requirements have been considered for engineering bone, including choosing a 

cell type that matures/differentiates into bone cells with the proper form and 

phenotype, regulating the growth factors and designing a so-called ideal scaffold 

[1]. The requirements for the design and production of an ideal scaffold are also 

very complex and not yet fully understood. An ideal scaffold must be 

biocompatible both in bulk and degraded form, exhibit a porous, interconnected, 

and permeable structure to permit the ingress of cells and nutrients, and should 

exhibit the appropriate surface structure and chemistry for cell adhesion and 

proliferation. The processing techniques used to obtain polymeric scaffolds 

include solvent casting and particulate leaching, gas foaming, freeze drying, 

rapid prototyping, thermally induce phase separating, fiber bonding, melt molding 

and electrospinning, as reviewed elsewhere [2]. Several techniques aim to 

produce a scaffold which can mimic in some way the architecture of the natural 

extracellular matrix (ECM).  

Natural extracellular matrix (ECM) is composed of various protein fibrils 

and fibers interwoven within a hydrated network of glycosaminoglycan chains [3]. 

This network structure serves as a scaffold which can support tensile and 

compressive stresses by the fibrils and hydrated networks. Besides providing an 

appropriate microenvironment for cells, ECM is responsible for transmitting 

signals to cell membrane receptors that reach nucleus via intracellular signaling 

cascades. Therefore, the fibrillar and porous structure of ECM have a great 

influence on cell functionality, mainly on cell adhesion and migration. 

In last few years, the electrospining processes have attracted a great deal 

of attention as a way to try to mimic the structure of natural ECM by means of 

producing fibers down to 3nm [4]. This process is based on the generation of an 

electrical field between a polymeric solution (or a polymer melt) placed in a 

capillary tube with a pipette or needle of small diameter and a metal collector. 
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When the electrical field reaches its critical value, repulsive electrostatic force 

overcomes the surface tension of the polymeric solution and a charged jet is 

produced. This charged polymeric jet then undergoes a stretching process which 

is accompanied by the rapid solvent evaporation and results the formation of long 

and thin fibers [5]. Electrospining has been used to fabricate nanofibrous 

structures from a number of both natural synthetic polymers, such as collagen 

[6], chitosan [7], chitin [8], silk fibroin [9] and polyethyleneoxide [10], poly(DL-

lactide-co-glycolide) [11], poly(L-lactide) [12], and polycaprolactone [13], among 

many others. The produced nanofibrous polymeric networks have been proposed 

for engineering of many different tissues. For instance, Li et al. [14] reported that 

electrospun poly(ε-caprolactone) membranes could promote chondrocyte 

proliferation and provide  maintenance of chondrogenic phenotype. In another 

study, polyurethane and gelatin have been used to design a mesoscopically 

ordered structure for using as an artificial graft [15]. Recently, it has been shown 

that nanofibrous PCL mats could be used as a scaffold to support differentiation 

of human mesenchymal stem cell cultured in specific differentiation media [16]. 

Silk fibroin based nanofibrous matrices have also been tested with human bone 

marrow stromal cells and proposed as a scaffold for bone tissue engineering 

[17].        

Though there are many studies that have been proposing nanofibrous 

polymeric mats for tissue engineering, they have a limitation for 3D applications 

due to their pore size which is smaller than a cellular diameter and can not allow 

cell migration within the structure. Furthermore, the small size of the fibers tends 

not to maximize the points of cell attachment which is a negative effect on the 

expression of several factors and on cell spreading and differentiation. 

In the present study, we have developed a novel structure which 

combines polymeric micro and nanofibers in the same construct that is aimed to 

serve as a scaffold and mimic the physical structure of ECM for bone tissue 

regeneration, but simultaneously still providing the macro support that cells do 

require.  
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2. Materials&Methods 

2.1. Materials 

Starch-based scaffolds with a 70% porosity were prepared from a blend of 

starch/poycaprolactone (SPCL) (30/70 wt%) by a fiber bonding process as 

described elsewhere [18]. All the reagents used were analytical grade unless 

specified otherwise.  

2.2. Electrospinning Process 

Electrospinning was used to obtain nanofibers onto SPCL fiber mesh scaffolds. 

The aim was to impregnate, as much as possible, the micro-fiber scaffolds with 

electrospun nanofibers. The solution used in the electrospinning experiments 

was prepared by dissolving 1g of SPCL in 7 ml chloroform. After dissolution was 

completed, 3 ml of dimethylformamide (DMF) which has a high dielectric 

constant was added to the solution to enhance electrospinning of the solution.  

The polymer solution was then electrospun to the both side of the SPCL 

fiber mesh scaffolds. Briefly, a polymer solution was placed in a simple capillary 

glass tube vertically. A special designed collector was used to move samples 

through the electrospun polymeric jets. A 15kV voltage was provided by a high 

power supply at a distance of 10cm between a collector and a capillary tube for 

10s. 

Morphological Analysis  

The developed structures were analyzed by optical microscopy (Olympus, MIC-

D). To observe more detail in morphology of the nanofibers on the scaffolds, a 

scanning electron microscope (SEM) (Leica Cambridge S360 microscope) was 

also used.  

2.3. Cell Culture 

The developed structures were tested with two different cell type, a human 

osteoblast-like osteosarcoma SaOs-2 cell line and rat bone marrow stromal cells. 
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In both experiment sets SPCL fiber mesh scaffolds without electrospun 

nanofibers were used as controls.  

In the cell culture experiments with a human osteoblast-like SaOs-2 cell 

line, cells were seeded onto the scaffold using a density of 3x105 cells/scaffolds 

and allowed to grow for two weeks, with medium (DMEM low glucose 

supplemented with 10% Foetal Bovine Serum, 1% antibiotics/antimicotics 

changes every 2 days.  

Rat bone marrow stromal cells (RBMSC) were obtained from the femoras 

and tibias of 4 weeks-old male Wistar  rats (Charles River, Spain) as described 

elsewhere [19]. Briefly, femurs and tibias were aseptically excised, cleaned of 

soft tissue, and washed in α-MEM (Life Technologies, Grand Island, NY) 

containing 10 times more amount of normal antibiotics concentration in order to 

avoid contamination during the harvest. Then, the epiphyses were cut off, and 

the diaphyses flushed with 5 ml of complete medium [α-MEM (minimal essential 

medium); Eagle, Sigma, St. Louis, MO], supplemented with 10 % FBS (foetal 

bovine serum; Biochrome), 50 µg/mL ascorbic acid (Sigma), 50 µg/mL 

gentamycin, 1% antibiotics/antimicotics, 10 mM β-glycerophosphate (Sigma), 

and 10-8M dexamethasone (Sigma)]. Cells were cultured at 37 ºC in a humidified 

atmosphere containing 5 % of CO2. 

The confluent cell monolayers were detached using trypsin/EDTA (0.25% 

tyripsin/0.02% EDTA, Sigma) and resuspended in complete medium. A 50µl of 

cell suspension containing 3x105 cells were pippeted onto the each scaffold. 

Cell/scaffold constructs were incubated at 37C for 2h to allow RBMSC to diffuse 

into and adhere to the scaffolds before adding 1 ml of culture medium to each 

well.  The cells on the scaffolds were then allowed to grown for 2 weeks at 37°C 

in a humidified atmosphere containing 5% of CO2 with medium changes every 2-

3 days. 

Morphological Analysis 

After 7 and 14 days of culture, cell/scaffold constructs were fixed in 2.5% 

glutaraldehyde, dehydrated through graded series of ethanol and dried. The 
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samples were mounted onto brass stubs, sputter coated with cold and analyzed 

under a Scanning Electron Microscope (SEM) at an accelerating voltage 15kV.  

Cell proliferation Assay 

After 7 and 14 days of culture, cell viability was assessed by using Cell Titer 96® 

Aqueous One Solution Cell proliferation Assay kit (Promega, USA). This test is 

based on the bioreduction of the substrate, (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2(4-sulfophenyl)-2H tetrazolium) (MTS), into a brown 

formazan product by NADPH or NADP produced by dehydrogenase enzymes in 

metabolically active cells. For this assay, culture medium was removed, samples 

were washed with PBS before the addition of serum free medium plus Cell Titer 

96® Aqueous One Solution (5/1 ratio). The samples were then incubated for three 

hours at 37 ºC in a humidified atmosphere containing 5 % of CO2. A 100 µl of 

incubated medium was transferred to 96-well plate culture plate and the optical 

density was read at 490 nm in a micro-plate reader (Synergy HT, Bio-tek). 

Alkaline Phosphatase (ALP) Activity 

Alkaline phosphatase (ALP) activity from the scaffolds/ cells constructs was 

quantified by the specific conversion of p-nitrophenyl phosphate (pNPP) into p-

nitrophenol (pNP). The enzyme reaction was carried out at 37°C for 1 h and then 

stopped by a solution containing 2 M NaOH and 0.2 mM EDTA in distilled water. 

The absorbance of p-nitrophenol formed was determined at 405 nm with a 

reference filter at 620 nm. A standard curve was made using pNP values ranging 

from 0 to 600 µmol/ml. The results were expressed as µmol of pNP 

produced/ml/h. Please note that ALP activity was determined in weekly collected 

supernatant and lysed cell for SAOS-2 and RBMSC, respectively. 
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3. Results&Discussion 

3.1. Nano- and micro fiber combined scaffolds  

Figure 1.A presents the images of the newly designed combined nano/micro fiber 

structures. As it can be seen, nanofibers could be randomly electrospun on the 

microfibers and they present the structure that looks like a nanobridge between 

the microfibers which is very similar to the architecture of ECM [20]. The average 

diameter of produced SPCL nanofiber was measured to be around 400nm 

(Figure 1.B). Moreover, nanofibers presented a fine morphology without 

presence of beads which is refered as a common problem of electropsun fibers 

[4]. These results also confirmed that the processing parameters were 

successfully optimized in order to produce fine nanofibers from SPCL. 

 

 

 

 

 

Figure 1. Microscopic images of the scaffolds. Figure B presents a detailed view 
of nanofibers as observed by SEM. 

3.2. Cell Culture  

Morphological Analysis 

Regarding cell culture studies with SaOs-2 and RBMSC, cell responses in both 

cases were clearly different to the nano/micro fiber combined scaffolds when 

directly compared with the control fiber mesh scaffolds. It was observed that 

there were significant differences, mainly those related with cell shape and 

morphology, which could indicate that the patterned layered by the nanofibers 

A 
B 
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was leading to a different cytoskeleton rearrangement on the seeded cells. SEM 

images showed that cells had covered microfibers and started to fill the spaces 

between the latter using for that purpose the previously laid down nanofibers 

after 7 days of culture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Human osteoblast like cells (SAOS-2) seeded on nano- and micro-fiber 
combined scaffolds and control (scaffolds without nanofibers); A) after 7 days, B), 
C) and D) after 14 days of culture. 
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Figure 3. Human osteoblast like cells on control scaffolds after 14 days of culture 
 

Figure 2 shows confluent growth on combined scaffolds and control by the SaOs-

2 osteoblast-like cell line. As it can be observed the cell population growing on 

the combined scaffolds presented a different organization being able to bridge 

between microfibers. The presence of nanofibers also led to the changes in cell 

morphology (Figure 2.C and D). Cells along the nanofibers showed very 

stretched morhologhy. This fact can be particular useful as this cytoskeletal 

rearrangement could affect gene expression, as described by a report of Curtis 

and Wilkonson [21]. It has been claimed that when the cells stretch themselves, 

the receptors are also stretched and activated. This results on the expression of 

different genes than those observed in unstretched cells. This particular 

hypothesis will be further confirmed in forthcoming (already ongoing) studies. A 

similar cell response was observed in the study with RBMSC (Figure 4). After 14 

days of culture, the scaffolds were covered by cells which used nanofibers to 

bridge between microfibers (Figure 4.B and C). 

It is known that human cells can attach and organize themselves well 

around the fibers diameter smaller than those of the cells [22]. This approach 

might explain the behavior of the cells on the developed combined scaffolds. This 

cell organization could provide better and faster colonization of the scaffolds with 

cells which is of main importance for tissue engineering approaches. 

 

 



 141

A 

B 

D 

C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Rat bone marrow stromal cells (RBMSC) seeded on nano- and micro-
fiber combined scaffolds and control (scaffolds without nanofibers); A) after 7 
days, B) and C) after 14 days of culture. D) Rat bone marrow stromal cells on 
control scaffolds after 7 days of culture  
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Cell viability 

The effect of nano/micro fiber combination on cell viability and proliferation of 

both cell types was tested using a MTS assay. The MTS assay is based on a 

reduction reaction which reduced MTS reagent to brown formazan product when 

incubated with viable cells. Thus, the absorbance of formazan indirectly reflected 

the metabolic activity of cells, which is also associated with cell number.  

 

 

 

 

 

 

 

 

 

 

Figure 5. Cell viability and proliferation of human osteoblast like cells determined 
by MTS. Error bars represent means ± SD for n=3.   
 

 

 

 

 

 

 

 

 

 

Figure 6. Cell viability and proliferation of rat bone marrow stromal cells 
determined by MTS. Error bars represent means ± SD for n=3. 
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Figure 5 and 6 present the MTS results of cell culture studies with SAOS-2 and 

BMSC, respectively. After 7 and 14 days of culturing O.D. values were found to 

be considerably different for combined scaffolds in both studies. These results 

indicate that both cell types seeded on combined scaffolds showed increasing 

metabolic activity and growth rates when directly compared with the control. This 

fact is closely related with the previously deposited nanofiber mesh. While 

reducing large void spaces between the pores the mesh is creating additional 

structures where cells can adhere from the very beginning, avoiding at the same 

time that the cell suspension drops through the pores until it reaches the bottom 

of the wells. This particular phenomena shows the validity of the proposed 

methodology for increasing the cell seeding and culturing conditions during the 

development of bone tissue engineered constructs. 

ALP Activity 

ALP is a well-known enzyme used as a marker of the osteogenic phenotype, 

which catalyzes the hydrolysis of phosphate esters at an alkaline pH [23]. The 

skeletal isoform of ALP is a glycoprotein found on the cell membrane of 

osteoblasts [24]. It has been also demonstrated that it plays an important role in 

bone matrix mineralization process.  

Figure 7 and 8 shows the ALP activity of SaOs-2 and RBMSC cultured on 

the combined scaffolds and control scaffolds. In both cases, the enzyme activity 

of scaffolds with nano fibers was higher than that of control in the end of first 

week. In the case of RBMSC, the differences in enzyme activity became even 

higher after a second week of culture. This is probably related with the different 

proliferation rates of the cells seeded on the different scaffolds and at the same 

time with a probable more induced osteogenic phenotype. The latter hypothesis 

might be related with the cytoskeleton rearrangement caused by the nanofibers. 

However further studies are needed to evaluate the influence of these structures 

on the differentiation of osteogenic cells. 
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Figure 7. The ALP activity of  human osteoblast like cells seeded on SPCL nano- 
and micro-fiber combined scaffolds and control (scaffolds without nanofibers). 
Error bars represent means ± SD for n=3. 
 
 
 

 

 

 

 

Figure 8. The ALP activity of rat bone marrow stromal cells seeded on SPCL 
nano- and micro-fiber combined scaffolds and control (scaffolds without 
nanofibers). Error bars represent means ± SD for n=3. 

4. Conclusions 

An electrospinning technique was used to produce nanofibers on SPCL fiber 

meshes in order to combine nano- and microfibers in the same 3D scaffold 

architecture. It was clearly demonstrated that cell response changed completely 

with the addition of nanofibers on the fiber meshes. Osteoblasts were organized 
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to bridge between microfibers and this resulted in scaffolds completely filled with 

cells after two weeks of culture. Moreover, the presence of nanofibers had an 

influence in cell morphology which was observed to be much more streched and 

spread. The scaffolds without nanofibers did not show this kind of organization 

and the morphology of cells remained normal, and forming a continuous cell 

monolayer over microfibers. Furthermore, cells seeeded on combined scaffolds 

showed higher viability and ALP activity than that on control. 

The results from this study indicate that nano- and micro-fiber scaffolds can 

provide an ideal structure for cell deposition and organization. Their unique 

architecture which supports and guides the cells makes them a suitable 

candidate for bone tissue engineering applications 
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CHAPTER VIII 

GENERAL CONCLUSIONS 
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GENERAL CONCLUSIONS 

The main goal of this thesis was to be able to design adequate fiber structures 

from natural origin polymers for being used in tissue engineering applications, 

particularly in bone tissue repair approaches. The studies discussed herein can 

be divided in two main parts: 

• Development of chitosan-based fiber structures; 

• Development of starch-based fiber structures.  

Development of chitosan-based fiber structures; 

In the studies of this part, chitosan, which is a biocompatible, biodegradable and 

non-toxic natural polymer, was chosen for fiber production.  Fibers with different 

diameters were produced by means of wet spinning for use in different purposes. 

Chitosan fibers with diameter around 200µm presented an oriented surface 

morphology due to rolling up procedure during processing, which could be called 

as a kind of stretching. This property of the fibers would then provide a 

mechanical strength for the combined architecture where the chitosan fibers 

were used to reinforce the structure. These combined architectures were 

developed from coralline origin hydroxyapatite particles, chitosan membranes 

and chitosan fibers being aimed serve as a scaffold for tissue engineering or to 

be used in guided tissue regeneration by mimicking the arrangements in natural 

bone.     

Chitosan fibers with a smaller diameter were also produced, with the same 

processing procedure, and shaped into 3D randomly oriented fiber meshes. 

These fiber meshes showed to support well cell adhesion of osteoblast-like cells. 

Considering the use of these scaffolds in bone regeneration, it was important to 

have osteoconductivity in order that osteoblast and osteoprogenitor cells can 

easily attach and migrate in the scaffold. Based on this fact, the surface of 

chitosan fiber mesh scaffolds were pre-coated with a bone-like apatite layer. A 

new coating approach, using a spray, applied in these experiments due the 
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complex structure of chitosan fiber meshes, was herein proposed. As a result of 

coating, the osteoblast cell behaviour completely changed when they were 

cultured on the coated scaffolds.    

Development of starch-based fiber structures 

In this part, two different types of scaffolds were developed from a 

stach/polycaprolactone blend: (i) wet-spun SPCL fiber meshes and (ii) nano- and 

micro-fiber combined scaffolds.  

The wet spinning technique was also used in this part as an alternative 

route for production of SPCL fiber mesh scaffolds. By this technique, the physical 

properties (such as diameter, thickness, porosity, etc.) of the scaffolds can be 

adjusted depending on the specifications. Another important advantage of using 

this technique is that the scaffolds can be formed during processing without any 

need for a further processing step. In this part of the studies, it was possible to 

obtain the fiber mesh scaffolds with adequate porosity and the mean pore size 

which were in the proposed range for an ideal scaffold for bone tissue 

engineering. Considering the relation between cell attachment and surface 

properties of a scaffold, the ability of the scaffold surface for cell attachment 

could be enhanced by applying an Ar plasma treatment. The results from the cell 

culture studies demonstrated that the treatment worked quite effectively on 

enhancing cell attachment and proliferation.      

It is known that, the ideal scaffold should be one which closely mimics the 

natural extracellular matrix (ECM). Having this in consideration, we originally 

developed nano- and micro-fiber combined scaffolds from the same blend in the 

final study of the thesis. The basic point of this concept was to use nanofibers for 

mimicking the physical structure of natural ECM. The micro support for cells was 

provided by SPCL microfiber meshes produced by melt spinning. The presence 

of nanofibers in the structure showed great influence on cell morphology, viability 

and differentiation. In fact, cells cultured on combined scaffolds presented 

different cell organization than that on SPCL fiber meshes without nanofibers. 
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The cells tended to stretch themselves along the nanofibers and to bridge 

between microfibers. This stretched morphology led to a difference in 

differentiation rate which could be related with the different gene expression 

profiles. 

Furthermore, the presence of nanofibers seemed to be an advantage for 

increasing the cell seeding efficiency, resulting in an increase in cell viability.  

Final Remarks/Future Research 

The results obtained in the studies discussed in this thesis showed that, tissue 

engineering scaffolds with different shapes and properties can be designed by 

using fibers from natural origin polymers. One of the most promising designs 

seemed to be the one which combines the nano and microfibers in the same 

structure. By means of following the same concept, new scaffolds can be 

designed in the presence of different natural polymers such as collagen, silk 

fibroin (consists of glycosaminoglycans), which are presented in the natural 

extracellular matrix. The author of the present thesis wants to play an active role 

on taking forward these kind of approaches.  
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