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Abstract

We present an algorithm to compute the pointlike subsets of a finite semigroup with respect to the pseudovariety

R of all finite R-trivial semigroups. The algorithm is inspired by Henckell’s algorithm for computing the pointlike

subsets with respect to the pseudovariety of all finite aperiodic semigroups. We also give an algorithm to compute

J-pointlike sets, where J denotes the pseudovariety of all finite J-trivial semigroups. We finally show that, in contrast

with the situation for R, the natural adaptation of Henckell’s algorithm to J computes pointlike sets, but not all

of them.
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1. Introduction

The notion of pointlike set in a finite semigroup or monoid has emerged, in a particular case, from the type
II conjecture of Rhodes [21] proved by Ash [14]. It proposed an algorithm to compute the kernel of a finite
monoid with respect to finite groups, that is, the submonoid of elements whose image by any relational
morphism into a group contains the neutral element of the group. The notion of kernel has then been
generalized to other semigroup pseudovarieties: for a pseudovariety V and a semigroup S, a subset X of S is
V-pointlike if any relational morphism from S into a semigroup of V relates all elements of X with a single
element of T . The kernel consists in those G-pointlike sets which are related with the neutral element, for
any relational morphism into a finite group (where G denotes the pseudovariety of groups).

Ash’s theorem has a number of deep consequences. It can be used to derive a decision criterion for Mal’cev
products U©m V of two pseudovarieties U and V. It is known [24, 25, 16] that this operator does not preserve
the decidability of the membership problem. Yet, a semigroup is in U©m G if and only if its kernel belongs
to U. Hence, Ash’s result implies that if U is a decidable pseudovariety, then so is U©m G. (This also gives the
decidability of semidirect products of the form U∗G for local decidable pseudovarieties U.) Pin and Weil [23]
described U©m V by a pseudoidentity basis obtained by substituting in a basis of U the variables {x1, . . . , xn}
by pseudowords {w1, . . . , wn} such that V satisfies w2

1 = w1 = w2 = · · · = wn. The projection of such a set
{w1, . . . , wn} into a finite semigroup by an onto continuous homomorphism is called V-idempotent pointlike.
On the other hand, it is easy to deduce from the definition of Mal’cev product that if U is decidable and V

has decidable idempotent pointlikes, then U©m V is decidable (cf. [20, Proposition 4.3]).
There are relatively few results concerning the computation of pointlike sets. Henckell presented algorithms

for computing A-pointlike sets [19] and A-idempotent pointlike sets [20] for the pseudovariety A of aperiodic
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semigroups. As a consequence, the Mal’cev product V©m A is decidable for any decidable pseudovariety V.
The kernel computation for the pseudovariety of Abelian groups was settled by Delgado [17]. For further
properties of pointlike sets, see [26, 25, 27, 15].

This paper presents algorithms to compute R- and J-pointlike and idempotent pointlike subsets of a given
finite semigroup, where R (resp. J) is the pseudovariety of all R-trivial (resp. J-trivial) semigroups. It is
already known that both R and J have decidable (idempotent) pointlikes [10, 9, 12, 8]. However, for R,
the algorithms derived from [10, 9] are not very effective. For instance, the algorithm of [9] consists in two
semi-algorithms. The test whether X ⊆ S is R-pointlike exploits a property called κ-tameness for R: it
is sufficient to enumerate all terms built from letters using the multiplication and the ω-power projecting
onto X , and to test whether they coincide over R. On the other hand, testing whether X is not pointlike
can always be done, for any pseudovariety V, by enumerating relational morphisms into semigroups of V.
Furthermore, the algorithms of [10, 12] involve elaborate constructions on languages.

In contrast, the algorithms presented in the present paper only use the Green structure of the power
semigroup of S. The algorithm for R is adapted from Henckell’s construction [19] for the pseudovariety A.
Perhaps surprisingly, the algorithm inspired by Henckell’s construction does not work for J, and a coun-
terexample is exhibited. The algorithms can be adapted to the computation of idempotent pointlike sets,
as shown in Section 5, which provides a new proof of the decidability of V©m R and V©m J if V is decidable.
The former algorithms for R were again noneffective and rather involved. The algorithm based on Henckell’s
construction has an exponentially bounded number of steps, each of them requiring the computation of the
Green relation R for a subsemigroup generated by some subset, in the power semigroup P(S). While this
can be costly in the worst case, further investigations are needed to evaluate the practical behaviour of the
algorithm. Alternative approaches for J can be found in [8, 12].

The paper is organized as follows: notation is settled in Section 2, the algorithm for computing R-pointlikes
is presented in Section 3, and the one for computing J-pointlikes is presented in Section 4. Section 5 shows
how to adapt the algorithms to compute idempotent pointlike sets for both pseudovarieties. We present
several examples in Section 6. Finally, Section 7 discusses complexity issues and open problems.

2. Notation

We assume that the reader is acquainted with notions concerning semigroup pseudovarieties and profinite
semigroups. See [5] for an introduction, and [4, 2] for more details. We recall some notation and terminology.

2.1. Semigroups

Let S be a semigroup. The Green equivalence relation R ⊆ S × S is defined by s R t if sS1 = tS1, where
S1 is the semigroup S itself if it has a neutral element, or the disjoint union S ⊎ {1} otherwise, where 1 acts
as a neutral element. When T is a subsemigroup of S, we write s RT t for sT 1 = tT 1. A semigroup S is
R-trivial if the relation R on S coincides with the equality on S. We also recall that the Green equivalence
relation J ⊆ S × S is defined by s J t if S1sS1 = S1tS1 and call J-trivial a semigroup in which this relation
is the equality.

The power semigroup P(S) of S is the semigroup of subsets of S under the multiplication defined by
XY = {xy : x ∈ X, y ∈ Y }, for X,Y ⊆ S. Let U be a subsemigroup of P(S). We define DR(U) to be
the subsemigroup generated by the subsets of the form

⋃

R =
⋃

X∈RX , where R is an R-class of U . We
also define ↓U to be the set

⋃

X∈U P(X) and we note that ↓U is again a subsemigroup of P(S). We let
CR(U) = ↓DR(U). We let C0

R
(S) be the subsemigroup of P(S) consisting of all singleton subsets of S. For

n > 0, we define, recursively, Cn
R
(S) = C

R

(

Cn−1
R

(S)
)

. Finally, we put Cω
R
(S) =

⋃

n>0 C
n
R
(S).

In the following, A denotes a finite set, and V a semigroup pseudovariety. We let S be the pseudovariety
of all finite semigroups, R be the pseudovariety of all finite R-trivial semigroups and J be the pseudovariety
of all finite J-trivial semigroups. The A-generated relatively V-free profinite semigroup is denoted by ΩAV.
Its elements are called pseudowords. We denote by ΩAV the subsemigroup of ΩAV generated by A.
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2.2. Relational morphisms and pointlike sets

Denote by pV : ΩAS → ΩAV the unique continuous homomorphism sending each free generator to itself.
Let Sl be the pseudovariety of all finite semilattices (that is, idempotent and commutative semigroups). It
is well known that ΩASl is isomorphic to P(A), the union-semilattice of subsets of A. The projection pSl is
commonly denoted by c, and called the content. For a word x ∈ A+, the content c(x) of x is the set of letters
occurring in x.

A relational morphism µ between two semigroups S and T is a subsemigroup of S×T whose projection on
S is onto. For s ∈ S, we let µ(s) = {t ∈ T : (s, t) ∈ µ}. A subset X of S is called µ-pointlike if

⋂

x∈X µ(x) 6= ∅.
and V-pointlike if it is µ-pointlike for every relational morphism µ between S and a semigroup of V. We
denote by PV(S) the set of V-pointlike subsets of S. It is easy to check that PV(S) is a subsemigroup of
P(S). Given a finite A-generated semigroup S and an onto continuous homomorphism ψ : ΩAS → S, we
denote by µV the relational morphism pV ◦ ψ−1 between S and ΩAV. The morphism µV can be used to test
whether a subset of an A-generated semigroup is V-pointlike [3, 4, 23].

Proposition 2.1. Let ψ : ΩAS → S be a continuous homomorphism onto a finite semigroup S, and let
µV = pV ◦ ψ−1. Then, any subset of S is V-pointlike if and only if it is µV-pointlike.

In other words, V pointlike sets of an A-generated semigroup are obtained by projecting onto S pseu-
dowords of ΩAS whose pV-values coincide.

2.3. The pseudovariety R

The pseudovariety R has been extensively studied in [11, 10, 13, 8, 7, 9]. We will use two useful and basic
properties of this pseudovariety. For x ∈ ΩAS, a factorization of the form x = x1ax2 with a /∈ c(x1) and
c(x1a) = c(x) is called a left basic factorization of x. Using compactness of ΩAS, continuity of the content
function, and the fact that ΩAS is dense in ΩAS, it is easy to show that every non-empty pseudoword admits
at least one left basic factorization. The following result from [6] is the fundamental observation for the
identification of pseudowords over R.

Proposition 2.2. Let x, y ∈ ΩAS and let x = x1ax2 and y = y1by2 be left basic factorizations. If R |= x = y,
then a = b and R satisfies the pseudoidentities x1 = y1 and x2 = y2.

If the content of x2 is still the same as the content of x, then one may factorize x2, taking its left basic
factorization. Iterating this process yields the factorization x ∈ ΩAS as

x = x1a1x2a2 · · ·xkakx
′
k (2.1)

where each xi ·ai · (xi+1ai+1 · · ·xkakx
′
k) is a left basic factorization, and c(xiai) is constant. We call (2.1) the

k-iterated left basic factorization of x. If k is maximum for such a factorization of x (that is, c(x′k) 6= c(x)),
then we set ‖x‖ = k. If there is no such maximum, we set ‖x‖ = ∞. The following results can be found
in [13, 29].

Proposition 2.3. Let x, y ∈ ΩAS such that R |= x = y. Then, c(x) = c(y) and ‖x‖ = ‖y‖.

The function ‖·‖ also characterizes idempotents over R.

Proposition 2.4. Let x ∈ ΩAS. Then R |= x = x2 if and only if ‖x‖ = ∞.

From the above propositions, we deduce the following technical result.

Corollary 2.5. Let S ∈ S and let ψ : ΩAS → S be an onto continuous homomorphism. Let x1, . . . , xn ∈ ΩAS

be such that R |= xi = xj for 1 6 i, j 6 n. Let B = c(x1) and k 6 ‖x1‖. Then each xi has a factorization

xi = xi,1a1xi,2a2 · · ·xi,kakzi,k, (2.2)
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where neither xi,ℓ nor aℓ depend on k > ℓ, and

c(xi,ℓ) = B \ {aℓ}, R |= xi,ℓ = xj,ℓ and R |= zi,k = zj,k (1 6 ℓ 6 k and 1 6 i 6 n). (2.3)

Further, either no pR(xi) is idempotent and c(zj,k) $ B for k = ‖x1‖, or all pR(xi) are idempotents. In the
latter case, (2.2) holds for all k > 0, and there exist indices p and q such that 1 6 p < p+ q 6 |S|n + 1 and,
for i = 1, . . . , n, we have

ψ(xi,1a1 · · ·xi,pap) = ψ(xi,1a1 · · ·xi,pap) · ψ(xi,p+1ap+1 · · ·xi,p+qap+q)
ω (2.4)

Proof. By Proposition 2.3, c(xi) and ‖xi‖ are constant. By Proposition 2.4, pR(xi) are all idempotent, or
none of them is. Next, (2.2) and (2.3) simply express properties of the k-iterated left basic factorization (for
k = ‖xi‖ if ‖xi‖ is finite, and for all k otherwise). Finally, αk =

(

ψ(xi,1a1 · · ·xi,kak)
)

16i6n
∈ Sn, so there

exist 1 6 p < p+ q 6 |S|n + 1 such that αp = αp+q, which yields (2.4).

3. An algorithm to compute R-pointlike sets

The aim of this section is to establish the following result.

Theorem 3.1. If S is a finite semigroup then Cω
R
(S) = PR(S).

Observe that Cω
R
(S) can be computed iteratively, so that Theorem 3.1 establishes an algorithm to compute

PR(S). It is similar to Henckell’s algorithm to compute PA(S). We first treat one inclusion of Theorem 3.1.

Lemma 3.2. Let S be a finite semigroup. If T is a subsemigroup of PR(S), then so is C
R
(T ).

Proof. Obviously C
R
(T ) is a subsemigroup of P(S). Hence, it suffices to show that for X ∈ T , we have

⋃

Y RT X Y ∈ PR(S). Let {X1, . . . , Xn} be the R-class of X in T . There exist Y1, . . . , Yn ∈ T such that
Xi+1 = XiYi for 1 6 i < n and X1 = XnYn. Therefore, we have X1 = X1(Y1 · · ·Yn) = X1(Y1 · · ·Yn)ω , and
for i > 1, Xi = X1(Y1 · · ·Yn)ω

∏i−1
k=1 Yk. Hence

⋃

Y RT X

Y = X1(Y1 · · ·Yn)ω

n
⋃

i=1

i−1
∏

k=1

Yk

Now,X1 and all Yi’s are R-pointlike since T is a subsemigroup of PR(S). Therefore, there exist x1, y1, . . . , yn ∈
ΩAR such that X1 ⊆ µ−1

R
(x1) and for i = 1, . . . , n, Yi ⊆ µ−1

R
(yi). Since R |= x1(y1 · · · yn)ωy1 · · · yi−1 =

x1(y1 · · · yn)ω , we obtain
⋃

Y RT X Y ⊆ µ−1
R

(x1(y1 · · · yn)ω).

Since C0
R
(S) is a subsemigroup of PR(S), we obtain one of the inclusions of Theorem 3.1.

Corollary 3.3. If S is a finite semigroup then Cω
R
(S) ⊆ PR(S).

In the rest of the section, we complete the proof of Theorem 3.1, which depends on several intermediate
results.

3.1. Behaviour of CR and Cω
R

under onto homomorphisms

The following result is crucial in the sequel. It is part of a well-known lifting property of Green’s relations
under onto homomorphisms [22, Fact 2.1, p. 160].

Lemma 3.4. Let η : U → V be an onto homomorphism between finite semigroups. Then, for every R-class
R′ of V there is an R-class R of U such that η(R) = R′.

Given an homomorphism ϕ : S → T between finite semigroups, we let ϕ̄ : P(S) → P(T ) be the associated
homomorphism defined by taking subset images. Note that if ϕ is onto, so is ϕ̄.
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Proposition 3.5. Let ϕ : S → T be an onto homomorphism between finite semigroups. Let U be a subsemi-
group of P(S) and let V = ϕ̄(U) be its image in P(T ). Then CR(V ) = ϕ̄

(

CR(U)
)

.

Proof. Since ϕ respects the Green relations, given an R-class R of U , ϕ̄(R) is contained in some R-class
R′ of V and so ϕ̄(

⋃

R) ⊆
⋃

R′. It follows that ϕ̄
(

DR(U)
)

⊆ CR(V ). Moreover, if X ⊆ S is such that
ϕ̄(X) ∈ CR(V ) and Y ⊆ X , then the set ϕ̄(Y ) is contained in ϕ̄(X) and therefore it also belongs to CR(V ).
Hence ϕ̄

(

CR(U)
)

⊆ CR(V ).
For the converse, suppose that R′ is an R-class of V . Then, by Lemma 3.4, there is an R-class R of U

such that ϕ̄(R) = R′. It follows that ϕ̄(
⋃

R) =
⋃

R′. This implies that DR(V ) ⊆ ϕ̄
(

DR(U)
)

. Suppose next
that X ′ ∈ DR(V ) and Y ′ ⊆ X ′. Then there exists X ∈ DR(U) such that ϕ̄(X) = X ′, which implies that
Y ′ = ϕ̄(Y ), where Y = ϕ̄−1(Y ′) ∩X , whence Y ∈ CR(U). Hence CR(V ) ⊆ ϕ̄

(

CR(U)
)

, which completes the
proof of the proposition.

Iterating the application of Proposition 3.5, we obtain the following result.

Corollary 3.6. If ϕ : S → T is an onto homomorphism between finite semigroups, then ϕ̄
(

Cω
R
(S)

)

= Cω
R
(T ).

The following statement appears in [18, Lema 8.1.2].

Lemma 3.7. Let ϕ : S → T be an onto homomorphism between finite semigroups, and let V be a pseudova-
riety. Then ϕ̄(PV(S)) = PV(T ). That is, ϕ̄ induces an onto homomorphism from the semigroup PV(S) of
V-pointlike sets of S to the corresponding semigroup PV(T ) of T .

Proof. Let X ⊆ S be a V-pointlike set and let µT : T → U ∈ V be a relational morphism. Consider
the relational morphism µT ◦ ϕ : S → U . Since X is V-pointlike, we have

⋂

x∈X µT ◦ ϕ(x) 6= ∅, that is,
⋂

y∈ϕ(X) µT (y) 6= ∅, so that ϕ(X) is µT -pointlike. Therefore, we have shown that ϕ̄(PV(S)) ⊆ PV(T ).
For the other inclusion, let Y ⊆ T be V-pointlike and let µS : S → U ∈ V be a relational morphism.

Consider the relational morphism µS ◦ϕ−1 : T → U . Since Y is V-pointlike, we have
⋂

y∈Y µS ◦ϕ−1(y) 6= ∅.
This means that for each y ∈ Y , there exist xy ∈ ϕ−1(y) such that

⋂

y∈Y µS(xy) 6= ∅. Let X = {xy : y ∈ Y }.
Then we have by definition ϕ(X) = Y , and

⋂

x∈X µS(x) 6= ∅, meaning that X is µS-pointlike.

We say that a semigroup S has a content homomorphism c if there exists an onto continuous homomor-
phism ψ : ΩAS → S and a homomorphism c : S → P(A) into the union-semilattice of subsets of A, such
that c ◦ ψ sends each a ∈ A to the singleton subset {a}. In this case, the content of s ∈ S is c(s).

Corollary 3.8. Assume that the equality Cω
R
(S) = PR(S) holds for all finite semigroups with a content

homomorphism. Then it holds for all finite semigroups.

Proof. Let T be a finite semigroup, let ψ : A+ → T be an onto homomorphism, and let S be the sub-
semigroup of T ×P(A) generated by all pairs (ψ(a), a). Then, S has a content homomorphism given by the
projection on the second component, so that Cω

R
(S) = PR(S) by hypothesis. Let ϕ : S → T be the onto

homomorphism mapping (ψ(x), x) to ψ(x). We have therefore ϕ̄
(

Cω
R
(S)

)

= ϕ̄(PR(S)), that is, using both
Lemma 3.7 and Corollary 3.6, Cω

R
(T ) = PR(T ).

3.2. The algorithm à la Henckell

In this subsection, we assume that we are given a finite semigroup S with an onto continuous homomor-
phism ψ : ΩAS → S and a content homomorphism. We first show that the knowledge of R-pointlike sets
consisting only of idempotents is sufficient to compute all R-pointlike sets (Proposition 3.10 below).

Lemma 3.9. Let X be an R-pointlike subset of S which consists of idempotents. Then all elements of X
have the same content B, and Xψ(B+) is an R-pointlike subset of S.
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Proof. Since X ∈ PR(S), there exists, by Proposition 2.1, a function δ : X → ΩAS such that pR ◦ δ is a
constant function, and ψ(δ(e)) = e for every e ∈ X . Since e is idempotent, we obtain ψ(δ(e)ω) = e, and we
may as well assume that each δ(e) is idempotent. Since the semilattice P(A) belongs to R, the continuous
homomorphism c ◦ψ factors through pR. Hence all elements e of X have indeed the same content B = c(e).

Extend δ to a function ε : Xψ(B+) → ΩAS by choosing for each element s of Xψ(B+)\X a word w ∈ B+

and e ∈ X such that s = eψ(w) and letting ε(s) = δ(e)w. Then ψ(ε(s)) = s for every s ∈ Xψ(B+) and
pR ◦ ε is a constant function with the same value as pR ◦ δ. Hence Xψ(B+) belongs to PR(S).

Proposition 3.10. Let U be the subsemigroup of P(S) generated by the singleton subsets together with the
subsets of the form Xψ(B+), where X ∈ PR(S) consists of idempotents and B is the content of the elements
of X. Then we have PR(S) = ↓U .

Proof. By Lemma 3.9, we have the inclusion U ⊆ PR(S) and, therefore, also the inclusion ↓U ⊆ ↓PR(S) =
PR(S). For the reverse inclusion, let X = {s1, . . . , sn} ∈ PR(S). By Proposition 2.1, there exist x1, . . . , xn ∈
ΩAS such that ψ(xi) = si for i = 1, . . . , n and R |= x1 = · · · = xn. By Proposition 2.3, all xi’s have the same
content B. We show by induction on |B| that X ∈ ↓U . If |B| = 0, then X = ∅ ∈ ↓U . For the induction
step, by Corollary 2.5 we have a factorization (2.2) for each xi.

Assume first that no pR(xi) is idempotent. Then k = ‖xi‖, which does not depend on i by Proposition 2.3,
is finite by Proposition 2.4. By Corollary 2.5, we have c(xi,ℓ) $ B and c(zi,k) $ B for 1 6 i 6 n and
1 6 ℓ 6 k, and also R |= xi,ℓ = xj,ℓ and R |= zi,k = zj,k. This makes it possible to apply the induction
hypothesis to the subsets Xℓ = {ψ(xi,ℓ) : i = 1, . . . , n} (ℓ = 1, . . . , k) and Z = {ψ(zi,k) : 1 6 i 6 n} of S,
which therefore belong to ↓U . Now, X ⊆ X1{ψ(a1)}X2{ψ(a2)} · · ·Xk{ψ(ak)}Z, hence X ∈ ↓U .

Assume next that all xi’s are idempotent over R, so that by Corollary 2.5, there exist indices p and
q such that 1 6 p < p + q 6 |S|n + 1 and (2.4) holds for all 1 6 i 6 n. Choose zi ∈ B+ such that
ψ(zi) = ψ(zi,p) and set ei = ψ(xi,p+1ap+1 · · ·xi,p+qap+q)

ω, so that si = ψ(xi,1a1 · · ·xi,pap) · ei · ψ(zi) . By
Corollary 2.5, we have c(xi,ℓ) $ B and R |= xi,ℓ = xj,ℓ for all 1 6 i, j 6 n and 1 6 ℓ 6 k. Therefore, the
sets Xℓ = {ψ(xi,ℓ) : i = 1, . . . , n} belong to ↓U by induction hypothesis. Further, E = {e1, . . . , en} is a set
of idempotents and is R-pointlike. Hence E{ψ(zi) : 1 6 i 6 n} ⊆ Eψ(B+) belongs to U , by definition of U .
Therefore, X ⊆ X1{ψ(a1)} · · ·Xp{ψ(ap)}Eψ(B+) also belongs to ↓U .

The next technical lemmas (3.11, 3.12 and 3.13) express closure properties of Cω
R
(S).

Lemma 3.11. Let F be a set of idempotents of S and suppose that there are X,Y,Q ∈ Cω
R
(S) such that

F ⊆ XQY . Then F ∪ FQ also belongs to Cω
R
(S).

Proof. Let W be the union of the R-class of (XQY )ω in Cω
R
(S). Note that W ∈ Cω

R
(S). Since F consists

of idempotents, certainly F is contained in (XQY )ω and therefore also in W . Since (XQY )ωX RCω

R
(S)

(XQY )ω, we deduce that also FX ⊆ W . Hence F ∪ FX ∈ Cω
R
(S). Next, let Z be the union of the R-class

of (WQY )ω in Cω
R
(S), which is again an element of Cω

R
(S). Since FX ⊆ W and F ⊆ XQY , we have

F ⊆ (FXQY )ω ⊆ (WQY )ω ⊆ Z. Finally, since F ⊆ W , we have FQ ⊆ WQ. Again since F consists of
idempotents, FQ ⊆ F · (FQ) ⊆ (WQY )ω ·WQ RCω

R
(S) (WQY )ω which implies that also FQ ⊆ Z. Hence

F ∪ FQ is contained in Z, whence it belongs to Cω
R
(S).

Lemma 3.12. Let F be a set of idempotents of S, let Q1, . . . , Qn ∈ Cω
R
(S), and suppose that F ∪ FQi ∈

Cω
R
(S) (i = 1, . . . , n). Then F ∪

⋃n
i=1 FQi also belongs to Cω

R
(S).

Proof. Proceeding by induction, we assume that the set X = F ∪
⋃n−1

i=1 FQi belongs to Cω
R
(S) and we

let Y = F ∪ FQn. Let Z be the union of the R-class of (XY )ω in Cω
R
(S). Then Z ∈ Cω

R
(S) and, since F

consists of idempotents and F ⊆ X ∩ Y , we have F ⊆ (XY )ω ∩ (XY )ω−1X , which implies that X ⊆ FX ⊆
(XY )ωX ⊆ Z and Y ⊆ FY ⊆ (XY )ω−1X · Y = (XY )ω ⊆ Z. This shows that X ∪ Y ⊆ Z and proves
the lemma.
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Lemma 3.13. Let F be a set of idempotents of S, Q1, . . . , Qm ∈ Cω
R
(S), and suppose that there exist

Xi, Yi ∈ Cω
R
(S) such that F ⊆

⋂m
i=1XiQiYi. Then F ∪ FQ1 · · ·Qm belongs to Cω

R
(S).

Proof. The case m = 1 is given by Lemma 3.11. Proceeding by induction on m, we may as well assume
that F ∪ FQ1 · · ·Qm−1 ∈ Cω

R
(S). Since F ∪ FXm is contained in the union of the R-class of (XmQmYm)ω,

we also have F ∪FXm ∈ Cω
R
(S). By Lemma 3.12, we deduce that W = F ∪FXm∪FQ1 · · ·Qm−1 belongs to

Cω
R
(S). Let Z be the union of the R-class of (WQmYm)ω. Since F consists of idempotents, F ⊆ XmQmYm,

and FXm ⊆W , we have F ⊆ (WQmYm)ω ⊆ Z. On the other hand, since FQ1 · · ·Qm−1 ⊆W we also have
FQ1 · · ·Qm ⊆ (WQmYm)ωWQm ⊆ Z (since (WQmYm)ωWQm RCω

R
(S) (WQmYm)ω). Hence F ∪FQ1 · · ·Qm

is contained in Z, which shows that it belongs to Cω
R
(S).

Proof of Theorem 3.1. We have Cω
R
(S) ⊆ PR(S) by Corollary 3.3. For the reverse inclusion, we first

use Corollary 3.8 to reduce to the case where S is an A-generated semigroup, under an onto continuous
homomorphism ψ : ΩAS → S, with a content homomorphism c : S → P(A). For X ⊆ S, let c̄(X) =
⋃

x∈X c(x). We show, by induction on |c̄(X)|, that for all X ∈ PR(S) and for all a ∈ c̄(X), we have

∃Xa, Ya ∈ Cω
R (S) such that X ⊆ Xaψ(a)Ya. C(X, a)

Note that proving C(X, a) for all X ∈ PR(S) and a ∈ c̄(X) entails that PR(S) ⊆ Cω
R
(S). In case |c̄(X)| = 0,

then X = ∅ and so certainly C(X, a) holds. Let X ∈ PR(S) be nonempty, let c̄(X) = B, and assume
inductively that C(Y, a) holds for every Y ∈ PR(S) and a ∈ c̄(Y ) with |c̄(Y )| < |c̄(X)|. By Proposition 3.10,
X is included in a product U1 · · ·Uk, where each Ui is either a singleton, or of the form Fψ(C+), where F
is a pointlike set of idempotents of content C. Replacing such a subset F by F ∩ ψ(B+), and C by C ∩B,
we may as well assume that C ⊆ B, since c̄(X) = B. Furthermore, proving C(Fψ(C+), a), for such F and
C, and a ∈ C, yields in particular C(Ui, a) and Ui ∈ Cω

R
(S), which then implies C(X, a). Therefore, one can

assume that X is of the form Fψ(C+) for an R-pointlike set F of idempotents of content C ⊆ B. If C $ B,
then the induction hypothesis immediately yields C(X, a), so we may as well assume that C = B.

Let F = {s1, . . . , sn}. Since F ∈ PR(S), there exist x1, . . . , xn ∈ ΩAS such that ψ(xi) = si and R |=
xi = xj (1 6 i, j 6 n). Since si is idempotent, ψ(xω

i ) = si and one can assume that xi is idempotent.
Let p, q be the integers given by Corollary 2.5. Consider the k-iterated left basic factorizations (2.2) of xi

for k > p + q, whose factors satisfy (2.3) and (2.4). Choose zi ∈ B+ such that ψ(zi) = ψ(zi,p) and let
ei = ψ(xi,p+1ap+1 · · ·xi,p+qap+q)

ω and E = {e1, . . . , en}.
By (2.4), we have si = ψ(xi,1a1 · · ·xi,pap)eiψ(zi). By (2.3), the set Xℓ = {ψ(xi,ℓ) : 1 6 i 6 n} is R-

pointlike for 1 6 ℓ 6 p + q, and |c̄(Xℓ)| < |B|. By induction hypothesis, C(Xℓ, a) holds for a ∈ c̄(Xℓ),
and in particular Xℓ ∈ Cω

R
(S). Therefore, Y = Xp+1ψ(ap+1) · · ·Xp+qψ(ap+q) ∈ Cω

R
(S), and E ⊆ Y ω also

belongs to Cω
R
(S). Let Z = {ψ(zi) : 1 6 i 6 n}. We have F ⊆ X1ψ(a1) · · ·Xpψ(ap)EZ and EZ ⊆ Eψ(B+),

so Fψ(B+) ⊆ X1ψ(a1) · · ·Xpψ(ap).E.Eψ(B+). Since all factors of the right hand side of this inclusion
are in Cω

R
(S), except perhaps Eψ(B+), and since E itself appears as a factor of content B, to show that

C(Fψ(B+), a), it is sufficient to verify that:
(i) Property C(E, a) holds for all a ∈ B, and

(ii) Eψ(B+) ∈ Cω
R
(S).

Clearly C(E, a) holds for a ∈ {ap+1, . . . , ap+q}, since E ⊆ Y ω, and Xℓ ∈ Cω
R
(S). Otherwise, choose m ∈

{p+ 1, . . . , p + q} such that a ∈ c(xi,m) for 1 6 i 6 n. By induction hypothesis, there are X ′, Y ′ ∈ Cω
R
(S)

such that Xm = X ′ψ(a)Y ′. Hence E ⊆ Xaψ(a)Ya for Xa = Y ω−1Xp+1ψ(ap+1) · · ·Xm−1ψ(am−1)X
′ and

Ya = Y ′ψ(am)Xm+1ψ(am+1) · · ·Xp+qψ(ap+q). This proves (i) since Xa, Ya ∈ Cω
R
(S).

From Lemma 3.13, we deduce that, if w ∈ B+, then E ∪Eψ(w) ∈ Cω
R
(S). By Lemma 3.12, it follows that

Eψ(B+) = E ∪
⋃

w∈B+ Eψ(w) ∈ Cω
R
(S) since ψ(B+) is a finite set. This shows (ii), completes the induction

step and proves the theorem.

3.3. Alternative proofs using tameness and canonical forms

We give alternative proofs of Proposition 3.10 and Theorem 3.1, based on canonical forms of terms from
a suitable algebra. Even though they require more knowledge on the pseudovariety R, they are somewhat
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shorter and more elegant than the corresponding proofs of Section 3.2. Moreover, their outline seems to be
more widely applicable. For instance, we also use canonical forms in Section 4.

Recall that the canonical implicit signature κ is {_._, _ω−1}, where _._ denotes the multiplication and
_ω−1 the unary (ω − 1)-power. The V-free κ-semigroup over A is denoted Ωκ

AV. We use a weak form of
κ-tameness for R [8], and the canonical form of κ-terms defined in [13]. Both alternative proofs rely on the
following statement.

Proposition 3.14. Let w1, . . . , wn ∈ Ωκ
AS be such that pR(wi) is independent of i. Then each wi admits a

factorization
wi = u0v

ω
i,1ri,1u1 · · · v

ω
i,pri,pup (3.1)

where:
(a) each uj is a possibly empty word,
(b) each vi,j and each ri,j is given by a κ-term,
(c) c(ri,j) ⊆ c(vi,j),
(d) the first letter of the first nonempty factor after ri,j , if there is such a factor, does not belong to c(vi,j),
(e) the canonical form v̄j of vi,j is independent of i,
(f) the ω-term u0v̄

ω
1 u1 · · · v̄ω

p up is in canonical form.

Proof. Each element w of Ωκ
AS has a representation as a term in the signature κ. We recall from [13,

Theorem 6.1] that we can associate to w a canonical form cf(w), obtained by rewriting w using the following
identities: (xy)ω = (xy)ωx = (xy)ωxω = x(yx)ω , (xω)ω = xω , (xr)ω = xω , r > 2, and such that two
terms have the same projection under pR if and only if their canonical forms are equal. Let u0v̄

ω
1 u1 · · · v̄ω

p up

be the common canonical form of w1, . . . , wn, where u0, . . . , up are possibly empty words. This form is
obtained using the above identities, which are either valid in Ωκ

AS, or which add or remove a term u after
an idempotent vω of larger content than u. One can track back these rewritings, so that each wi has a
factorization (3.1) satisfying properties (a)–(f). Note that we use the identity xω−1 = xω.xω−1 to replace an
(ω− 1)-power by an ω-power followed by a remainder, and that (d) comes from the corresponding property
for canonical forms.

Alternative proof of Proposition 3.10. The inclusion ↓U ⊆ PR(S) follows from Lemma 3.9. We have
to show that PR(S) ⊆ ↓U . Let X ∈ PR(S). Since R is κ-tame for systems of equations of the form x1 =
· · · = xn [8], it follows that there exists a function δ : X → ΩAS such that ψ(δ(s)) = s for every s ∈ X ,
pR ◦ δ is a constant function, and each δ(s) is given by a κ-term. Let X = {s1, . . . , sn} and let wi = δ(si)
(i = 1, . . . , n). Then there are factorizations (3.1) satisfying conditions (a)–(f) of Proposition 3.14. It follows
that for j = 1, . . . , p, each set Xj = {ψ(vω

i,j) : i = 1, . . . , n} is an R-pointlike subset of S consisting of
idempotents. Moreover, if Bj = c(vi,j), which is independent of i by (e), then {ψ(vω

i,jri,j) : i = 1, . . . , n} is
contained in Xjψ(B+

j ). Hence X ∈ ↓U , which completes the proof of the proposition.

Alternative proof of Theorem 3.1. As in the first proof of Theorem 3.1, we can assume that S has
a content homomorphism. We show C(X, a) by induction on |c̄(X)|, for all X ∈ PR(S) and all a ∈ c̄(X).
The case |c̄(X)| = 0 is trivial. Let X = {s1, . . . , sn} and assume inductively that C(Y, a) holds for every
Y ∈ PR(S) with |c̄(Y )| < |c̄(X)| and all a ∈ c̄(Y ). Since R is κ-tame for systems of the form x1 = · · · = xn

[8], by Proposition 3.14 there exist κ-terms wi such that ψ(wi) = si and wi admits a factorization of the
form (3.1) satisfying conditions (a)-(f) of Proposition 3.14. Hence it suffices to show C(Fψ(B+), a) for all
a ∈ B, where F = ψ{vω

1 , . . . , v
ω
n} and the vi are given by κ-terms such that v̄ = pR(vi) is independent of i,

v̄ω is in canonical form, and B = c(v̄). Since F ⊆ F · Fψ(B+), it suffices to show that
(i) Property C(F, a) holds for all a ∈ B, and

(ii) Fψ(B+) ∈ Cω
R
(S).

By definition of canonical form, v̄ has the form

v̄ = z̄1a1 · · · z̄mam (3.2)

for some z̄j given by ω-terms and some aj ∈ A such that c(v̄) = c(z̄jaj) % c(z̄j). By the results of [13],
each vi admits a corresponding factorization vi = zi,1a1 · · · zi,mam such that zi,j ∈ Ωκ

AS and pR(zi,j) = z̄j
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(i = 1, . . . , n; j = 1, . . . ,m). Therefore, for j = 1, . . . ,m, the sets Xj = ψ{z1,j, . . . , zn,j} are R-pointlike,
and |c̄(Xj)| < |B|. By the induction hypothesis applied to Xj , we conclude that C(Xj , a) holds for all
a ∈ c̄(Xj). In particular all Xj belong to Cω

R
(S). Now, F ⊆ X1ψ(a1) · · ·Xmψ(am), which shows C(F, a) if

a ∈ {a1, . . . , an}. Otherwise, let ℓ ∈ {1, . . . ,m} be such that a ∈ c(z̄ℓ). Then, by induction hypothesis there
are X ′, Y ′ ∈ Cω

R
(S) such that Xℓ = X ′ψ(a)Y ′. Hence F ⊆ Xaψ(a)Ya for Xa = X1ψ(a1) · · ·Xℓ−1ψ(aℓ−1)X

′

and Ya = Y ′ψ(aℓ)Xℓ+1ψ(aℓ+1) · · ·Xmψ(am). This proves (i) since Xa, Ya ∈ Cω
R
(S).

From Lemma 3.13, we deduce that, if w ∈ B+, then F ∪ Fψ(w) ∈ Cω
R
(S). By Lemma 3.12, it follows

that Fψ(B+) = F ∪
⋃

w∈B+ Fψ(w) ∈ Cω
R
(S) since ψ(B+) is a finite set. This proves (ii), and by the above

reductions, this completes the induction step and proves the theorem.

4. An algorithm to compute J-pointlike sets

In this section, we describe an algorithm to compute J-pointlike subsets of a finite semigroup S. While
the algorithm for R consists in replacing H by R in Henckell’s construction, replacing H by J does not work,
as explained in Section 6. The following notion of J-canonical factorization of a pseudoword plays here the
same role as the factorizations of Corollary 2.5 or Proposition 3.14 for R.

Theorem 4.1 ([1], [2, Theorem 8.1.11]). Every pseudoword x ∈ ΩAS has a factorization x = x1 · · ·xk,
called J-canonical, satisfying the following properties:
– for every i = 1, . . . , k, either xi ∈ A+ or pJ(xi) is idempotent;
– xi and xi+1 are not both in A+;
– if pJ(xi) and pJ(xi+1) are idempotent, then c(xi) and c(xi+1) are not comparable;
– if pJ(xi) is idempotent and xi+1 (resp. xi−1) is in A+, then the first (resp. the last) letter of xi+1 (resp.
xi−1) does not belong to c(xi).

Moreover, if x = x1 · · ·xk and y = y1 · · · yℓ are J-canonical factorizations and if J |= x = y, then k = ℓ and
J |= xi = yi for all 1 6 i 6 k. This implies that either xi and yi are both in A+, or their projections in ΩAJ

are both idempotent. In the first case, they are equal and in the second case, they have the same content.

Theorem 4.1 makes it possible to repeat for J, mutatis mutandis, the proof of Proposition 3.10 to deduce
its following counterpart for J. Using Lemma 3.7, one can assume that S has a content homomorphism. Let
again ψ : A+ → S be an onto homomorphism.

Proposition 4.2. Let U be the subsemigroup of P(S) generated by the singleton subsets together with the
subsets of the form ψ(B+)Xψ(B+), where X ∈ PJ(S) consists of idempotents and B ⊆ A is the content of
the elements of X. Then we have PJ(S) = ↓U .

A well-known characterization of equality of idempotents over J [1] states that, given two pseudowords
x, y ∈ ΩAS, xω and yω have the same projection in ΩAJ if and only if c(x) = c(y). Furthermore, for all
z ∈ ΩAS such that c(z) ⊆ c(x), we have J |= zxω = xω = xωz. Using these properties, one immediately
deduces that a set X ⊆ S of idempotents is J-pointlike if and only if all elements of X have the same content.

With this remark, Proposition 4.2 immediately yields an algorithm to compute J-pointlike sets: compute
all sets of idempotents X having the same content, then the semigroup U they generate together with the
singletons, and finally ↓U . This is in contrast with the corresponding statement obtained for R, namely
Proposition 3.10. Indeed, we do not know such a simple characterization for the sets of idempotents which
are R-pointlike, which would make it possible to compute them directly.

5. Idempotent pointlike sets

We show how to use the algorithms of Sections 3 and 4 to compute idempotent pointlike sets with respect
to both R and J. By definition, a subset {s1, . . . , sn} of a finite A-generated semigroup S is V-idempotent
pointlike if there exist pseudowords w1, . . . , wn projecting respectively to s1, . . . , sn through the natural
continuous homomorphism, and V satisfies w2

1 = w1 = w2 = · · · = wn. A pointlike set consisting only
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of idempotents is clearly idempotent pointlike, but the converse is not true in general. Recall that the
computability of these sets imply the decidability of the Mal’cev products V©m J and V ©m R, for all decidable
pseudovarieties V [20, 23].

Proposition 5.1. Let S be a finite A-generated semigroup with a content homomorphism. Let ψ : ΩAS → S
be the canonical continuous homomorphism. Then, the R-idempotent pointlike sets of S are exactly those of
the form XY ψ(B+), for B ⊆ A, where X is a pointlike set whose elements have content C ⊆ B, and where
Y is an R-pointlike set of idempotents of content B.

Proof. Since X,Y ∈ PR(S), there exist, by Proposition 2.1, functions δ1, δ2 : X → ΩAS such that pR ◦ δ1
and pR ◦ δ2 are constant functions, ψ(δ1(x)) = x and ψ(δ2(y)) = y for every x ∈ X, y ∈ Y . Since Y is a
set of idempotents, one can also assume that δ2(y) is idempotent for all y ∈ Y . Therefore, for any z ∈ B+,
R satisfies δ1(x)δ2(y)z = δ1(x)δ2(y)

ωz = δ1(x)δ2(y)
ω (since c(z) ⊆ c(δ2(y))) which shows that XY ψ(B+)

is R-pointlike. By hypothesis, c(δ1(x)z) ⊆ c(δ2(y)) for all z ∈ B+, x ∈ X and y ∈ Y , whence R satisfies
(δ1(x)δ2(y)z)

2 = δ1(x)δ2(y)z, so that XY ψ(B+) is idempotent pointlike.
Conversely, the fact that every R-idempotent pointlike set is of this form has already been shown in the

last case of the proof of Proposition 3.10.

A similar argument for J shows the following characterization of J-idempotent pointlike sets.

Proposition 5.2. Let S be a finite A-generated semigroup with a content homomorphism. Let ψ : ΩAS → S
be the canonical continuous homomorphism. Then, the J-idempotent pointlike sets of S are exactly those of
the form ψ(B+)Xψ(B+), where X is a set of idempotents of S, all of them of content B.

Propositions 5.1 and 5.2 can be used to compute R- and J-idempotent pointlike sets, respectively. For R,
however, this computation requires that all pointlike sets have been formerly determined. It would be inter-
esting to find an alternative algorithm computing R-idempotent pointlike sets directly, without computing
all pointlike sets beforehand.

6. Some examples

6.1. Behavior of Henckell’s construction for J

For a subsemigroup U of P(S), denote by DJ(U) the subsemigroup generated by all subsets of the form
⋃

X∈J X , where J is a J-class of U . Let then CJ(U) = ↓DJ(U). Define C0
J
(S) =

{

{s} : s ∈ S
}

and, for
n > 0, let Cn

J
(S) = CJ

(

Cn−1
J

(S)
)

. Finally, let Cω
J
(S) =

⋃

n>0 C
n
J
(S).

It is tempting to guess that Cω
J
(S) = PJ(S). Perhaps surprisingly, this is not the case, as shown by the

following counterexample. Let S1 be the semigroup on two generators a, b given by the following presentation:
(bab)2 = bab, (aba)2 = aba, a2ba2 = a2, b2ab2 = b2, a3 = b3 = (ba)2 = (ab)2 = a2b2 = b2a2 = 0. Its Green
relation structure is summarized in the diagram of Figure 1. It is the syntactic semigroup of the language
(1 + a + ba)(aba)+ + (1 + b + ab)(bab)+. Call J0 and J1 the regular nontrivial J-classes. Then, the subset
F of all idempotents of S1 is J-pointlike since each idempotent admits an expression using both elements
a and b. Consequently, the subset X = S1 \ {a, b, ab, ba} = J0 ∪ J1 ∪ {0} is also J-pointlike, because
it is obtained by multiplying F by elements of content contained in {a, b}. On the other hand, one can
compute Cω

J
(S1). By definition, D

J

(

C0
J
(S1)

)

is the subsemigroup of P(S1) generated by the J-classes of S1.
For ℓ = 0, 1, multiplying an element from Jℓ by any element of S1 yields an element of Jℓ ∪ {0}. Hence
C1

J
(S1) ⊆ ↓

{

{a}, {b}, {ab}, {ba}, J0∪ {0}, J1 ∪ {0}
}

. For the same reason, no element of C1
J
(S1) intersecting

J0 can be J-equivalent with an element intersecting J1. Therefore, we have C2
J
(S1) = C1

J
(S1) = Cω

J
(S1) and

X = J0 ∪ J1 ∪ {0} ∈ PJ(S1) \ Cω
J
(S1).
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ba

baab

b2 ∗b2a b2ab

∗ab2 ab2a ab2ab

bab2 bab2a ∗bab

J0

a2 ∗a2b a2ba

∗ba2 ba2b ba2ba

aba2 aba2b ∗aba

J1

∗0

Fig. 1. The semigroup S1

6.2. Subsemigroup of P(S) generated by PR(S) and PL(S)

Another question is whether PJ(S) = ↓〈PR(S) ∪ PL(S)〉. The answer is negative, as is again witnessed
by the semigroup S1 of Figure 1. Since J ⊆ R ∩ L, we have ↓〈PR(S) ∪ PL(S)〉 ⊆ PJ(S) for all S. On the
other hand, we claim that J0 ∪ J1 ∪ {0} /∈ ↓〈PR(S1) ∪ PL(S1)〉. Let indeed {s0, s1} ∈ PR(S1) with s0 6= s1,
and let ui be an element of ΩAS projecting to si and such that pR(u0) = pR(u1). In particular, u0 and
u1 have the same prefix of length 4. This implies that their images in S1 lie in the same ideal J0 ∪ {0} or
J1∪{0}. Dually, no L-pointlike can intersect both J0 and J1. Therefore, this property also holds for elements
of ↓〈PR(S1) ∪ PL(S1)〉, which proves the claim.

6.3. Pointlike subsets of a join

In general, being both V and W-pointlike does not entail being V ∨ W-pointlike [28]. The diagram of
Figure 2 is a minimal automaton. Its transition semigroup S2 (which is therefore a syntactic semigroup) has
a subset which is both R and L-pointlike, but which is not R∨L-pointlike. Let ψ : A+ → S2 be the canonical
morphism. It is easy to check that ψ(ab) is idempotent, and that ψ(abc) = ψ(dab) and ψ(ab2c) = ψ(da2b) are
the partial functions from {1, . . . , 9} into itself mapping 1 to 2 and 6, respectively, and undefined elsewhere.

1 2

3 4

5 6 7

8 9

a

b

a

b

c

d
a

b

b

c

a
a

b

Fig. 2. Automaton whose transition semigroup is S2

Therefore, we have:
{abc, ab2c} = {(ab)ωc, (ab)ωbc} ∈ PR(S2)

and
{abc, ab2c} = {dab, da2b} = {d(ab)ω, da(ab)ω} ∈ PL(S2)

but {abc, ab2c} /∈ PR∨L(S2). Indeed (writing again ψ : ΩAS → S2 for the natural continuous homomorphism):

ψ−1 ◦ ψ(abc) = (ab)∗ (c+ dab) (ab)∗

ψ−1 ◦ ψ(ab2c) = (ab)∗ (bc+ daab) (ab)∗

where L denotes the topological closure of L in (ΩAS)1. By a result of the first author and Azevedo [6] (see
[2, Theorem 9.2.13]), there is no pseudoidentity valid in R ∨ L in which one side belongs to ψ−1 ◦ ψ(abc)
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and the other to ψ−1 ◦ ψ(ab2c), and so the set {abc, ab2c} is not pointlike with respect to the relational
morphism µR∨L.

6.4. An example where C1
R
(S) differs from Cω

R
(S)

Our algorithm for computing R-pointlike sets does not stop, in general, after the first iteration. An example
is given by the semigroup S3 whose Green relation structure is given in Figure 3, where some R-classes and
J-classes have been given a name. A presentation of S3 on {a, b} is a3 = a, b3 = ba2b = b2, (ba)2b = bab,
b2ab = bab2 = 0. It is the syntactic semigroup of the language b[(a(aa)∗b)+ + ((aa)∗b)+]. By definition, the

a

∗a2
R0 b R1

ab

a2b
J2 ba2 ba R3

aba aba2

a2ba a2ba2

J4

R5,0 ∗b2 b2a ∗b2a2

R5,1 ab2 ∗ab2a ab2a2

R5,2 ∗a2b2 a2b2a ∗a2b2a2

bab ∗(ba)2 (ba)2a R6,0

∗(ab)2 (ab)2a ∗(ab)2a2 R6,1

a(ab)2 ∗a(ab)2a a(ab)2a2 R6,2

∗0

Fig. 3. The semigroup S3

elements of C1
R
(S) are the subsets of elements of D1

R
(S), which is the semigroup generated by all R-classes.

One can check that D1
R
(S) is exactly made up of the R-classes R0, R1, R3 and of the following ten subsets

of S3, obtained by multiplying R-classes from {R0, R1, R3, R5,0, R6,0}:

J2 = R0R1,

R1J
2
2 = {0, bab, b2},

J4 = R0R3,

(R5,0)
2 = {0} ∪R5,0,

(R6,0)
2 = {0} ∪R6,0,

(J4R1)
2 = {0, ab2, a2b2, (ab)2, a(ab)2},

(R1J4)
2 = {0, b2a, b2a2, (ba)2, (ba)2a},

(R0R5,0)
2 = {0} ∪R5,1 ∪R5.2,

(R0R6,0)
2 = {0} ∪R6,1 ∪R6.2,

(J2J4)
2 = {0, a(ab)2a, a(ab)2a2, a2b2a, a2b2a2, (ab)2a, (ab)2a2, ab2a, ab2a2}.

However, C1
R
(S) does not contain {(ab)2a, a2b2}, which is R-pointlike since (ab)2a = (aω+1b)ωa and a2b2 =

(a2b)2 = (aωb)ω, and R |= (aω+1b)ωa = (aωb)ω.
It should be possible to use the same idea to show that, for every n > 0 there exists a finite semigroup S

for which Cn
R
(S) 6= Cω

R
(S), but we have not attempted to prove it.
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7. Complexity issues and further work

We have presented algorithms computing (idempotent) pointlike sets with respect to R and J. For R, it
would be interesting to obtain direct algorithms for the computation of idempotent pointlike sets, without
requiring the computation of all pointlike sets beforehand.

Another relevant step in further work would be to evaluate the complexity of these algorithms, both from
a theoretical and a practical viewpoint, and, for J, to compare with the algorithms derived from [8, 12].
To test whether a subset X of a finite semigroup is R or J-pointlike, both algorithms work by generating
pointlike subsets until either X is found, or all pointlike subsets have been generated. One would like to take
advantage of the knowledge of X to obtain more efficient algorithms (whose complexity would also depend
on X). For that purpose, one possible track would be to compute the pro-V closures in Ωκ

AV of the preimages
in A+ of elements of X , for V = R or J, and testing emptiness of their intersection. For J, [12] gives an
algorithm to compute the pro-J closure in Ωκ

AJ of a rational language L, working in polynomial time in terms
of the number of states of the minimal automaton of L, and in exponential time with respect to |A|. It also
provides a polynomial time algorithm to compute intersections of such closures. Therefore, an upper bound
for testing whether a set X ⊆ S of an A-generated semigroup S is J-pointlike is exponential in |A| and |X |
(it requires |X | computations of intersections), and polynomial in |S|. We do not know whether this can be
improved. For R, one can bound the lengths of κ-terms witnessing the fact that a subset is R-pointlike. More
precisely, define the length of an element of Ωκ

AS to be the minimal size of a term representing it (counting 1
for each letter, and 1 for each (ω − 1)-power).

Proposition 7.1. Let X = {s1, . . . , sn} be an R-pointlike subset of a finite A-generated semigroup S, and
let ℓ = |A|. Then, there exists a set of n elements of Ωκ

AS of length at most 2ℓ(|S|n + 1)ℓ, which projects
onto X through the canonical homomorphism ψ : ΩAS → S, and to a singleton through pR.

Proof. We proceed by induction on ℓ. For ℓ = 0, S is empty and the result is trivial. Otherwise, since
X is R-pointlike, there exist x1, . . . , xn ∈ ΩAS such that si = ψ(xi) and R |= xi = xj for 1 6 i, j 6 n.
Let K = |S|n + 1. If the iterated left basic factorizations (2.2) of xi exist with k > K, then by Corol-
lary 2.5, there exist integers p, q such that 1 6 p < p + q 6 K and (2.4) holds for all i = 1, . . . , n. Choose
zi ∈ A+, with |zi| 6 |S|, such that ψ(zi) = ψ(zi,p) and c(zi) ⊆ c(zi,p), and define yi = xi,1a1 · · ·xi,pap ·
(xi,p+1ap+1 · · ·xi,p+qap+q)

ω−1zi. If on the contrary the maximal integer k such that (2.2) holds, say r, is less
than K, define yi = xi,1a1 · · ·xi,rarzi,r. In both cases, ψ(yi) = si, and {yi : 1 6 i 6 n} still maps to a single-
ton through pR. By Corollary 2.5, all sets Xj = {ψ(xi,j) : 1 6 i 6 n} are R-pointlike and |c(xi,j)| < |A| = ℓ.
In the second case, the set Z = {ψ(zi,r) : 1 6 i 6 n} is R-pointlike, and |c(zi,r)| < ℓ. By induction, one can re-
place each xi,j (resp. each zi,r, in the second case) by an element of Ωκ

AS of length at most N = 2(ℓ−1)Kℓ−1,
while preserving its value over S and the fact that the subset Xj (resp. the subset Z) is R-pointlike. There-
fore, the above expressions for yi yield a set of κ-terms projecting onto X through ψ, and to a singleton
through pR, each of them of length at most (N + 1)K + 1 + |S| 6 (N + 2)K = 2(ℓ− 1)Kℓ + 2K 6 2ℓKℓ, as
required.

In order to test whether X is R-pointlike, one may therefore guess a set of |X | elements of Ωκ
AS, each of

them of length O
(

|A||S||X||A|
)

, and then check that it projects onto X through the canonical homomorphism
from ΩAS to S, and onto a singleton through pR. Both verifications can be carried out in polynomial time
with respect to the length of the terms (by the solution of the word problem for ω-terms given in [13], for
the second verification). It follows that for fixed |X | and |A|, testing whether a subset X ⊆ S is R-pointlike
is in NP. We conjecture that this problem is NP-complete.
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