
Life cycle assessment of wastewater treatment options
for small and decentralized communities

A.P. Machado*, L. Urbano*, A.G. Brito*, P. Janknecht**, J.J. Salas*** and R. Nogueira*

*University of Minho, Institute of Biotechnology and Bioengineering – Centre of Biological Engineering,

Campus de Gualtar, 4710-057 Braga, Portugal (E-mail: agbrito@deb.uminho.pt; regina@deb.uminho.pt)

**Stadtwerke Düsseldorf AG-Wasserwirtschaft und Technik Himmelgeister Landstrasse 1, 40589

Düsseldorf, Germany (E-mail: pjanknecht@swd_ag.de)

*** Centro de las Nuevas Tecnologı́as del Agua, Avda. Américo Vespucio S/N. Ed. Cartuja, bloque B, Mod.
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Abstract Sustainability has strong implications on the practice of engineering. Life cycle assessment (LCA)

is an appropriate methodology for assessing the sustainability of a wastewater treatment plant design. The

present study used a LCA approach for comparing alternative wastewater treatment processes for small and

decentralised rural communities. The assessment was focused on two energy-saving systems (constructed

wetland and slow rate infiltration) and a conventional one (activated sludge process). The low environmental

impact of the energy-saving wastewater treatment plants was demonstrated, the most relevant being the

global warming indicator. Options for reduction of life cycle impacts were assessed including materials used

in construction and operational lifetime of the systems. A 10% extension of operation lifetime of constructed

wetland and slow rate infiltration systems led to a 1% decrease in CO2 emissions, in both systems. The

decrease in the abiotic depletion was 5 and 7%, respectively. Also, replacing steel with HDPE in the

activated sludge tank resulted in a 1% reduction in CO2 emission and 1% in the abiotic depletion indicator.

In the case of the Imhoff tank a 1% reduction in CO2 emissions and 5% in the abiotic depletion indicator

were observed when concrete was replaced by HDPE.

Keywords Activated sludge; constructed wetland; life cycle assessment; slow rate infiltration; wastewater

treatment

Introduction

Eco-efficiency is characterised by a continuous effort towards the improvement of econ-

omical and environmental values and a long-term need for sustainability. Therefore, the

goals for wastewater treatment systems are moving beyond the protection of human

health and aquatic ecosystems to include minimising loss of scarce resources, reducing

the use of energy and water, reducing waste generation and enabling the recycling of

nutrients (Lundin et al., 2000). The Life Cycle Assessment (LCA) methodology has been

used to explore the sustainability of wastewater systems, allowing a comparison of differ-

ent technical solutions in terms of the estimated environmental loads (Emmerson et al.,

1995; Tillman et al., 1998; Dennison et al., 1999; Dixon et al., 2003; Palme et al., 2005).

The wastewater treatment in rural areas requires decentralised systems and different

options and technologies are available for such purpose. In this context, the present study

was focused on the life cycle inventory and environmental impact evaluation of

three wastewater treatment plants designs, namely an activated sludge process, a slow

rate infiltration and a constructed wetland. The work was carried out within the frame

of DEPURANAT –Sustainable wastewater management in rural areas, an EU project

co-financed by Interreg IIIB Atlantic Arc Program.
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Methodology

Wastewater treatment plants

The wastewater treatment plants included in the scope of the present LCA study were a

constructed wetland, a slow rate infiltration and an activated sludge process, all described

briefly in Figure 1.

LCA methodology

LCA is a quantitative methodology that evaluates the effects that a system has on the

environment over the entire period of its life cycle. In general, it is a “cradle to grave”

approach, including extraction, processing and manufacture, distribution, use, reuse,

maintenance and disposal processes (Jensen et al., 1997). LCA is described in the ISO

14040:1997 series, namely by ISO 14041:1997 standard – Definition of objective, scope

and inventory analysis, ISO 14042:1997 standard – Environmental impact assessment

and ISO 14043:1997 standard – Interpretation. SimaPro 7 software was used for the

inventory and database on resources consumption and environmental emissions in the

present LCA (PRé Consultants, 2006).

The LCA study comprised the production of components (equipments and acces-

sories), construction and assembly, operation and maintenance and dismantling and final

disposal of the wastewater treatment components. The system function concerned the

legal standards stated by the Portuguese authorities for discharge in surface waters

Figure 1 Description of the wastewater treatment plants
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(40mg/L as BOD, 150mg/L as COD, 15mg/L of ammonium and 10mg/L of phos-

phorus), the functional unit was one population equivalent (p.e.) and the period of com-

parison was set at 10 years. Figure 2 depicts the system boundaries defined in the present

study.

Results and discussion

Inventory analysis

Table 1 summarises the resources and emissions inventory of the different wastewater

treatment plant designs. The materials used in the construction phase were considered to

last for the whole life cycle of the plants, no replacement being considered for such

purpose. The ultimate disposal site for the disassembled materials and wastes was

assumed to be a landfill. The excess sludge purged from the treatment process

was applied as soil amendment and the phosphorus and nitrogen avoided in land farming

was calculated.

Impact assessment

The environmental impact assessment comprised three successive phases: classification,

characterisation and normalisation. In the scope of this study the normalisation phase was

not considered. In the classification step, all emissions were sorted into impact categories

according to their environmental effects. Certain emissions were included in more than

one impact category, as is the case of NOx, which contributed to acidification and eutro-

phication. Subsequently, emissions within each impact category were aggregated using

characterisation factors that compared the effect of a specific emission with a reference

(PRé Consultants, 2006). The characterisation method was the CML 2 Baseline 2000

because it is one of the few that consider nutrients (phosphorus and nitrogen) and organic

matter as emissions. Table 2 presents the inventory results per impact category, expressed

in relation to a functional unit of 1 p.e.

The most significant inventory elements that contributed to the environmental impact

of the wastewater treatment plants displayed in Figure 2 were materials usage, energy

consumption, CO2 emissions and solid emissions.

Materials. In the present case study, the greatest quantities of materials used for plant

construction were concrete (e.g. Imhoff tank), plastics (piping in all treatment systems

and the geotextile membrane in the lining of the constructed wetland) and steel (activated

sludge tank). All such items contributed to the impact category abiotic depletion because

they use raw materials in their production and their production also involved the

consumption of energy which contributed to the category global warming.

Energy. The energy usage of constructed wetland and slow rate infiltration systems is

similar because both systems require a very low input. In contrast, the activated sludge

Figure 2 Boundaries of life cycle study
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has much higher energy requirements because of the aeration equipment (22 h/d

operation). These results agree with those reported by Dixon et al. (2003). Energy usage

(fossil fuel and electricity) is the main contributor to the impact categories abiotic

depletion and global warming which justifies the fact that activated sludge presents a

higher impact in both categories.

Table 1 Inventory results of wastewater treatment plants: constructed wetland, slow rate infiltration and

activated sludge process (expressed in terms of 1 p.e.)

Inventory Constructed wetland Slow rate infiltration Activated sludge

Resources
Energy
Fossil fuel g 952 98 38
Electricity kWh – – 321.2
Materials
Gravel t 10.8 – –
Concrete 110.8 kg 0.073 m3 –
Steel kg – – 24.28
PVC g 3,170 33.5 –
PP g 642.5 121.5 –
Aluminium g 16.7 25 –
PE g 14.7 4,565 –
PET g – – 153.7
Aluminium g 16.7 25 –
Raw materials
Gravel kg 1.71 1.45 6.09
Iron g 57.4 82.7 17,700
Sand g 43.4 3.03 £ 1024 0.0264
Nickel g 2.96 5.27 10.5
Sodium chloride g 2.39 0.0469 0.0303
Emissions
To air
Carbon dioxide kg 2141 2956 592
Carbon dioxide (fossil) kg 15.5 20.3 193
Sulphur oxides g 785 112 154
Nitrogen oxides g 169 117 118
Carbon monoxide g 36.1 10.2 0.439
Sulphur dioxide g 17.1 33.9 78.6
Carbon monoxide (fossil) g 12.3 16.2 68.7
Nitrogen dioxide g 11.5 – –
Particulates g 11.2 12.7 22.6
Propane g 10.5 0.0925 2.3
Ethane g 3.87 0.0674 3.7
Dinitrogen monoxide g 0.263 2.24 72.9
Particulates (,10mm) mg 61.5 6.33 244
To water
COD kg 68.5 68.5 68.5
Ammonium kg 4.56 4.56 4.56
Phosphorus g 456 456 456
Aluminium g 56 3.66 65
Copper mg 885 50 295
To soil
Iron g 0.24 0.17 3.6
Aluminium mg 7.87 3.13 1,090
Waste
Waste general g 1,309 179 2,517
Chemical waste g 69.4 2.083 464
Construction waste mg 177 24.3 –
Sludge
Total N g 28.5 – 8.22
Total P g 1.42 – 0.5
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CO2 emissions. The CO2 emissions are directly related to the energy consumption.

Again, the activated sludge system presented the highest environmental burden in the

global warming category, when compared to the other systems, due to the high energy

input for aeration. The constructed wetland and slow rate infiltration have significantly

lower overall CO2 emissions, due to the fact that biomass acts as a carbon sink, locking

away atmospheric carbon. In particular, the slow rate infiltration system contributed to

the decrease of the global warming factor.

Solid emissions. The main sources of solid emission resulted from the land excavated

during construction and from the surplus sludge production during plant operation. Dixon

et al. (2003) reported that the environmental impact of the soil removal can be reduced by

its reuse in the infill in the dismantling phase. Sludge spreading on soil was the procedure

applied by Lundin et al. (2000) in order to reduce environmental impacts. Such a

procedure can only be considered in non-sensitive areas and might be questionable when

large quantities are disposed of. The reuse of sludge translates into a reduction in abiotic

depletion impact of constructed wetland and activated sludge systems.

Considering the whole life cycle of the wastewater treatment systems and the relative

contribution of each phase – construction, operation and maintenance, dismantling and

final disposal – their environmental impacts are presented in Figure 3. The analysis

presented in Figure 3 reveals that activated sludge processes present the highest environ-

mental impact during operation and maintenance because of the energy consumption

required for aeration. A similar result was reported by Gaterell and Lester (2000). Slow

rate infiltration and constructed wetland are advantageous when compared to the activated

sludge system, not only because they use less energy during operation and maintenance,

but also because they act as a carbon sink and the carbon balance is favourable. The

dismantling and final disposal phase presents the lowest environmental impact. This result

is congruent with the findings of Dixon et al. (2003). Gaterell and Lester (2000) reported

Table 2 Inventory results per impact category of the wastewater treatment systems*

Emissions in each Impact categories and Value (kg)

impact category reference emissions

Constructed

wetland

Slow rate infiltration Activated

sludge

Aluminium Abiotic depletion 48.2 39.3 323
Copper Sb
Iron
Carbon dioxide Global warming 22.93 £ 104 21.87 £ 105 4.01 £ 104

Dinitrogen monoxide CO2

Ethane Ozone layer depletion 1.72 £ 1023 1.2 £ 1023 3.04 £ 1023

Propane CFC-11
Carbon monoxide Photochemical oxidation 3.25 2.61 17.8
Nitrogen dioxide C2H4

Sulphur oxides and dioxide
Nitrogen oxides and dioxide Acidification 31.1 38 434
Sulphur dioxide SO2

Ammonium Eutrophication 3.42 £ 103 3.42 £ 103 3.43 £ 103

COD PO22
4

Dinitrogen monoxide
Nitrogen oxides and dioxide
Phosphorus

*The emissions presented in the first column are the ones that individually have the highest contribution
within each impact category. The values presented in the third, fourth and fifth columns represent the
sum of all emissions considered in each impact category
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that the environmental impact associated with demolition and disposal only contributes

less then 20% of the total impact in conventional treatment systems. However,

constructed wetlands display the most significant impact in the dismantling phase among

the different wastewater treatment systems. Minimisation techniques are therefore

important.

Maintenance and replacement schedules are expected to have environmental impacts

when considering LCA methodology. However, as can be observed in Figure 3, because

Figure 3 Contribution of life cycle phases of wastewater treatment systems to environmental impact

categories
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the life span of wastewater treatment plants is high, operation and maintenance phases

present the major environmental impacts, instead of construction or disassembling ones.

As a rule of thumb, many engineers use 10 years as the expected life span for mechanical

equipment and 20 years for construction works/civil engineering, but Lundin et al. (2000)

reported that pumps, tanks and other mechanical parts were expected to last for 15 years

and buildings and pipes would last 30 years. Therefore, as a general guideline, waste-

water plant designs with less replacement needs are favoured in terms of environmental

impact along the life span of the systems, but greater accuracy in the results could be

obtained through further testing of the direct emission reductions obtained with different

replacement schedules. A 10% extension of operation lifetime of constructed wetland and

slow rate infiltration systems leads to a 1% decrease in CO2 emissions in both systems.

The impact on the abiotic depletion is up to 5 and 7% decrease, respectively.

The effect of the materials used in the construction of activated sludge and Imhoff

tanks (used as a pre-treatment in the constructed wetland), respectively steel and

concrete, on the life cycle impact of the systems was assessed. In both units steel and

concrete were substituted by HDPE, a material that can be used in construction. Repla-

cing steel with HDPE in the activated sludge tank resulted in a 1% reduction in CO2

emission and 1% in the abiotic depletion indicator. In the case of the Imhoff tank a 1%

reduction in CO2 emissions and 5% in the abiotic depletion indicator were observed

when concrete was replaced by HDPE.

Conclusions

Design for sustainability is a key guideline during the planning phase and pre-selection

of wastewater treatment plants, namely in decentralised systems located in rural areas.

Innovation and design engineering of wastewater treatment processes can take advantage

of LCA methodology. The present study reveals that the LCA approach can be used as a

decision tool in design studies, but information for environmental impact assessment and

minimisation measures need further improvement. In the present case, the LCA quantifi-

cation identified the constructed wetland and the slow rate infiltration systems as appro-

priate technologies in rural areas. The key factor was the reduction of global warming

impact due to carbon sequestration, as opposed to the activated sludge processes, which

require a high energy input and present a negative carbon balance.
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Genève, Switzerland.

A
.P

.M
achad

o
et

al.

21

http://dx.doi.org/10.1016/S0273-1223(99)80002-X
http://dx.doi.org/10.1016/S0273-1223(99)80002-X
http://dx.doi.org/10.1016/S0273-1223(99)80002-X
http://dx.doi.org/10.1016/S0273-1223(99)80002-X
http://dx.doi.org/10.1016/S0925-8574(03)00007-7
http://dx.doi.org/10.1016/S0925-8574(03)00007-7
http://dx.doi.org/10.1016/S0925-8574(03)00007-7
http://dx.doi.org/10.1016/S0048-9697(99)00508-2
http://dx.doi.org/10.1016/S0048-9697(99)00508-2


Jensen, A.A., Hoffman, L., Møller, B.T., Schmidt, A., Christiansen, K., Elkington, J. and van Dijk, F. (1997).

Life Cycle Assessment (LCA): A guide to approaches, experiences and information sources, Report to the

Environmental Agency, Environmental Issues Series, No. 6. Copenhagen.

Lundin, M., Bergtsson, M. and Molander, S. (2000). Life Cycle Assessment of wastewater systems: influence

of system boundaries and scale on calculated environmental loads. Environ. Sci. Technol., 34, 180–186.

Palme, U., Lundin, M., Tillman, A.M. and Molander, S. (2005). Sustainable development indicators for

wastewater systems – researchers and indicator users in a co-operative case study. Resour. Conserv.

Recy., 43, 293–311.
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