
Evaluating Simulated Annealing Algorithms in

the Optimization of Bacterial Strains

Miguel Rocha1, Rui Mendes1, Paulo Maia1, José P. Pinto1, Isabel Rocha2,
and Eugénio C. Ferreira2

1 Departament of Informatics / CCTC - University of Minho
Campus de Gualtar, 4710-057 Braga - Portugal

mrocha@di.uminho.pt, rcm@di.uminho.pt, paulo.maia@di.uminho.pt
2 IBB - Institute for Biotechnology and Bioengineering
Center of Biological Engineering - University of Minho

Campus de Gualtar, 4710-057 Braga - Portugal
irocha@deb.uminho.pt, ecferreira@deb.uminho.pt

Abstract. In this work, a Simulated Annealing (SA) algorithm is pro-
posed for a Metabolic Engineering task: the optimization of the set of
gene deletions to apply to a microbial strain to achieve a desired produc-
tion goal. Each mutant strain is evaluated by simulating its phenotype
using the Flux-Balance Analysis approach, under the premise that mi-
croorganisms have maximized their growth along natural evolution. A
set based representation is used in the SA to encode variable sized so-
lutions, enabling the automatic discovery of the ideal number of gene
deletions. The approach was compared to the use of Evolutionary Al-
gorithms (EAs) to solve the same task. Two case studies are presented
considering the production of succinic and lactic acid as the target, with
the bacterium E. coli. The variable sized SA seems to be the best al-
ternative, outperforming the EAs, showing a fast convergence and low
variability among the several runs and also enabing the automatic dis-
covery of the ideal number of knockouts.

Keywords: Simulated Annealing, Set based representations, Variable
size chromosomes, Metabolic Engineering, Flux-Balance Analysis.

1 Introduction

Metabolic Engineering has been generating tools appropriate to introduce di-
rected genetic modifications in microorganisms, to make them fit to comply with
industrial purposes, i.e. to be able to synthesize some desired compounds, rather
than to follow their natural aims (e.g. the maximization of growth) [15][10]. The
importance of those approaches has been increasing as many traditional chemi-
cal processes are being replaced by biotechnology for the production of valuable
products, such as pharmaceuticals, fuels or food ingredients.

Most often, these processes imply that the microorganism’s metabolism needs
to be modified, a task that can be complex. Current methods are still based
mostly on intuitive design principles and scarcely on effective mathematical

J. Neves, M. Santos, and J. Machado (Eds.): EPIA 2007, LNAI 4874, pp. 473–484, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55608344?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

474 M. Rocha et al.

models that can predict cellular behaviour. Nevertheless, and although whole cell
models are still far away, it is possible to predict cellular metabolism under some
simplifying assumptions, using existing mathematical models of metabolism.

One of the most important approaches in this direction considers the cell to
be in a steady-state, i.e., the concentrations of all the metabolites is considered
constant throughout time. This imposes a number of constraints over the fluxes
of all reactions, that can be used to predict cellular behavior. This is the basis
of the Flux Balance Analysis approach [7], where a particular flux is typically
optimized using linear programming. In the most usual case, a flux for biomass
production is defined, whose maximization is taken as the objective function,
thus assuming that the microbes have evolved towards optimal growth [6]. Solv-
ing this optimization problem for genome-scale models results in getting the
values for all the fluxes of the reactions occurring in the cell.

In this way, it is possible to predict the behavior of a microorganism, both in
its wild type and also in mutant forms. This allows the definition of a bi-level
optimization problem, adding a layer that searches for the best mutant that can
be obtained from the wild type by applying a selected set of genetic modifica-
tions. In this work, this set will be restricted to the possibility of deleting genes
from the wild type. The idea is to force the microorganisms to synthesize a de-
sired product by selected gene deletions. Therefore, the underlying optimization
problem consists in reaching an optimal subset of gene deletions to optimize an
objective function related with the production of a given compound.

A first approach to this problem was proposed by the OptKnock algorithm [2],
where mixed integer linear programming methods are used to reach a guaranteed
optimum solution. This algorithm suffered from two important drawbacks: the
impossibility of considering nonlinear objective functions and the considerable
computation time required that only allowed the problem to be solved for a
relatively small number of reactions.

An alternative approach was proposed by the OptGene algorithm [11] that
considers the application of Evolutionary Algorithms (EAs). EAs are capable of
providing near optimal solutions in a reasonable amount of time and also allow
the optimization of nonlinear objective functions. OptGene proposes EAs with
two alternative representation schemes: binary or integer. The first is closer to
the natural evolution, but is more complex and leads to solutions with a large
number of knockouts. The latter allowed for a more compact encoding scheme,
representing only the gene deletions. One of its major limitations is the need
to define a priori the number of gene knockouts, that remains fixed. In [13] an
EA with a set-based representation is proposed to extend OptGene. The use
of variable-sized chromosomes to encode the sets was a major improvement,
allowing the automatic definition of the ideal number of gene deletions.

In this work, an alternative optimization strategy is proposed based on the
use of a Simulated Annealing (SA) algorithm. The proposed algorithm encodes
solutions using a variable size set-based representation, making use of mutation
operators similar to the ones used by the EAs. The proposed algorithm will be

Evaluating Simulated Annealing Algorithms 475

tested, using as a benchmark the two case studies proposed in [13] and comparing
the results obtained with the ones achieved by the EA’s.

2 Simulation Algorithms for the Prediction of Metabolic
Behavior

One of the many potential applications of the recently sequenced and annotated
genomes of microorganisms is the reconstruction of genome-scale metabolic net-
works. The set of metabolic reactions obtained can therefore be used to simulate
the phenotypic behaviour of microorganisms. One approach is to write dynamic
mass balances for each metabolite in the network, generating a set of ordinary
differential equations that may be used to simulate the dynamic behavior of
metabolite concentrations. However, there is still insufficient data on kinetic ex-
pressions and parameters, and it is only possible to simulate dynamic conditions
for a few pathways[3].

Therefore, a steady state approximation is generally applied, where for each
metabolite in the network, the sum of all productions and consumptions will be
zero, weighted by the stoichiometric coefficients. Thus, for metabolite i, where
i = 1, . . . , M (M is the number of metabolites) the following constraint is defined:

N∑

j=1

Sijvj = 0 (1)

where Sij is the stoichiometric coefficient for metabolite i in reaction j and vj

is the reaction rate or flux over the reaction j. It is possible to define a matrix
S, composed of the Sij values, j = 1, . . . , N (N is the number of reactions); v is
the N -dimensional vector of the fluxes of the reactions.

The mass balances are therefore reduced to a set of linear homogeneous equa-
tions. The maximum/minimum values of the fluxes can be set by additional
constraints in the form αj ≤ vj ≤ βj, that are also used to specify both thermo-
dynamic and environmental conditions (e.g. availability of nutrients).

For most of the metabolic networks, and because the number of fluxes is
greater than the number of metabolites, the set of linear equations obtained
from the application of Equation 1 to the M metabolites usually leads to an
under-determined system, for which there exists an infinite number of feasible
flux distributions that satisfy the constraints. However, if a given linear function
over the fluxes is chosen to be maximized, it is possible to obtain a single solution
by applying standard algorithms (e.g. simplex) for linear programming problems.
This methodology is known as Flux Balance Analysis (FBA) [7].

The combination of this technique with the existence of validated genome-
scale stoichiometric models [4][1] allows to simulate the phenotypic behaviour
of a microorganism under defined environmental conditions without performing
any experiments. The most common flux chosen for maximization is the biomass,
based on the premise that microorganisms have maximized their growth along
natural evolution, a premise that has been confirmed experimentally in some
cases [6].

476 M. Rocha et al.

3 Simulated Annealing

Simulated Annealing (SA) is an optimization algorithm inspired in the annealing
process used in metallurgy, where a melt, initially at high temperature, is slowly
cooled so that the system at any time is approximately in thermodynamic equi-
librium. As the cooling proceeds, the system becomes more ordered, approaching
a minimal energy state when the temperature reaches zero. If the initial tem-
perature of the system is too low or the cooling process is not sufficiently slow
the system may become trapped in a local minimum energy state.

In the original Metropolis scheme, an initial state of a thermodynamic sys-
tem is chosen at energy E and holding temperature T constant. The initial
configuration is perturbed and the change in energy ΔE is computed. A better
configuration is always accepted, while a worse configuration is only accepted
with a probability given by the Boltzmann factor

p[accept] = e−
ΔE
T (2)

This process is then repeated a number of trials, sufficient to give good sampling
statistics for the current temperature, and then the temperature is decreased
according to a given cooling schedule. The entire process is repeated until the
temperature is sufficiently low.

This Monte Carlo approach may be used to optimize real or combinatorial
problems [8]. The current state is a solution to the optimization problem and
the energy represents its objective function value. The solution is perturbed by
any process that will generate a new solution from the current one, also denoted
as a mutation operator. This perturbation may depend on the temperature,
thus allowing larger steps to be taken when the temperature is high and fine-
tuning when the temperature is low. The implementation used in this work allows
the use of any kind of mutation or combination thereof to perturb the current
solution and generate a new one. Any number of mutations may be applied,
each with a given probability (that must sum 1). The solution encoding is also
very flexible and may use for instance a binary representation, real values, sets,
permutations, trees, etc.

The configuration parameters for the algorithm are the initial and final tem-
peratures, the number of iterations performed at each temperature and the cool-
ing schedule used. The choice of these parameters is of paramount importance
to the performance of the algorithm. If the initial temperature is too low or
the cooling schedule is not slow enough, the optimization process may become
stuck in a local optimum. On the other hand, if the initial temperature is too
high, the cooling is too slow or the number of iterations per temperature is too
high, the algorithm wastes a potentially large amount of computational time
while searching for solutions. The cooling schedule used in this paper is among
the most popular ones, where the temperature decrease is exponential, defined
according to the following equation:

Tn+1 = α Tn (3)

Evaluating Simulated Annealing Algorithms 477

where 0 < α ≤ 1. To ensure that the cooling schedule is sufficiently slow, the
parameter α should be given values close to the unity.

As the choice of initial (T0) and final temperatures (Tf) is problem dependent,
it was decided to use the following configuration parameters:

ΔE0 – The difference in energy that corresponds to an acceptance probability
of 50% of worse solutions at the beginning of the run;

ΔEf – The difference in energy that corresponds to an acceptance probability
of 50% of worse solutions at the end of the run;

trials – The number of iterations per temperature;
NFEs – The number of function evaluations.

Using these parameters, the initial temperature, the final temperature and
the scale parameter were computed using the following equations

T0 = − ΔE0

log 0.5
(4)

Tf = − ΔEf

log 0.5
(5)

α = exp

⎛

⎝ log Tf − log T0[
NFEs
trials

]

⎞

⎠ (6)

The advantage of using ΔE0 and ΔEf is that it allows the user who knows
the fitness landscape of the optimization problem to automatically define the
temperatures by reasoning over the values of the objective function. Supplying
the number of function evaluations instead of the scale parameter α allows the
user to accurately define the number of function evaluations the optimization
algorithm will use, enabling a simpler comparison with other approaches.

4 The Proposed Algorithm

4.1 Representation Scheme and Mutation Operator

The problem addressed in this work consists in selecting, from a set of genes
in a microbe’s genome, a subset to be deleted in order to maximize a given
objective function related to the microorganism’s metabolism. The encoding of
a solution is achieved by a set-based representation, where only gene deletions
are represented. Each solution consists of a set of integer values representing the
genes that will be deleted. Therefore, if the value i is in the set, this means the
i-th gene in the microbe’s genome is knocked out. Each value in the set is an
integer with a value between 1 and N .

Two variants of this representation can be defined, considering fixed or vari-
able sized sets. In the fixed-size alternative, the mutation operator creates solu-
tions always of the same size. A random mutation operator is used that replaces
a gene by a random value in the allowed range, avoiding duplicates in the set. In

478 M. Rocha et al.

variable-sized representations, sets with distinct cardinalities can be encoded and
compete in the search process. In this case, two additional mutation operators
are defined to be able to create solutions with a distinct size:

– Grow: consists in the introduction of a new gene into the chromosome, whose
value is randomly generated in the available range (avoiding duplicates in
the set).

– Shrink: a randomly selected gene is removed from the genome.

In the SA, the Grow and Shrink mutations are each used with a probability of
25% each, meaning that half of the new individuals are created in this way. The
remaining are created by the aforementioned random mutation operator. In the
experiments reported in this work, when a variable size is used, the minimum
size is set to 1 and the maximum size is set to the number of genes (N), thus
not restricting the possible range of solutions.

4.2 Decoding and Evaluating

The principle considered is a correspondence between the values in the set and
metabolic reactions, i.e., each value represented in the set represents a particular
enzyme that catalyzes a metabolic reaction. That enzyme is associated with a
particular gene (or genes) that should be deleted for that reaction to be elimi-
nated. The decoding process works by taking each value in the set and forcing
the flux it indexes to the value 0, therefore disabling that reaction from the
metabolic model. The process proceeds with the simulation of the mutant using
FBA. The output is the set of values for the fluxes of all reactions, that are then
used to compute the fitness value, given by an appropriate objective function.

One possible objective function is the Biomass-Product Coupled Yield
(BPCY) [11], given by:

BPCY =
PG

S
(7)

where P stands for the flux representing the excreted product; G for the organ-
ism’s growth rate (biomass flux) and S for the substrate intake flux. Besides
optimizing for the production of the desired product, this function also allows to
select for mutants that exhibit high growth rates, i.e., that are likely to exhibit
a higher productivity, an important industrial aim.

An alternative is to maximize only the value of the product’s flux (P), but im-
posing a minimum threshold to the value of the biomass (Gmin). Therefore, the
objective function (denoted as Product Flux with Minimum Biomass (PFMB))
will be defined as: PFMB = P, if G > Gmin; otherwise PFMB = 0.

4.3 Initialization

The initial solution is a set with randomly generated elements. In the variable
size variant, the size of the individual is randomly created in the range [1,12].
The same process is used in the EAs to initilize each individual in the population.

Evaluating Simulated Annealing Algorithms 479

4.4 Pre-processing and Post-processing

In genome-scale models the number of variables (fluxes over metabolic reactions)
is in the order of hundreds or a few thousands and therefore the search space is
very hard to address. Thus, every operation that gives a contribution to reduce
this number, greatly improves the convergence of the algorithms. In this work,
a number of operations is implemented to reduce the search space:

– Removal of fluxes that, given the constraints of the linear programming
problem, cannot exhibit values different from 0.

– Equivalent variables, i.e. pairs of variables that are constrained to have the
same value by the model. Each group of equivalent variables is replaced by
a single variable.

– Discovery of essential genes that can not be deleted from the microorganism
genome. As these genes should not be considered as targets for deletion, the
search space for optimization is reduced. This list can be manually edited to
include genes that are known to be essential, although that information can
not be reached from the mathematical model.

– Identification of artificial fluxes that are associated with external metabolites
and exchange fluxes that represent transport reactions. These are not allowed
to be knocked out, since generally this would not have a biological meaning.

The best solution in each run goes through a simplification process, by identi-
fying all gene deletions that contribute to the fitness of the solution, removing all
deletions that keep the objective function unaltered. The aim is to keep only the
necessary knockouts, given that the practical implementation of a gene deletion
is both time consuming and costly.

4.5 Implementation Issues

The implementation of the proposed algorithms was performed by the authors
in the Java programming language. In the implementation of FBA, the GNU
linear programming package (GLPK)1 was used to run the simplex algorithm.

5 Experiments

5.1 Experimental Setup

Two case studies were used to test the aforementioned algorithms. Both consider
the microorganism Escherichia coli and the aim is to produce succinic and lactic
acid (case studies I and II, respectively), with glucose as the limiting substrate.
The genome-scale model for this microorganism used in the simulations was
developed by Reed et al [12]. This model considers the E. coli metabolic network,
including a total of N = 1075 fluxes and M = 761 metabolites. After the pre-
processing stages, the simplified model remains with N = 550 and M = 332
1 http://www.gnu.org/software/glpk/

480 M. Rocha et al.

metabolites. Furthermore, 227 essential genes are identified, which leaves 323
variables to be considered by the optimization algorithms.

The proposed SA is compared to the EAs proposed in [13]. Both algorithms
were implemented in its fixed and variable size versions. In the first case, the car-
dinality of the set (k) took a number of distinct values. In the EA the population
size was set to 100. The SA used ΔE0 = 0.005, ΔEf = 5E − 5 and trials = 50.
In both cases, the termination criteria was defined based on a maximum of 50000
fitness evaluations. For each experimental setup, the process was repeated for 30
runs and the mean and 95% confidence intervals were calculated.

5.2 Case Study I: Succinic Acid

Succinic acid is one of the key intermediates in cellular metabolism and there-
fore an important case study for metabolic engineering[9]. The knockout so-
lutions that lead to an improved phenotype regarding its production are not
straightforward to identify since they involve a large number of interacting reac-
tions. Succinic acid and its derivatives have been used as common chemicals to
synthesize polymers, as additives and flavoring agents in foods, supplements for
pharmaceuticals, or surfactants. Currently, it is produced through petrochemical
processes that can be expensive and have significant environmental impacts.

In Table 1, the results for the EAs and SA, both fixed (the number of knock-
outs k is given) and variable sized (last row) are given, taking the BPCY as the
objective function. The results show the mean, the 95% confidence interval and
the maximum value of the BPCY for each configuration. In the last column, the
mean of the number of gene deletions (after the simplification process) is shown.

In Table 1 it is possible to observe that, when using set-based representations
with fixed size chromosomes, the results improve with the increase on the number
of gene deletions. The improvement obtained when increasing from 6 to 20 gene
deletions is essentially visible in the increase of the mean, since the best solution
suffers minor improvements. Furthermore, there is less variability in the results,
given by the smaller confidence intervals. The variable size alternatives seem to
be able to automatically find the appropriate number of gene deletions. They
also present a very low variability, given the small confidence interval.

Table 1. Results obtained for the case study I - production of succinic acid

k EA SA
Mean Conf. int. Best Knockouts Mean Conf. int. Best Knockouts

2 0.0458 ±0.0288 0.0752 2.0 0.0475 ±0.0290 0.0752 2.0
4 0.1172 ±0.0769 0.3366 3.6 0.1096 ±0.0674 0.3440 3.7
6 0.2458 ±0.1108 0.3573 5.8 0.3184 ±0.1121 0.3573 5.9
8 0.2963 ±0.0969 0.3577 7.1 0.3401 ±0.0781 0.3576 7.2
10 0.3218 ±0.0739 0.3578 8.1 0.3566 ±0.0554 0.3578 8.1
12 0.3496 ±0.0370 0.3578 8.8 0.3573 ±0.0015 0.3578 8.7
20 0.3575 ±0.0012 0.3578 10.8 0.3577 ±0.0001 0.3578 10.2
VS 0.3507 ±0.0372 0.3579 11.8 0.3577 ±0.0001 0.3579 11.4

Evaluating Simulated Annealing Algorithms 481

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

biomass percentage

pr
od

uc
t

●

●

●

●

●

●

●

●

●

●

●

● SA
EA

Fig. 1. Convergence plots for the variable-sized EA and SA in case study I

A comparison between EAs and SA show that the latter seems to obtain
better results. When k is small (2 or 4) the results are comparable; when k
increases the mean of the SA improves faster. Although some of the confidence
intervals are overlapping, the standard deviations are smaller in the SA showing
less variability in the results. Regarding the variable size versions, the SA has
a better mean and a very reduced confidence interval, denoting the capacity to
consistently find high quality results.

A distinct set of results was obtained by running both algorithms (variable
sized variants) with the PYMB as the objective function. The minimum biomass
was varied as a percentage of the wild type’s value, in 10% intervals. The mean
of the results for each algorithm is plotted in Figure 1. It is noticeable that the
SA has slightly higher mean values for almost every point in the graph although
the confidence intervals are overlapping in most cases (these are not shown for
improved visualization). Nevertheless, the fact that SA achieves higher means
and lower standard deviation values is an aditional indicator of its performance.

5.3 Case Study II - Lactic Acid

Lactic acid and its derivatives have been used in a wide range of food-processing
and industrial applications like meat preservation, cosmetics, oral and health
care products and baked goods. Additionally, and because lactate can be eas-
ily converted to readily biodegradable polyesters, it is emerging as a potential
material for producing environmentally friendly plastics from sugars [5]. Sev-
eral microorganisms have been used to produce lactic acid, such as Lactobacillus
strains. However, those bacteria have undesirable traits, such as a requirement
for complex nutrients which complicates acid recovery. E. coli has many advanta-
geous characteristics, such as rapid growth and simple nutritional requirements.

In Table 2, the results for the case study II are given. The first conclusion that
can be drawn is that this case study seems to be less challenging than the one
presented on the previous section. In fact, 3 gene deletions seem to be enough to
obtain the best solution, and therefore the results with k larger than 6 are not

482 M. Rocha et al.

Table 2. Results obtained by for the case study II - production of lactic acid

k EA SA
Mean Conf. int. Best Knockouts Mean Conf. int. Best Knockouts

2 0.2547 ±0.0000 0.2547 2.0 0.2547 ±0.0000 0.2547 2.0
4 0.2553 ±0.0000 0.2553 3.0 0.2553 ±0.0000 0.2553 3.0
6 0.2553 ±0.0000 0.2553 3.0 0.2553 ±0.0000 0.2553 3.0

VS 0.2553 ±0.0000 0.2553 3.0 0.2553 ±0.0000 0.2553 3.0

shown. On the other hand, the variable size algorithms confirm its merits once
they are again able to find the best solution in all runs, and automatically finds
the adequate number of knockouts.

5.4 Discussion

Two features that are important when comparing meta-heuristic optimization
algorithms are the computational effort required and the convergence of the
algorithm to a good solution. The computational burden of the alternatives
compared is approximately the same, since the major computational effort is
devoted to fitness evaluation and the same number of solutions is evaluated in
every case. A typical run of each algorithm for the case studies presented will
take approximately two or three hours in a regular PC.

Regarding the convergence of the algorithms, a plot of the evolution of the
objective function along the generations of the SA and EA is given in Figure 2
(the mean of the 30 runs is plotted). Only the variable sized versions were se-
lected to allow a better visualization. It is clear from this plot that the SA con-
verges faster than the EA, obtaining high quality results early in the runs. Both

0 10000 20000 30000 40000 50000

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Evaluations

F
itn

es
s

SA
EA

Fig. 2. Convergence plots for the variable-sized EA and SA in case study I

Evaluating Simulated Annealing Algorithms 483

algorithms are similar in terms of computational effort, since most of the time
is spent evaluating the solutions.

It is also important to refer that the approach followed is to solve the problem
in silico, using computer models. Therefore, the results may or may not be
biologically feasible. Nevertheless, a validation of the results was conducted since
the best solutions obtained were analyzed by experts in Biotechnology using
Bioinformatics databases (e.g. EcoCyc2).

6 Conclusions and Further Work

In this work, a contribution to Metabolic Engineering was provided by the de-
velopment of a variant of Simulated Annealing that is able of reaching a near
optimal set of gene deletions in a microbial strain, to maximize the production
of a given product. This algorithm was able to improve previous results from
the use of Evolutionary Algorithms. These were tested in a case study that dealt
with the production of succinic acid by the E. coli bacterium. Important con-
tributions of this work were the introduction of a set-based representation, that
made use of variable size solutions, an uncommon feature in SA algorithms.

There are still a number of features that need to be introduced. These in-
clude other algorithms for simulation and distinct objective functions. Regarding
the former, an alternative algorithm for simulating mutants’ phenotype is the
MOMA algorithm, that was proposed by Segre et al [14], where it is assumed
that knockout metabolic fluxes undergo a minimal redistribution with respect to
the flux configuration of the wild type. This implies solving a quadratic program-
ming problem, whose aim is to minimize the differences between the fluxes in the
mutant and the ones in the wild type. It would also be interesting to consider
an objective function capable of taking into account the number of knockouts of
a given solution and the cost of its experimental implementation.

Acknowledgments

The authors thank the Portuguese Foundation for Science and Technology (FCT)
for their support through project ref. POSC/EIA/59899/2004. partially funded
by FEDER.

References

1. Borodina, I., Nielsen, J.: From genomes to in silico cells via metabolic networks.
Current Opinion in Biotechnology 16(3), 350–355 (2005)

2. Burgard, A.P., Pharya, P., Maranas, C.D.: Optknock: A bilevel programming
framework for identifying gene knockout strategies for microbial strain optimiza-
tion. Biotechnol. Bioeng. 84, 647–657 (2003)

2 http://www.ecocyc.org

484 M. Rocha et al.

3. Chassagnole, C., Noisommit-Rizzi, N., Schmid, J.W., Mauch, K., Reuss, M.: Dy-
namic modeling of the central carbon metabolism of escherichia coli. Biotechnology
and Bioengineering 79(1), 53–73 (2002)

4. Covert, M.W., Schilling, C.H., Famili, I., Edwards, J.S., Goryanin, I.I., Selkov,
E., Palsson, B.O.: Metabolic modeling of microbial strains in silico. Trends in
Biochemical Sciences 26(3), 179–186 (2001)

5. Hofvendahl, K., Hahn-Hagerdal, B.: Factors affecting the fermentative lactic acid
production from renewable resources. Enzyme Microbial Technology 26, 87–107
(2000)

6. Ibarra, R.U., Edwards, J.S., Palsson, B.G.: Escherichia coli k-12 undergoes adaptive
evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002)

7. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis.
Curr. Opin. Biotechnol. 14, 491–496 (2003)

8. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by simulated anneal-
ing. Science 220(4598), 671–680 (1983)

9. Lee, S.Y., Hong, S.H., Moon, S.Y.: In silico metabolic pathway analysis and design:
succinic acid production by metabolically engineered escherichia coli as an example.
Genome Informatics 13, 214–223 (2002)

10. Nielsen, J.: Metabolic engineering. Appl. Microbiol. Biotechnol. 55, 263–283 (2001)
11. Patil, K., Rocha, I., Forster, J., Nielsen, J.: Evolutionary programming as a plat-

form for in silico metabolic engineering. BMC Bioinformatics 6(308) (2005)
12. Reed, J.L., Vo, T.D., Schilling, C.H., Palsson, B.O.: An expanded genome-scale

model of escherichia coli k-12 (ijr904 gsm/gpr). Genome Biology 4(9) R54.1–R54.12
(2003)

13. Rocha, M., Pinto, J.P., Rocha, I., Ferreira, E.C.: Optimization of Bacterial Strains
with Variable-Sized Evolutionary Algorithms. In: Proceedings of the IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational Biology,
pp. 331–337. IEEE Press, Honolulu, USA (2007)

14. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and per-
turbed metabolic networks. Proc. National Acad. Sciences USA 99, 15112–15117
(2002)

15. Stephanopoulos, G., Aristidou, A.A., Nielsen, J.: Metabolic engineering principles
and methodologies. Academic Press, San Diego (1998)

	Evaluating Simulated Annealing Algorithms in the Optimization of Bacterial Strains
	Introduction
	Simulation Algorithms for the Prediction of Metabolic Behavior
	Simulated Annealing
	The Proposed Algorithm
	Representation Scheme and Mutation Operator
	Decoding and Evaluating
	Initialization
	Pre-processing and Post-processing
	Implementation Issues

	Experiments
	Experimental Setup
	Case Study I: Succinic Acid
	Case Study II - Lactic Acid
	Discussion

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

