
 

Application of a Context Model in 

Context-Aware Mobile Government 

Services 

César E. Ariza Avila  

 

 

Dissertação submetida à Universidade do Minho para obtenção 

do grau de Mestre em Sistemas de Informação elaborada sob a 

orientação da  

Doutora Helena Rodrigues 

 

 

 

 

 

Departamento de Sistemas de Informação 

Escola de Engenharia 

Universidade do Minho 

Guimarães, Outubro de 2006 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55608208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ii 

 

  



 

iii 

 

 

 

Acknowledgements 

 

I would like to express my gratitude to all people that directly or indirectly contribute 

to the execution of this work. 

Special thanks to my supervisor Doutora Helena Rodrigues for creating the 

environment for doing this research. 

Special thanks also and again to Helena Rodrigues and Jason Pascoe for the 

revisions, suggestions and supporting in order to finish this dissertation. 

Special thanks to Helder Pinto and the researchers of the Ubicomp Laboratory at 

University of Minho. 

I would like to thank, to the Information Systems Department for creating the environment 

needed to this research. 

  



iv 

 



 

v 

 

 

Aplicação de um Modelo de Contexto em 

Serviços Moveis Baseados no Contexto para o 

governo electrónico 

 

Resumo 

 

As novas tecnologias móveis oferecem um elevado potencial para a interacção e a 

participação dos cidadãos com as autoridades locais. Estas tecnologias são exploradas 

nesta dissertação, tendo como objectivo promover e melhorar esta interacção, suportando e 

criando formas novas de comunicação e tentando tomar vantagem da mobilidade tanto 

quanto possível. 

 

As aplicações baseadas no contexto utilizam o contexto para facilitar e melhorar a 

experiência do utilizador Estas aplicações, combinadas com as novas tecnologias móveis, 

podem simplificar os processos de comunicação com o governo.  

 

Esta dissertação apresenta as áreas chaves a considerar no desenvolvimento de uma 

aplicação móvel baseada no contexto. Inicialmente são apresentados os principais 

requisitos identificados para tais aplicações. Contexto é descrito então como um modelo do 

ambiente circunvizinho, e um modelo de objectos é apresentado a fim de demonstrar esta 

visão. Para a implementação do modelo de objectos foi utilizado RDF, que permite a 

representação de conhecimento. Um conjunto de aplicações centrais foi desenvolvido a fim 

de suportar o modelo de contexto e a criação de aplicações baseados no contexto. As 

aplicações foram testadas no município de Vila Nova de Cerveira, com a contribuição de um 

conjunto de cidadãos. Por último, os cenários de teste, assim como os resultados de 

usabilidade são apresentados. 

  



vi 

 



 

vii 

 

 

Appl icat ion of  a  Context  Model  in Context -Aware 

Mobi le Government Services  

 

Abstract 

New mobile technologies offer a wide potential for interaction and participation between 

citizens and local authorities. These technologies are explored and exploited in this thesis 

with the aim of promoting and improving this interaction by supporting and creating novel 

ways of communication and taking as much advantage of mobility as much as possible. 

 

Context Aware Applications utilise context to facilitate and improve the user experience. 

These applications, combined with the new mobile technologies used by citizens, can 

simplify their process of communication with government bodies. 

 

This dissertation presents the key areas for consideration in developing a Context Aware 

Mobile Government Application. Initially we present the central requirements we identified for 

such applications. Our understanding of context is then described as a model of the 

surrounding environment, and an object model in particular is presented in order to realize 

this understanding. The object model was implemented using RDF, which allows the 

representation of knowledge, and a set of core applications were developed in order to 

support the context model and the creation of new context aware applications. These were 

tested in a trial implementation at the municipality of Vila Nova de Cerveira, which we 

present along with some user studies that we conducted with the help of some citizens of the 

municipality. 

  



viii 

 



 

ix 

 

 

Contents 

 

Acknowledgements ______________________________________________________ iii 

Resumo _________________________________________________________________ v 

Abstract _______________________________________________________________ vii 

Contents _______________________________________________________________ ix 

List of figures ___________________________________________________________ xi 

List of tables ___________________________________________________________ xiii 

1 Introduction _________________________________________________________ 1 

1.1 The USE-ME.GOV project __________________________________________ 2 

1.2 Context Awareness Concepts _______________________________________ 3 

1.2.1 Context in aware computing ______________________________________________ 3 

1.2.2 Context categorization and acquisition ______________________________________ 5 

1.3 Context aware systems ____________________________________________ 6 

1.4 Objectives of this dissertation ______________________________________ 8 

2 Context management applications requirements ___________________________ 9 

2.1 Introduction _____________________________________________________ 9 

2.2 Context Information Requirements _________________________________ 10 

2.2.1 Model for context Information ____________________________________________ 10 

2.2.2 Representing and storing context Information _______________________________ 11 

2.3 Application Context Requirements _________________________________ 12 

2.3.1 Ability to communicate with other applications _______________________________ 12 

2.3.2 Ability to accept new forms of context ______________________________________ 13 

2.3.3 Ability to add value to the context Information _______________________________ 14 

2.3.4 Ability to make complexities in context information transparent to users and applications

 15 

2.4 Conclusion _____________________________________________________ 15 

3 Context Model ______________________________________________________ 17 

3.1 Introduction ____________________________________________________ 17 

3.2 The selected model ______________________________________________ 18 



x 

 

3.3 Using the Object Model ___________________________________________ 20 

3.3.1 Modeling Objects ______________________________________________________ 21 

3.3.2 Modelling Relationship Objects ___________________________________________ 22 

3.3.3 Selection algorithms ___________________________________________________ 23 

3.3.4 Context model representation ____________________________________________ 24 

3.4 Conclusions ____________________________________________________ 28 

4 Implementation ______________________________________________________ 29 

4.1 Context management architecture overview __________________________ 29 

4.2 Management Application and Context Model Implementation ___________ 31 

4.2.1 Representing Objects __________________________________________________ 32 

4.2.2 Selection Algorithms ___________________________________________________ 34 

4.2.3 The Context Manager __________________________________________________ 35 

4.2.4 Invoking Selection Algorithms ____________________________________________ 37 

4.3 Feeders ________________________________________________________ 38 

5 Deployment and Validation ____________________________________________ 41 

5.1 Introduction ____________________________________________________ 41 

5.2 Populating the Model _____________________________________________ 42 

5.2.1 Feeders _____________________________________________________________ 43 

5.2.2 Feeder implementation issues ___________________________________________ 44 

5.2.3 Complaint Services ____________________________________________________ 45 

5.3 Context Aware Complaint Application _______________________________ 46 

5.3.1 Interaction Model ______________________________________________________ 47 

5.4 User Testing ____________________________________________________ 51 

5.4.1 Test scope ___________________________________________________________ 51 

5.4.2 Findings _____________________________________________________________ 52 

6 General Conclusions _________________________________________________ 55 

 
  



 

xi 

 

 

List of figures 

 
Figure 1. Very general roles in a context aware architecture ............................................... 12 

Figure 2. The basic objects ................................................................................................. 19 

Figure 3. Example of anonymous objects ............................................................................ 19 

Figure 4. Simple and complex Relationships ....................................................................... 23 

Figure 5. General view of the of the context aware architecture .......................................... 24 

Figure 6. RDF Model ........................................................................................................... 25 

Figure 7. Simple RDF Graph ............................................................................................... 26 

Figure 8. RDF graph representing a Relationship. .............................................................. 27 

Figure 9. Context Management Architecture ....................................................................... 29 

Figure 10. The Management Application overview .............................................................. 31 

Figure 11. The ObjectID Type ............................................................................................. 33 

Figure 12. The ContexModelObject class ....................................................................... 34 

Figure 13. Selection function interface ................................................................................ 35 

Figure 14. The Context Manager exposed functionalities (public methods) ......................... 36 

Figure 15. Vila Nova de Cerveira ........................................................................................ 42 

Figure 16. Object modeling ................................................................................................. 43 

Figure 17. Location feeder representation ........................................................................... 44 

Figure 18. Complaint service representation ....................................................................... 45 

Figure 19. Menu driven interface showed to the user .......................................................... 47 

Figure 20. The general picture of the environment .............................................................. 48 

Figure 21. Complaint Application interaction model ............................................................. 49 

 
  



xii 

 

  



 

xiii 

 

 

List of tables 

Table 1. Selection functions interface description ................................................................ 35 

Table 2. Object Creation related API ................................................................................... 36 

Table 3. Algorithm invocation related API ............................................................................ 37 

Table 4. Feeding requets invocation ................................................................................... 38 

Table 5.  Feeders Interface ................................................................................................. 39 

Table 6. Recognition of the interface elements.................................................................... 53 

Table 7. Task achievement results ...................................................................................... 53 





1 Introduction 

 

New mobile technologies offer a wide potential for interaction and participation between 

citizens and local authorities. Those technologies will be explored and exploited in order 

to promote and improve this interaction, supporting and creating novel ways of 

communication and taking as much advantage of mobility as possible [1]. 

 

A good example of citizen interaction is a spontaneous participation in the community, in 

which citizens may have to provide, or be asked for, information about their current 

situation (i.e. a traffic jam, a crash, a fire, a parade, a commendation, etc). The challenge 

is to allow the citizen to react immediately, in the right place and at the right time. Such 

spontaneous participation inside a community can be seen as a new application area. 

 

Local governments [1] like to provide communication channels to the citizens in order to 

improve the relationship between citizens and government. Those channels can be 

electronic services such as web portals, mobile services or, face to face services. In any 

case the citizen must know which service or channel can use and when those services 

are available. For instance, if a citizen wants to interact with the government in order to 

inform them of an anomaly or ask for information, the citizen must find the appropriate 

person or department to communicate with. Also the communication must be done in the 

appropriate time (e.g. office hours). In many cases this could discourage the citizen from 

contacting a government service. In the case of mobile services, the service selection 

can be improved if citizens are provided with a tool that helps them to discover the right 

services they need when the citizens want to make a spontaneous participation. This tool 

could take the form of a set of applications that discover or help to discover services on 

behalf of the user by using contextual information. 

 

Spontaneous participation from citizens in a community faces two somewhat 

contradictory requirements. Firstly, it is imperative to acquire as much information as 

possible from situations. This information does not only include data submitted by 

citizens (i.e. text, pictures or video sent via SMS and MMS), but must also include 

information about the context, for instance the time and location of the participation. If 

this information can be represented in a rich and coherent structure then we expect that 

there will arise many useful new services that could exploit it. Secondly, a spontaneous 



2 

 

participation needs simple and easy-to-use interaction mechanisms to attract and retain 

as many users as possible[2]. 

 

A central issue in providing these kind of services is to accurately ascertain the context 

of the users based on their situation. For example in a complaint-scenario, the users 

location is useful in determining the topic of the complaint. But there are difficulties in 

getting accurate location info. For example the user can send a complaint via SMS but 

the location granularity provided by mobile operators is only available to the level of a 

mobile cell. In this situation other kind of context information are also necessary and 

useful, such as the type of place where the user is located (i.e. a garden, a park, a 

hospital, a rural zone, etc). And there are similar challenges to ascertain and represent 

these types too. An equally important issue is how to model and represent the context of 

both the user and the services provided, which includes how to describe the user, how to 

describe the nearby objects, how to describe the user situation and how to describe the 

service context (i.e. the context in which a particular local service is useful). 

 

Finally, when the user context is known, it is necessary to find a match between the user 

context and the service context in order to provide an appropriate service to the user. 

1.1 The USE-ME.GOV project 

The USability-drivEn open platform for the MobilE GOVernment consortium 

(USEME.GOV project) [3] aims to develop a platform to enable the easy development 

and deployment of local government applications/services that citizens can access via 

their mobile devices (e.g. smartphones or PDAs). 

 

The project vision is centred on the provision of appropriate services (i.e. context-

dependent services) to the citizen directly in the time and place they are needed or 

useful [2]. One component of the USE-ME.GOV platform concept was a context model to 

support context-aware behaviours of the various services through the provision of a 

model of the surrounding environment [4]. 

 

Municipalities (or other government bodies) may have many services to offer their 

citizens. Consider for example, if the citizen wants to report an anomaly. In this case the 

citizen must know the department to interact with and the specific information to provide. 

It is also likely that the information given by the citizen must be processed and delivered 

to the correct responsible party. In the case of reporting an anomaly, for example, to a 



 

3 

 

 

damaged bench in a garden, the information must be delivered to the responsible 

department of gardens. This plethora of services, procedures and situations may be 

overwhelming for the citizen. 

 

However, it is possible to help the Citizen and even the Municipality to select the correct 

service. In the garden scenario, if the citizen wants to report an anomaly immediately 

they could use their smart phone to access the anomaly report services that the 

municipality provide for that. Furthermore, by using the context information of the citizen 

(e.g. user location) it is possible to suppose that in the case of the garden complaint 

situation, that the user wants to inform the local government something related the 

garden. So using context information the services that will appear in the smart phone of 

the citizen will be only those related to the citizen’s context, such as a service service to 

report an anomaly for the garden. 

 

Using contextual information benefits the citizens as well the Municipality or government. 

Some of the benefits derived from the use of contextual information can be: speeding up 

the problem resolution, simplifying the process for citizens and governments, 

encouraging the participation of the citizens, making easy the citizen to access to the 

services [1]. 

 

One of the goals of the USEME.GOV platform is to support the service discovery on 

behalf of the user. This service discovery is based on a component that utilises the 

contextual information of the user and services. 

 

This dissertation forms part of the work developed in the USE-ME.GOV project, 

particular with respect to the components in charge of context information.  

1.2 Context Awareness Concepts 

1.2.1 Context in aware computing 

According to the Merriam-Webster dictionary [5]  the term “context” has two meanings:   

 

1. the parts of a disclosure that surround a word or passage and can throw light on 

its meaning. 

2. the interrelated conditions in which something exists or occurs. 

 



4 

 

The context concept is widely used in grammar. In some cases it is possible to know the 

meaning of a word by using its context. By analogy it is possible to know some facts 

about other entities by knowing their context. For instance if someone wearing overalls it 

is possible that he or she may be working. Context in this document is related to the 

context used in context-awareness computing. 

 

Many definitions of context have been proposed in context-aware computing research. A 

widely accepted definition proposed by Dey and Abowd is: 

 

“Context: any information that can be used to characterize the situation of entities 

(i.e. whether a person, place or object) that are considered relevant to the 

interaction between a user and an application, including the user and the 

application themselves. Context is typically the location, identity and state of 

people, groups and computational and physical objects.”[6].  

 

However the definition above is very general and covers a lot of information. For this 

reason several types of context (sometimes known as context dimensions or categories) 

have been defined, such as a time context, location context, activity context, physical 

context, etc [2,3]. These concepts help to clarify the nature of context but they do not 

really address the issue of how to represent it.  

 

There already exists several forms of representation for different types of context. For 

example, the location context of entities (such as objects, persons, or services) can be 

well expressed using GML (Geography Markup Language)[4,5] among other standards. 

A higher-level model is still required though in order to bring these different pieces 

together and to offer a unified model that may support all types of entities and contexts. 

The semantic web offers a means of doing so through the use of ontologies to model 

and represent context and related concepts [6], and also utilises previously acquired 

knowledge expressed as ontologies [7]. 

 

Based on these definitions, the general needs of a context aware system are: 

i. context acquisition: how to obtain the contextual information,  

ii. context representation: how to organize and store the context information;  

iii. context use: how to use the context information in an appropriate manner. 

 

One of the objectives of this work is to present a solution to the three needs presented 

above in a specific application scenario. The specific scenario is the participation of the 



 

5 

 

 

citizen in the community by interacting with the government. This work will also present 

the three basic needs about, in the form of requirements in the requirements chapter. 

1.2.2 Context categorization and acquisition 

 

There is not a unified classification of context. Many authors define those categories 

depending on the use of the context information. Shilit et. al. [7] defined three categories 

of context: user context (user’s profile, user’s location, social situation, etc ), computing 

context (net connectivity, communication costs, com. bandwidth), and physical context 

(lighting, noise levels). Dey and Abowd [6] define four main types of context: location, 

identity, activity, and time.  

 

In this dissertation the term context dimension is used as context type or context 

category, referring to the kind of contextual information. For instance, the user feelings, 

the user activity, the user location, etc. are all kinds of context dimensions. 

 

Contextual information can be acquired in several forms. For instance the altitude can be 

acquired by using an altimeter or a GPS, or even by heating water and calculating the 

altitude by measuring its boiling point with a mercury thermometer. 

 

Context acquisition refers to the form the contexts is acquired. Mostéfaoui et. al. [8] 

defined three ways of context acquisition: 

 Sensed context: This kind of information is acquired by means of physical 

sensors, such as for temperature and pressure. 

 Derived context:  Is the information computed on the fly, such as time and date. 

 Context explicitly provided: For instance the user preferences when they are 

explicitly provided to the application. 

 

The above mentioned categories of context and context acquisition help us to realize 

how the context can be acquired in this work. Cities do not have an infrastructure for 

context sensing and acquisition. Smart spaces, instead, are provided with sensors that 

acquire contextual information such as temperature, noise levels, location, light intensity, 

etc. Also the people that use those spaces in some way have artefacts that make 

possible to know their position. Those artefacts can be cameras or electronic tags such 

RFID, or even Bluetooth devices. Cities are not smart spaces. If some sensing devices 

exist in cities they are often not accessible or usable. For instance, if the time is 



6 

 

considered as a context dimension, certainly the watch in the tower of the church can be 

hardly useful. Also Citizens lack of devices needed to contextualize in a city. However, in 

order to contextualize citizens or entities in a city, one of the possibility is to use (or 

reuse) infrastructure not intended for contextualization. 

 

The way citizens can be contextualized is unpredictable. Nowadays citizen environments 

have restrictions such as the lack of sensors and the lack of accuracy in the sensed 

context dimensions. Assuming the citizens have as a minimum a mobile phone, in some 

way the position of the citizen (even with a really bad accuracy) can be revealed. 

Citizens with more sophisticated devices – with embedded GPS devices- can be located 

with a better accuracy. However, location is only one of the context dimensions, there 

are other dimensions, such as activity, citizen feelings, etc. If it is not possible to acquire 

all the required context dimensions there remains the option to ask to the user for their 

context.  

 

1.3 Context aware systems 

Context aware applications are those that uses context, more specifically Shilit [7] 

defined context aware systems as:  

 

“A context-aware system is one that can determine and react to the current 

physical and computing context of mobile users and devices, by altering the 

information presented to users or commands issued by and on behalf of those 

users.” 

 

Dey and Abowd[6] defined a context aware system as: 

 

“A system is context-aware if it uses context to provide relevant information and/or 

services to the user, where relevancy depends on the user’s task.” 

 

Research into frameworks and models to support context-awareness in applications has 

tended to concentrate on particular niches.  

 

For example, the GUIDE project [9] developed a guide for tourists in the city of 

Lancaster, in which, based on the user preferences and location, the application will 

create an appropriate guide tour. GUIDE was developed using an application centric 



 

7 

 

 

approach with any context modelling component embedded inside the application. The 

user preferences are obtained directly from the user and the location information is 

obtained by receiving location messages transmitted from strategically positioned Wi-Fi 

(IEEE 802.11) base stations. The physical device used was a touch-screen sub-

notebook (Fujitsu TeamPad 7600 with 850g), with the software limited to this specific 

device. 

 

The Context toolkit (CTK) [10] dealt primarily with handling and conversion of sensor 

data. The CTK proposes a network of widgets, some widgets dealing directly with 

sensors. The widgets communicate the contextual information to an intermediate layer 

using a publish/subscribe mechanism. In this approach the contextual information is 

categorized using a taxonomy. One of the advantages of the CTK is the separation to 

the applications about the context acquisition tasks and interpretation. 

 

Two broader approaches to modelling context are SOUPA (Standard Ontology for 

Ubiquitous and Pervasive Applications) [11] and CoOL (Context Ontology Language to 

enable Contextual Interoperability) [12]. SOUPA is designed to model and support 

pervasive computing applications in the form of a set of ontologies that are expressed 

using the Web Ontology Language (OWL). SOUPA is composed of a set of core 

ontologies and extension ontologies. The core set includes ontologies to represent 

persons, events, actions, space, time and the proposed extension ontologies include 

location, devices, schedule, etc. These extension can be added to further, and this 

possibility to extend SOUPA is one of its advantages. In fact the core ontologies reuse 

some pre existing made ontologies such as the Friend-Of-A-Friend ontology (FOAF), 

DAMLTime and the entry sub-ontology of time and the spatial OpenCyc. There are 

developed applications that use SOUPA such as CoBrA [13]. CoBrA is a broker-centric 

agent architecture for supporting context-aware systems in smart spaces.   

 

CoOL employs semantic web techniques also. CoOL uses OWL-S and its principal aim 

is the interoperability between web services. CoOL focuses in the description of the 

“semantics” (semantics refers to how to invoke the service, data types of the parameters, 

and data types of the received answers) of the services by using OWL-S. CoOL also 

allows to describe the context of use of the services by using aspects. Those 

descriptions are used to discover services and, once discovered, to invoke that services. 

The discovery process is performed by matching a given context (represented as 

aspects) with the service context description. 

 



8 

 

To summarize, GUIDE uses an applicational centric architecture and was developed for 

a specific device. The CTK is a good approach because it separates and hides the 

context acquisition from the applications, and encapsulates each context dimension in a 

software component (widget). SOUPA proposes the use of ontologies to model context 

and is used in smart spaces application. CoOL focuses on web services description and 

service discovering. All those approaches has its niche and contribute important ideas 

such as the formal representation of context, service discovery and representation, and 

the separation between context acquisition and the context use. These important ideas 

will be reflected in the development of this work. 

 

1.4 Objectives of this dissertation 

 

The main objective of this dissertation is to explore the manner in which to design and 

develop a Context-Aware mobile government application. The specific goals are: 

 To analyze the context requirements for context aware. 

 To apply one approach of representing and modelling context. Context 

representation can be further divided into (a) context about objects (persons and 

physical objects) and (b) context about services that will be offered to these 

objects.  

 To implement a mechanism to discover what services are useful for which users 

depending on their context. 

 To deploy and to analyze the results of this deployment. 

 

The structure of this dissertation is as follows: the first chapter contains the introduction; 

the second chapter presents some concerns and challenges about building context 

aware applications; the third chapter presents the context object model as a way of 

modelling context; the fourth chapter presents one computational artefact that manages 

the context object model, the fifth chapter describes the creation of an context aware 

application and finally conclusions are presented in the last chapter. 

  



 

9 

 

 

2 Context management applications requirements 

2.1 Introduction 

In design of a context aware mobile government application (CAMGOV) several 

approaches can be used to identify its requirements. There are methodologies for 

software requirements specification [14], however in the area of context aware 

computing those guidelines are not suitable directly in a design and development 

process; as stated in [10] and from the experience gained in the USE-ME.GOV project. 

For instance in a retail business application, there are only well known operations and 

data to model, basically products and data related with that business such as providers, 

clients, inventory, sales, etc. It is not hard to affirm that all of the retail commerce sector 

has a similar data model; for this kind of traditional application conventional methodology 

is used for requirements specification and modelling.  

 

Unlike the retail business applications, there is not a methodology for requirements 

specification and design of context aware applications. These applications are still under 

research and therefore there is not a unified view of what is a context aware application 

and what is the contextual information, which makes difficult the creation of this kind of 

application. Moreover, the data in these kind of applications can vary greatly and it is 

therefore very difficult to use conventional structured data types for this kind of 

information. Proof of that is the great number of approaches used for modelling context 

[15], and, for this reason a non empirical methodology is used to find out the context 

requirements for context aware applications. 

 

By analysing constraints it is possible to find requirements; moreover the nature of the 

application implies some tacit constraints too. The identified constraints of a context 

aware mobile government application, in brief, are: the application must be able to 

acquire context information, process context information and allow using context 

information. Furthermore, it is necessary the representation of the context information. 

From another perspective, requirements can be divided into two groups, one related with 

context information and another related with the application that manages the context. 

Based in the main constraints above and in other research work, the following is the list 

of the key requirements for a CAMGOV. 



10 

 

2.2 Context Information Requirements 

The following sections describe the requirements related about the contextual 

information. 

2.2.1 Model for context Information 

Requirement: A model for context information is necessary. 

In order to use computer technology with the aim to mechanize some process it is 

necessary to have a model of the players involved in the process. For instance in a 

selling process the invoices or receipt is filled. The information found in those documents 

is normally related to the client and the products. This form can be filled in by hand. In 

the case a computer fills and prints the form, the client and the product information can 

modelled in form of entities and relations and those entities and relations stored as 

tables in a database. Similarly we need to model the context information in order to have 

a common understanding of how the context is used in the management system. 

 

A good model makes smoother the representation of the real word by using data 

structures, for instance a model to represent location must have the possibility to 

represent symbolic location information such as the “Eiffel Tower” and non symbolic 

location information such as coordinates (i.e. latitude, longitude and altitude). 

 

There are many approaches to model context information [15] and generally the model is 

very related with the way the context is represented and stored. Earlier approaches 

propose the use of dynamic tags associated with the objects [16], more recent works 

such as Dey’s Context Toolkit [10] use a taxonomy for context categorization and define 

attributes of objects merely answering questions like “who”, “where”, “what”, “when” and 

not defining formal model for context. The context toolkit also allows components 

(widgets) to create derived context information, this derived context information is not 

well supported by the taxonomy model and is specific for the application where the 

context is used.  

 

The Context Ontology Language (CoOL) [12] is another approach for modeling context; 

CoOL model is very good at describing services because the ontology is based in OWL-

S (formery DAML-S). OWL-S [17] is a language for describing web services in an 

unambiguous form. Chen et al. [11] and Wang et al. [18] propose the use of ontologies 

for context modelling, both models are very rich for modelling the world, and present a 

formal representation of context; in both approaches the prototypes that support their 



 

11 

 

 

systems are based in relatively small spaces (confined spaces) such as a kitchen or a 

laboratory-room, those places provided with several sensors as sources of context 

information. The differences in the scope of application between the two mentioned 

ontology approaches and the CAMGOV are the quantity of sensors used to acquire 

context, in [11] and [18] the number of sensors is greater than compared to the number 

of sensors in a city. 

Additionally the specific places they consider, such as a kitchen, seems to have less 

activities (i.e. cooking, blending, washing) per person than in a open space as a city. 

However the formalism of the model approaches used in [11] and [18] (by using OWL to 

represent objects and services) serves as example about the importance to create a 

model for context in a CAMGOV. 

 

2.2.2 Representing and storing context Information 

Requirement: It is necessary to represent the model for context information using 

adequate data structures.  

 

Once the model for context is defined, the next step is to define data structures to 

represent this information. For example, location could be modelled as symbolic and non 

symbolic information. That could represented in files that use the GML[19] schema to 

represent location. 

 

In order to use context information, it is necessary to find out how to represent and store 

(give persistency) the context information model. Representing and storing is necessary 

to keep historical information and for the easy querying of the data. The importance of 

how the model is represented is the feasibility to map entities of the model into data-

entities of the representation, for instance in a library, books and readers have their 

representation as entities in a relational model; fields such as title, author and price are 

expected for books; and for the users name, address; borrowing is a relation between 

books and readers. The possibility the storing-artefact brings to access the information is 

a key characteristic in the selection of this artefact. For instance in a library; the entity 

relational model is stored in a relational database, books and users may have a table 

and may be the “borrowing-table” exist or not.  

 

The form to represent and store context information is dependent of the structure of the 

model. For example, it is possible to use a database or XML files to store the same 

contextual objects. If the context is represented using ER (Entity Relation) models as 



12 

 

cited in [20], ER databases seem to be the best way to store and query context 

representation, because exists the “know how” about querying ER-databases. However 

in [21] the authors model context using OWL and for representation translate the OWL 

documents to F-Logic documents in order to improve use effectiveness due to the third 

party backend components that are used. 

 

There are expected characteristics of the selected way to represent and store the 

context information, such as was mentioned before, and including the feasibility to query 

data. For instance the easy way the data is managed using a SQL capable database 

makes it unthinkable not to use a databases in traditional applications. 

 

2.3 Application Context Requirements 

Beyond the model representation, it is also necessary to have an application to manage 

the model. This application must make usable the information represented by the model 

to other applications. The management system basically needs to enable other 

applications to create, to modify, to query and to update the stored context information.  

This access to the context information must be as simply as possible. There are two 

potential client of the management application: creators of context information and the 

consumers of context information. Next are presented requirements for the management 

system included those concerning to consumers and producers. 

 

2.3.1  Ability to communicate with other applications 

Requirement: The management application must allow other applications to 

communicate with it in a standard way. 

The management application must be able to communicate with other applications using 

open standards (e.g. Web Services, CORBA, Java RMI) in order to allow the use of the 

contextual information. As mentioned, there are two kinds of application that interacts 

with the system: consumers and producers; Figure 1 shows a very general view of those 

roles. 

 

 

Figure 1. Very general roles in a context aware architecture 

 



 

13 

 

 

The producers of contextual information must be able to update the information 

maintained in the system; there are many sensors that can update context information. 

 

Scenario 1.Tourist in a city 

Let’s imagine a tourist with a mobile phone in a city. The position of the tourist is acquired 

using the mobile network. Then when the tourist is in a garden and because the mobile 

phone is equipped with a GPS receiver, the localization was improved by using the GPS. 

Then the tourist enters a shopping centre, and their location is acquired inside the 

shopping centre thanks to the mobile phones Wi-Fi capabilities. 

 

This scenario presents three ways to acquire the location of one person with a mobile 

device. In all the cases there must exist an infrastructure to detect the user and to 

communicate this information. For instance the shopping centre must have the sensors 

and Hot-Spots for the wireless network, and the software to process the information in 

order to detect and provide (communicate) the tourist’s location. Due to the wide variety 

of sensors or context producers it is important that the management application allows 

communication with these different kinds of contextual providers, and with the 

applications that use the contextual information, in an appropriate way. 

 

Several ways can be used to communicate context information between the 

management application and the providers. The most common approach is by defining 

an API with the possible functions to invoke and use an open standard communication 

protocol. Irrespective of the technology of deployment, the API must have functions to 

create, to modify, to query and to update context information. There are examples of 

communication approaches. For instance in [10], the author propose a network of 

widgets to acquire and communicate the context, where the communication is done by 

transmuting XML messages over sockets. 

 

2.3.2 Ability to accept new forms of context 

Requirement: The management application must allow to add new forms of context 

information. 

 

Scenario 1 presents a hypothetical situation of one tourist. In the scenario, it is possible 

to acquire the location of the tourist by using the network cell, GPS devices and wireless 

networks. It is possible that the tourist’s device does not have those capabilities or that it 

has other ones such as Bluetooth or tags RFID or the facility to measure tourist’s heart 



14 

 

beat and temperature. If a new form of context are necessary for a consumer 

applications; it is essential to allow these new forms of context to be accepted by the 

management application. For example, the tourist’s temperature must be able to be 

modelled and used in the management application just as any other new forms of 

context information. 

 

Allowing new forms of context information ensures the management application is 

generic, extensible and reusable. If the management application does not have this 

characteristic, the result will be a specific solution/application for a specific scenario.  

 

The typical example is the application with location as context information, but we can 

also consider an example where an application requires the user feelings (“state of the 

spirit”) or other kind of contextual information. The management application, must be 

able to integrate such new contextual information in the system.  

 

To integrate a new contextual dimension in the context model management application is 

used to define the concrete structure of the new type of context. Some providers of the 

new contextual dimension must be created and configured to run together the 

management application in order to feed the model with this data for this type of context. 

2.3.3 Ability to add value to the context Information 

Requirement: It is necessary to add value to the context information. 

 

Context information like the location of one user in form of coordinates (i.e. long.: -8, lat.: 

44) doesn’t have much sense in the daily life of people or to some applications. Value 

can be added to a pair of coordinates by converting those numbers into an 

understandable format or higher level abstraction such as “you are in Braga”, “it is 

raining there” or “the weather conditions of the place you want to go are bad”. GIS’s are 

able to convert geographical information (e.g. symbolic to coordinates and vice versa); 

however context is more than geographical information. 

 

In addition to allow the context model to be queried the management system must 

provide such an added value to the information. “Added value” can be read as new 

context information by knowledge inference or new context by transformation. Certainly, 

the management application can not convert or transform the information received from 

sensors into contextual information, it is necessary to add other layer to make this 

conversion. For example, lets imagine a consumer interested in location and who 



 

15 

 

 

understands location as city names. Two o three numbers as latitude and longitude do 

not mean anything to them; by adding meaning as latitude, longitude and altitude is 

possible to know if the point belongs to the city, or if there are happy people around. The 

management application must help to do such conversions. 

 

Other important types of added value are context inferring or information inferring. 

Inferring is natural and intuitive for humans. For example, people know that when a car is 

moving in a street, normally someone is driving the car. If a program needs to known the 

location of the driver, it is possible to know this information if the system knows the 

relations between car and the driver (i.e. if the car is moving, the driver is driving and 

both are at the same place) and can be infered that the driver has the same location as 

the car. 

 

2.3.4 Ability to make complexities in context information transparent 

to users and applications 

Requirement: It is necessary to hide the complexity of the context from applications by 

supporting them in using context. 

 

In the tourist scenario, the location of the tourist can be discovered by Bluetooth 

beacons, Wi-fi hot spots, RFID readers, GPS devices, mobile operator networks and 

even manually given by the tourist thenselves. Developing a Consumer application that 

understands all those formats of location context is a real challenge. Those complexities 

of context must be hidden to the consumer application. The consumer application should 

not need to know how the management application got the location, this level of 

transparency must be added by the management application. 

 

2.4 Conclusion 

There is no existing software engineering architecture suitable for the design of a 

CAMGOV application; however some of the key requirements presented above are 

overlapped with the typical application requirements of scalability, synchrony, 

extensibility, openness and reusability. Other requirements such as QoS, privacy and 

security must be provided by the technologies used to develop the CAMGOV. However 

issues such as privacy are not mentioned at all here because is considered to belong to 

other area. 



16 

 

 

Many approaches do not differentiate clearly the way to model, represent and store 

context information. Modelling context (the creation of the model) is from the world of 

ideas or a theoretical task, storing the model is a computational task, and the 

representation is a mixture of the two worlds. Formal definitions (or languages) to store, 

represent and model context will give a better approach to the problem. Context 

information can’t be manipulated as fully structured data, it is necessary to use a set of 

methodologies for semi-structured data manipulation. 

  



 

17 

 

 

3 Context Model 

3.1 Introduction  

In any computational development, it is necessary to model the topic  of interest by 

abstractions [4]. Modelling context or modelling the surrounding environment is a 

challenging task and the field is still in under continuous development. As mentioned in 

the survey by Strang et. al. [15], there are diverse proposed models for context for a 

diverse set of applications. The divergence of the approaches is evident because in the 

validation or proof of concept it is difficult to see two different models used for the same 

scenario. Moreover, some models seem to be designed for specific kind of scenarios. 

Strang [15] states that the ontology based models and object models are good 

approaches to modelling context. In [11, 22] Chen also proposes the use of ontologies to 

model context. SOUPA is a Standard Ontology for Ubiquitous and Pervasive 

Applications[11]. SOUPA is composed by a set of ontologies including ontologies for 

persons, time and space. Gu et. al. [23] present another approach (CONON) that uses 

ontologies. CONON is intended for use in Smart Spaces where ontologies are used to 

model objects and rules. 

 

Usually, the first context dimension that comes to mind (and often used in applications) is 

location and in a CAMGOV location is certainly an important dimension. Location is one 

of the context dimensions that allows to determine the context of the entities when 

combined with other information. For instance if the location of one person is the 

“Shopping centre”, it is possible to assume the person is there to buy something if the 

profession of the person is known (i.e. they are not a seller). Also it is possible to know 

the surrounding environment (e.g. nearby objects such as stores, people, facilities, etc).  

 

The initial attempt in the development of a CAMGOV in the USEME.GOV project was to 

adapt previous research results. Since location was perceived to be the main context 

dimension, the initial literature review was targeted on location representation in aim to 

reuse and create a bridge (a common understanding) between GIS (Geographical 

Information Systems) and context-aware applications. There are a lot of models for 

location representation from a basic GML (Geographical Markup Language) [24] to an 

adequate representation of geographical locations by special data types (ADT Abstract 

Data Types) developed by the OpenLS initiative [24]. Those are very useful to 

communicate and represent information extracted from a GIS server. 

 



18 

 

Some locations can be easily expressed with GML, for instance a point on the earth can 

be defined with two coordinates, altitude and the coordinate system used. Imagine a 

citizen with a GPS device, it is quite simple to know the point where the citizen is. Now 

imagine a tourist attraction such as “The Alhambra castle”. It is a complex location but 

can be represented using ADT coordinates; there are ways to know the spatial relation 

between the citizen and The Alhambra using a GIS. For instance, the spatial relation “the 

citizen is near by The Alhambra” (represented by distance between the user and the 

castle) can be obtained from a GIS. In some places inside the castle it is possible to 

know the citizen “is in” the Alhambra (i.e. by using a GPS device). However, frequent 

locations such as “I’m in my car” or “I’m in a bus” are quite difficult to represent using 

ADTs. GIS and ADTs are not enough to represent this kind of context location 

information but are useful to represent traditional location information. There are 

examples of architectures for mobile applications using commercial products where the 

location is almost the only context-dimension [25]. However, for a CAMGOV location is 

not the only important context dimension, and for this reason, a higher and richer level of 

abstraction to express context dimensions and context is necessary. 

 

In addition to the user location and location of real word objects, it is important to be able 

to represent virtual entities such as software in the form of services. We can consider 

there are three kinds of software components in context aware systems: the core 

software of the context aware system, the software that captures context information 

(e.g. context providers) and the software that will be discovered by using context 

information (e.g. user services). The last two kinds of services must be modelled. For 

example consider a service for happy people that should only be presented to users 

when they are happy. The model must be able to model both the services that ascertain 

the mood of the user and also the services that can be used by those happy people. 

There are technologies that enable the description and invocation of services. 

WSDL[26], UDDI [27] and OWL-S [28] are technologies that can be used to describe 

what web services can provide and how to use them. Furthermore, UDDI and OWL-S 

enable the description of the semantics of the services. 

 

3.2 The selected model 

 

The necessity expressed above and in the requirements chapter is supplied by the 

object model introduced in [4]. The Object model allows the representation of the 



 

19 

 

 

surrounding environment and the relationships of this environment with services and 

applications. 

 

The main element of the object model [4] is the base object, whit most of the other 

entities represented using this construct, even relationships and properties. The Figure 2 

presents the four big roles of this model. On top, the Base Object can be used as an 

anonymous object. In spite of the Figure 2 shown a typical class diagram, there is not a 

strong concept of classes in the model due the multiple role objects can play. 

 

 

Figure 2. The basic objects 

 

The location for material objects can be defined as container-contained relationship 

where the existence of the object implies the existence of the container; for instance, 

users can be in containers such as homes, houses, cars, offices or an unknown 

container. The anonymous objects help to model those unknown containers and many 

other anonymous objects without defining a class (see Figure 3).  

 

 

Figure 3. Example of anonymous objects 

 

One of the advantages of the anonymous objects is that those objects can be 

manipulated without knowing their nature. For instance consider some application that 

needs to know if John is close to one specific traffic light. Supposing John is with his 

PDA, and there exists a relationship between the PDA and John; and the PDA can run 



20 

 

an application that communicates the location of the PDA, then it is possible to create an 

algorithm that infers the containment relationship of John with his container by using the 

is-with relationship between John and the PDA. If the container of John is the same as 

the container of the traffic light, then further information of this container is not needed 

and it remains as anonymous object. 

 

The context of one object (i.e. a person) can be seen as the relationship between this 

object and the other objects, including the properties of the object. As part of the object 

model there is computational support such as algorithms for querying the information. 

 

The last part of this chapter describes how the context is represented by the object 

model using objects and relationships. At the end of the chapter is presented how the 

model is stored. 

 

3.3 Using the Object Model  

The model for context in a context-aware application must be able to describe the target 

“surrounding environment” that the application needs. In order to exemplify how to 

identify the relevant elements in the “surrounding environment” we present here two 

scenarios featuring a citizen in a city. Those scenarios are intended to show how an 

application to submit anomalies to the government authorities will work: 

 

Scenario 1. “John was driving down the street and suddenly sees a 

malfunctioning traffic light and he wants to inform to the public authority about the 

situation. He stops the car and with his PDA (Bluetooth capable) opens an 

application that helps him to inform to the public authority about the situation. 

Because he is currently in his car, and his car has a GPS device with Bluetooth 

interface, the application passes the information about his location.” 

Scenario 2. “John was driving down the street and suddenly sess a 

malfunctioning traffic light, that he wants to inform to the public authority about. 

He activates by vocal commands his PDA (Bluetooth capable) opening an 

application that helps him to inform to the public authority about the situation. 

Because he is currently in his car, and his car has a GPS device with Bluetooth 

interface, the application uses the information about his location.” 

 



 

21 

 

 

This scenario describes a situation where it is easy to identify physical objects. The first 

objects to identify are the nouns: John, street, semaphore, car, PDA, GPS. It is possible 

also to identify the relationships between those objects such as: 

 

o John has a PDA 

o John drives the car 

o The car has a GPS 

o The car is in the street 

o The semaphore is in the street 

 

By comparing the two scenarios, other kinds of information can be supposed such as 

“the application works when the car is stopped in case the user has to manipulate the 

application manually”. Otherwise if the application accepts vocal commands “he can 

drive the car as well using the application”. Some objects are important only in some 

situations, for instance the application (with manual input) used by the driver to report the 

situation does not have sense when the car is moving. These kind of rules should be 

verified in the model by the context aware applications. The properties of the objects 

(e.g. the car’s speed, voice commands capabilities) can be used for this purpose. 

 

There is information that humans are aware of but that is not formally expressed. In the 

scenario the GPS, the car, the PDA and John are in the same place, this kind of 

information can be inferred by programs if adequate information is represented in the 

model. It is possible to consider if John is-with the PDA, and create a program that infers 

both are in the same place. 

 

Finally it is possible to infer other information such as, if John is driving, that the car has 

some speed. The speed of the car can be considered as a property of the car and is 

used to validate if an application can be launched. 

 

3.3.1 Modeling Objects  

An important question is what is an object? For instance, in the Solar System it is 

important to model planets as objects, asteroids, stars, satellites, comets and the 

gravitational relations between each planet or celestial object. Also, in an chemical 

reaction it can be interesting to model molecules, the atoms, and the relationships at an 

“atomically scale”, including the behaviour of electrons. In the two examples the size 

level are totally different and probably electrons in the chemical model are objects, but in 



22 

 

the planetary model atoms do not exists as objects or rather are not interesting as 

objects, even though planets are composed by atoms. One of the advantages of the 

model is that anything can be considered an object, and defining “what is an object” 

depends on the desired granularity, relevance and the designer’s-point-of-view. 

 

In a normal ER representation the user location can be a property, such as the “user 

house address”. Then it is possible to have a entity “user” with the fields “address” and a 

relation with an entity “city”. Those entities will be reflected in a physical database model 

as two tables, one for users and another with cities. Both tables must have a fixed 

number of columns. A simple change in the location of the user can be untraceable in a 

static model; for instance the user location can be their home and moments after the 

location can be their car. In a static model such as an ER model, could be difficult to 

change the field “address” for a field that represents a “car”. In an object model the 

change can be easily made in the containment relation of the user. Another aspect is the 

dynamicity of the properties. In a static model there are a fixed number of properties. For 

instance the “house address” in a static model can be a string, but a house has a more 

deep meaning that a string. House by itself can be a complex object, with rooms, 

colours, floors, spaces, sensors, etc. Some entities that in other models can be seen as 

properties, in the object model can be viewed as objects or relations. This flexibility of the 

model is clearly one of its advantages. 

3.3.2 Modelling Relationship Objects 

Relation is another important concept for modelling context; basically the “surrounding 

environment” can be described by the objects and relations between objects. To test the 

model we can consider the following scenario: 

 

Scenario 3. In the city of Pamplona there is a square, in the square there is a 

corner, in the corner there is a house, in the house there is a room, and in the 

room there is a bird. 

 

Relationships can be more than a link between two objects. Scenario 3 has several 

objects and relationships between those objects. For example regarding the relation 

between Pamplona and the square, it is possible to affirm “The Square is in Pamplona” 

or “Inside Pamplona is a square”. In such cases the relationship has an “inverse” 

relationship, as is the case with Is-In which has an inverse of “contained-by”. The object 

model allows to “attach” properties to the relationships, and regards the relationships are 

objects.  



 

23 

 

 

 

 

Figure 4. Simple and complex Relationships 

 

As well as properties like inverse and refection, relationships can have more information. 

The Figure 4 shows the containment relation between a church and a city. More than a 

simply relationship of containment; it is possible to add geographical information such as 

street name and number, or GPS coordinates, to the relationship. In this case the 

relationship will be not a simple link; it will be a complex object with information inside. In 

order to describe the containment relationship of a region (such as a mobile cell 

coverage area) or a city, the information in the relationship can be a special data type 

describing the boundaries of such an area. 

The Selection Algorithms and the representation (using RDF [29]) are presented in the 

following, and provide the computational support required. Both elements are an integral 

part of the approach proposed in [4]. 

3.3.3 Selection algorithms 

A query mechanism must be created in order to extract the information about objects 

and relationships. By examining relationships it is possible to get partial information 

about context. Let’s imagine a tourist searching for restaurants: the location information 

of the tourist can be used to search for which restaurants are nearby. But for this task it 

is necessary to create a set of algorithms to find this kind of information (nearby things). 

In the case of the restaurant, the algorithm will look for near-by objects (restaurants) to 

the tourist. Previously will be necessary a definition of what is near-by (e.g. 600 meters). 

 

Other kinds of algorithm can be defined depending on the needs of the context aware 

application. For example, an Is-In algorithm can be useful to find out if object A is in 

object B. Derived from the is-in algorithm, further algorithms can be created to explore 

containment relationships. For instance, to find which objects are contained in another 

object, which is the object that contain the current object, and, which are the objects in 

the same container. The last algorithm (which are the objects in the same container), can 



24 

 

in some way be used to resolve the restaurant scenario, to find which are the restaurants 

that are nearby the location of the tourist. 

 

 

Figure 5. General view of the of the context aware architecture 

 

The algorithms for querying the model looking for information inside derived from the 

relations are called Selection Algorithms. Selection Algorithms are an integral part of the 

Management Application (Figure 5) that is necessary to use the context object model. 

The consumers must know which selection algorithm use. Also it is possible for each 

consumer to create its own algorithm. More details about Selection Algorithm can be 

found in the section 4.2.2. 

 

Complementing the figure presented in the chapter 2; the Figure 5 adds new elements: 

the context model, the selection algorithms and the general purpose management 

application (that includes the API). The context model is the data structures that contain 

all the modelled objects. The general purpose management application provides 

functionalities for creation, updating and querying the context model.  

 

3.3.4 Context model representation 

Once the theoretical model is designed, it is necessary to represent that model by using 

computational artefacts.  There are several ways to represent objects, and the typical 

case is to use a database to store objects properties. Nevertheless in new Java 

application development is quite common to find applications using an ORM (Object 

Relational Mapper) to give persistency to the objects (instances of the classes). For 

example in an application with the users, addresses and cities, the Hibernate [30] 

method makes transparent the use of the database when classes are instantiated (by 

embedding automatically some code in the classes). 

 



 

25 

 

 

The representation for context is not simple as than in traditional applications; there are 

no commercial context databases. Context representation normally is not approached as 

an isolated issue in context aware applications. It is very common to see approaches 

including complex architectures or frameworks for context management alongside with 

client applications and services. For instance in COoL [21] is used an ontology for 

service modelling, where the representation is made by OWL documents but those 

documents were converted in F-Logic [31] in order to improve reasoning process. 

Similarly the GAIA project [32] uses XML in a DALM format to store contextual 

information, and CORBA for communications. 

 

The object model [4] is based mainly upon objects and relationships. For instance John 

is-in the car, or John is-with their mobile. These examples are clearly statements and 

statements have three parts: object, subject and predicate. There are notations for 

statements, such as functional notation “Is-In (John, car)” or triplets notation “(“John”, 

“car”, “is-in”)”. For this kind of structured information it is necessary a flexible technology 

with an appropriate computational support. The choice was the Resource Description 

Framework (RDF). Later in this chapter is present why RDF was selected. 

 

The Resource Description Framework (RDF) [29] is a general-purpose language for 

representing information in the Web. RDF has three basic elements subject, predicate 

and object. RDF was created to describe web resources, and then was extended to 

express relationships between entities. RDF suits very well for the object context model 

because it allows to create relations between objects.  The basic structure in RDF is the 

triplet and can be represented as a graphs as showed in Figure 6. 

 

 

Figure 6. RDF Model 

 

In Figure 6 the subject and the object are represented by a node and the predicate is 

represented by an arrow.  Let us consider the following statement: 

 

http://www.example.org/index.html has a creator whose value is John 

Smith.  

 



26 

 

This statement decomposed into the three elements: 

 the subject is the URL http://www.example.org/index.html  
 the predicate is the word "creator"  
 the object is the phrase "John Smith"  

Notice the subject is a URL; as stated before, RDF is used to describe web resources. 

The first adaption to be made in the context model is to create a URL for each object to 

be represented in the model. In the sentence “John is-in the car”, the URL representing 

John can be something like: 

 

http://purl.oclc.org/NET/contextobjects#Jonh 

 

This mapping from real objects to a URL must be done by the application that creates 

the object John. The following fragment of RDF/XML can be used to represent the 

expression John is in the car. 

<rdf:Description rdf:about="http://purl.oclc.org/NET/contextobjects#Jonh"> 

 <use:is_in>car</use:is_in> 

</rdf:Description> 

 

The graph representation is as follows:  
 

 

Figure 7. Simple RDF Graph 

 

However the only object is John, the other objects (i.e. the Is-In relationship and the car) 

in example above are not represented in the context model, in spite of the statements in 

RDF to represent relations. Relationships in the context model are richer objects and 

must be represented as objects in a richer way. Additionally, the car in the example is 

only represented as a literal (value). 

 

The form to represent a relationship in the context model is more complex. Continuing 

with the example that ”John is in the car”, consider the following fragment of RDF/XML: 

 

<rdf:Description rdf:about="http://usemegov.org/contextaggr/isin322"> 

   <use:subject rdf:resource="http://purl.org/NET/contextobjects/John"/> 

   <use:object rdf:resource="http://purl.org/NET/contextobjects/Car"/> 

   <use:type 

rdf:resource="http://purl.org/NET/contextobjects/IsInRelationship"/> 

</rdf:Description> 

 

And the corresponding graph: 



 

27 

 

 

 

Figure 8. RDF graph representing a Relationship. 

 

The presented RDF above show how is represented a Relationship in the model, it has 

two properties, the subject and the object, that have the same meaning shown in the 

elements of the Figure 6. Notice that the relationship can have more information than the 

subject and the object. For instance if it is a containment relationship it could also define 

an address in a city where one of the properties can be the street and house number. 

 

Using RDF it is possible to represent other kind of objects such as services. Properties of 

the services, such as access point or kind of service, can also, be represented. A 

possible example of a complaint service can be the following: 

 

<rdf:Description rdf:about="http://usemegov.org/contextaggr/objects/42"> 

 <use:type rdf:resource="#reportComplaint"/> 

 <use:location rdf:resource="http://193.137.8.61:8080/usemegov/services/complaintresiduos"/> 

 <use:point 

rdf:resource="http://193.137.8.61:8081/complaintresiduos/services/ComplaintServiceAVService"/> 

 <use:name>Servi&amp;co de recolha de residuos solidos</use:name> 

 <use:id>42</use:id> 

 <use:serves rdf:resource="#Papeleira"/> 

 <use:serves rdf:resource="#Contentor"/> 

</rdf:Description> 

 

Notice that RDF not intended to be human readable. In this example some relationships 

were simplified by XML namespaces. For instance the use:serves element in the above 

excerpt is presented as a property. This element represents a relationship between the 

service and the objects that is possible to complain about. Other relationships are also 

simplified. The model allows to create properties and relationships for all the objects in a 

way specific for each scenario of use, where the properties and relationships may vary 

according with the specific requirements of the scenario. It is also possible to create a 

base model for each scenario. The base model contains a set of core objects that do not 

change over a long period of time. For example, a bridge, a monument, a service and 

the relationships among those objects. 



28 

 

3.4 Conclusions 

The Object Model provides a model for context information. As showed it is possible to 

apply the model to different scenarios and providing the computational support for the 

model is a feasible task. When realized it will bring the functionalities required of a 

CAMGOV. 

 

The selection of RDF was based on the potential of utilizing tools as Jena and 

Protégé[33], and can leverage the momentum of the Semantic Web movement that is 

supported mainly by RDF. Another concrete reason to select RDF was the computational 

support. In order to use the representation it is necessary to have a set of tools to query, 

create, update and delete RDF. There are tools ready to work with RDF such as Jena 

and Protégé [33]. Jena is set of Java classes that allow manipulating RDF at a higher 

level. Jena also includes a rule-based inference engine [34]. Protégé is a very versatile 

tool and helps to model knowledge. Since RDF is not intended to be human readable; 

the models for specific scenarios can be initially created in Protégé for further conversion 

to RDF. 

 

One of the important advantages of RDF is that can be queried by using its own query 

language. The RDF query language [35] (SPARQL) allows the creation of query 

sentences very similar to SQL. Jena supports SPARQL that, combined with the rule-

based inference engine creates a powerful environment to develop applications over 

RDF. 

  



 

29 

 

 

4 Implementation 

This chapter presents the design and implementation of the context model and the 

proposed supporting architecture for object model. First the overall architecture is 

presented, followed by each component in more detail. 

The implementation was made using Java, and as the application container was used 

Apache Tomcat. The selection of Java and Tomcat was made due to the intended web 

support of the context aware applications. 

4.1 Context management architecture overview 

The architecture (see Figure 9) includes the clients of the context information (Context 

Aware applications), the producers of the context information (Feeders), the managers of 

the context aware applications (Management application) that make transparent the 

complexities of the Selection Algorithms and the Context Management to the 

applications. Additionally, external services are showed in case the context aware 

application redirect the users to the services they need.  

 

 

Figure 9. Context Management Architecture 

 

Below is a brief introduction to the main components of the architecture depicted in 

Figure 9. 

 Context Model:  The context model holds the objects of interest to its client 

application/services. All the objects are represented in RDF. There are several 

kinds of represented objects such as real objects (e.g. users, streets, cities, etc) 

and the objects representing relationships between real objects (e.g. is-in 

relationships, is-with relationships). Virtual objects such as context feeders (i.e. 

location, time, temperature, humor, etc) and user services are also represented. 

 

 Selection Algorithms: The selection algorithms are invoked by the context 

management on behalf of the context aware applications. The selection 

algorithms are plug-in methods that query the model. An example of a selection 

algorithm is the Is-In algorithm. The Is-In algorithm searches the is-in relationship 



30 

 

between objects and returns the selected criteria. For example which object is-in 

another object, or which objects are contained in object X. Other algorithms can 

be developed, plugged-in and invoked by the applications. 

 

 Feeders: Feeders provide contextual information. Feeders can be seen as 

providers of information about one dimension. For example, a location feeder will 

provide the location of objects. A mobile operator can provide information about 

the cell where the mobile phone is. The feeder will be the service that provides 

the location of the phone. Other example can be a GPS feeder that sends the 

sensed location to the model. Feeders must be able to push information to the 

context model and to be polled, and must expose an API for information 

interchange. 

 

 Context Management: This component exposes the API for manipulation of the 

context model. It has functions for contextual information creation and 

modification, as well as pulling information from the feeders and for algorithm 

execution. As the context model is based in RDF, Jena[34] provides an upper 

layer to manipulate the query. Jena allows queries to the model using 

SPARQL[35], which is intended to query RDF documents. 

 

 Context Aware Applications: The context aware application uses the context 

for a purpose, often this purpose is to provide the right information in the right 

time and place. Information is provided by services, so in some way the context 

aware applications must attempt to matchmake the users needs and situation 

with services that supply those needs to the user; this matchmaking process 

utilizing contextual information.  

Besides the elements showed in the Figure 9 there are other elements not visible, such 

as how the context aware application interacts with the management application. Those 

interactions were named Application Interaction Models. One Application Interaction 

Model will be presented in depth in the deployment chapter. 

 

 Application Interaction model: This is the form in which the application 

interacts with the management application and with the users. Applications can 

behave in different ways; for instance the typical Location Based Services (LBS) 

scenario is a tourist that wants to find restaurants around him or her and opens 

their application to receive the list of restaurants. The interaction of this kind of 

application could be: 1) ascertain for the tourist location, 2) query the restaurants 

around that location. 3) Return the list of restaurant locations. This is just one 

possible interaction model. Such interaction models must be specified using the 

API of the management application.  

The Deployment chapter presents one Context Aware Context Application and explains 

its Interaction model. 



 

31 

 

 

4.2 Management Application and Context Model Implementation 

The Context Management Application is strongly tied to the Context Model. This section 

presents the implementation of both components in order to understand better how they 

are interrelated and how they work together. 

 

Management Application

Jena Support 

CONTEXT MODEL in RDF

Selection 

Algorithms
Context Manager

 

Figure 10. The Management Application overview 

 

The object context model is represented using RDF. The natural way to store RDF 

information is in XML documents in files. For this reason it is necessary to use an 

intermediate layer to manage those documents (see Figure 10). The Jena framework 

provides a set of classes to manipulate RDF documents, which we employ as the 

intermediate layer between the RDF documents and the Management Application. All 

the management application was developed using Java, which is another reason for the 

selection of Jena (Jena was developed using Java). 

The management implementation must provide functionalities for manipulation of 

objects.  The Jena framework has the Model class 

(com.hp.hpl.jena.rdf.moldel.Model) for RDF manipulation. The Jena Model 

class encapsulates RDF models, where the RDF model is a set of Statements. The 

Model class provides methods for creating resources, properties, and literals, and the 

Statements which link them together. It also provides methods for adding statements, 

removing them from, a model, for querying a model, and finally, it provides a of set 

operations for combining models. 



32 

 

4.2.1 Representing Objects1 

There are three kinds of objects: regular objects, relationships and properties. For 

example, an object representing a person can be seen in the RDF extract below. 

<rdf:Description rdf:about="http://useme.dsi.uminho.pt/instances/1"> 

<use:id>1</use:id> 

 <use:type rdf:resource="http://purl.org/NET/coreObjects/Person"/> 

 <use:name rdf:resource="http://purl.org/NET/instances/7"/> 

 <use:age rdf:resource="http://purl.org/NET/instances/8"/> 

 <use:dateOfBirth rdf:resource="http://purl.org/NET/3"/> 

</rdf:Description> 

 

Note that the object has an identifier and type attribute. The identifier attribute is 

mandatory and is used as a unique reference to this object within the model (the same 

number can be seen in the URI value of the object’s rdf:Description tag; in the first line 

of the extract above). 

The type attribute (an XML attribute) is optional, but if present it is used to specify the 

type of the object. Note that the type is just a value to indicate the nature of the object 

but not necessarily its structure. We may expect certain types of objects to have certain 

attributes, but these must be understood as typical attributes and not mandatory ones. 

Even if two objects of the same type contain completely different attributes it is still useful 

to know their type for reasoning purposes. 

 

Further attributes of an object take the form of RDF resources that are fully described 

elsewhere, such as the name, age and date of birth of the person. This is conceptually 

equivalent to a Has-A relationship to another object. Following a string of Has-A 

relationships we will often (though not always) arrive at an object that represents a basic 

type such as a Number or String, in which a literal value can be described via the value 

attribute. The following fragment of code represents the age of John. 

 

<rdf:Description rdf:about="http://purl.org/NET/objects/7343432"> 

   <use:age rdf:resource="http://purl.org/NET/objects/55324234"/> 

</rdf:Description> 

 

<rdf:Description rdf:about="http://purl.org/NET/objects/55324234"> 

   <use:value rdf:datatype="&xsd;int" >8</use:value> 

</rdf:Description> 

 

The Has-A relationship with literals is implemented by adding a value element to the 

RDF representation of the object.  

 

                                                
1
 The words attribute and property have the same meaning in this text. 



 

33 

 

 

The Is-In relationship is a typical containment relationship. The relationship means that 

one object is inside another object. We can also read the relationship in the other 

direction, i.e. that one object contains another. In other words the inverse of the Is-In 

relationship is the Contais relationship. The RDF extract for the Is-In relationship object 

is shown below. 

 

<rdf:Description rdf:about="http://purl.org/NET/objects/34288427"> 

   <use:subject rdf:resource="http://purl.org/NET/objects/249547"/> 

   <use:object rdf:resource="http://purl.org/NET/objects/51546912"/> 

   <use:type rdf:resource="#IsInRelationship"/> 

</rdf:Description> 

 

Note how relationships are represented just like any other kind of object, with an ID and 

a type. Here the IsInRelationship simply contains two attributes that link to the object 

and subject of the relationship, but further attributes could be added to specify the nature 

of the relationship in more detail (e.g. the number of the room or floor that specified 

where exactly in the library the person is). 

 

Figure 11. The ObjectID Type 

 

In Java we implemented a class to represent the object. This class must contain the ID 

(identification) of the object which is specified by the URL of the about attribute. Also the 

type of the object must be included in the Java class. As each object has an 

indeterminate number and variety of attributes, the object only specifies the type and the 

ID. 

 

There is another Java class for representing objects to external clients: the 

ContextModelObject class. This class enables querying the attributes on object. The 

attributes correspond themselves are represented by Has-A relationships. There are two 

forms of attributes literals, and objects. Literals have a direct value; for instance the age 

Has-A numeric value (e.g. 33). Object attributes represents complex properties. For 

instance, in the relationship John Has-A house, the house is a complex object identified 

by URL. 

 



34 

 

 

Figure 12. The ContexModelObject class 

 

The attributes are stored in the field attributes of the ContentextModelObject class. 

The field attributes is a key-value pair structure. The key corresponds to the name of 

the attribute and the value to the attribute value when it is a literal attribute, or the URL of 

another object when the attribute is a complex property. 

 

4.2.2 Selection Algorithms 

 

The Selection Algorithms allow querying the model by using the relationships between 

objects. An example of a query is: which objects are contained in a city? The selection 

algorithm will return the objects directly within the object and also those that father 

nested within those. For instance, it may return a garden and the objects inside the 

garden, such as fountains, flower beds, trash cans, benches, etc. Selection algorithms 

were intended to be pluggable pieces of software, and for this reason can be developed 

and customized depending the needing of the applications. The applications must also 

know the name of the selection algorithm to invoke because the form those algorithms 

are invoked is by its name. 

 

Selection algorithms mainly use the relationship information in the model for object 

retrieval. There are many similarities in selection algorithms because the model only has 

binary relationships. There are two objects involved in a relationship, e.g., the objects 

“John” and the “church”, and the relationship “Is-in”. Relationships also can be reflexive 

relationships or irreflexive relationships. The is-in relationship is irreflexive; it is not 

possible to say John is-in a church and at the same time “The church is-in John”. The is-

with relationship is reflexive, it is possible to say John is-with the PDA and vice versa. 

However, the is-in relationship has an inverse relationship: the “contains” relationship. 

The binary nature of the relationships and the characteristics mentioned above influence 

the way the selection algorithms are invoked. 



 

35 

 

 

 

Relationships has three parts: subject, object and predicate. In the following statement 

“John is-with the PDA” the predicate is the relationship (is-with), the subject is John and 

the object is the PDA. For the binary nature of the relationships and its characteristics 

there are few ways to invoke the selection algorithms by varying the parameters to be 

passed. 

 

 

Figure 13. Selection function interface 

 

Selection algorithms must implement the SelectionFunctionInterface. The methods to 

implement are shown in the Table 1. 

 

Table 1. Selection functions interface description 

Func. Interface Description 

8 ContextModelObject[] runSelectByObject(ObjectID 
objecteid, String ObjectTypeName) 

Retrieve objects of the ObjectTypeName  

type. In case of is-in algorithm will search 

the objects that contain the objecteid 

(provided by Selection Functions 
classes). The object type is optional. 

9 ContextModelObject[] runselectBySubjects(ObjectID 

objecteid, String ObjectTypeName) 
Retrieve objects of the ObjectTypeName  

type. In case of is-in algorithm will search 
all objects contained by the same 

container as the objecteid The object 

type to retrieve is optional. 

 

4.2.3 The Context Manager 

The Context Manager is a component that encapsulates the Context Model. The Context 

Manager provides the majority of the functionalities to use the Context Model by 

exposing functions for object creation, object querying, Selection Algorithms execution 

and context feeding. Figure 14 shows the interface of the Context Manager. 

 



36 

 

  

Figure 14. The Context Manager exposed functionalities (public methods) 

 

The Context Manager was developed as a Java Class and can be accessed by using 

web services or by directly invocation of the class. The functionalities exposed to other 

applications are presented below. 

4.2.3.1 Functionalities related with object creation 

Basic functionalities must allow the creation and manipulation of objects. As shown 

above in “Representing Objects” there are objects with properties, and relationships-

objects with properties. When a relationship is created, is very useful to pass the type of 

the relationship and the two related objects.  

 

In order to facilitate the creation of objects, relationships and their properties, the Context 

Manager must expose functions for this purpose. The Table 2 shows the API that the 

Management Application must expose for object creation related functionalities.  

 

Table 2. Object Creation related API 

Func. Interface Description 

1 ObjectID addObject (ObjectType object, String 

objectName)  

 
public ObjectID   addObject (ObjectID baseObject, 

String objectName)  

 
ObjectID   addObject (ContextModelObject object, 

String objectName); 

Allows the client to add objects in the 
form of a blank shell or copy the type of 

one object by passing an ObjectID. 

The identity of the object within the 
model is returned. 

Note that the objectName parameter 

allows a description of the object to be 
given, but it is not required (an empty 
string can be passed) and it is not 
necessarily unique. 

2 ObjectID createRelationship (ObjectID 
relationshipTemplateObjectID, ObjectID 

objectObjectID, ObjectID subjectObjectID) 

Creates a relationship object between 
two objects in the model. 



 

37 

 

 

 

3 Boolean addAttribute (ObjectID objecteid, String 

attributeName, ObjectType attribute) 
 

Boolean addAttribute (ObjectID objecteid, String 

attributeName, ObjectID attributeObjectID) 

Allow the client to add an attribute to an 
object by either (a) passing a whole 
object or (b) passing the ID of an object 
that is already within the model. Note 
that if an attribute with the same name 
already exists the function will fail (an 
attribute name is unique within the scope 
of the individual object). 

4 Boolean addLiteralAttribute (ObjectID objectID, 

String attributeName, String attribute); 

  

Allow the client to add a literal attribute to 
an object. 

5 Boolean  deleteObject (ObjectID object) Delete the object passed as parameter. 

 

4.2.3.2 Object querying 

The basic querying of the Context manager component is supported by two functions.  

 

Func. Interface Description 

6 ObjectID[] getObjectsByAttribute (String 

attributeName, ObjectType attribute) 

 

Search the model for objects that have 
an attribute of a given name that is equal 
is to the object specified by the client 

7 ObjectID getObject (ObjectID objecteid) 
 

Allow the client to check if an object 
exists and/or to retrieve it given its 
unique ID within the model.  

8  ObjectID getAttributeByName(ObjectID objectID, 

String attributeName)  
Allow to query for properties of objects. 
Returns the ObjectID of the property that 
have the name attributeName. 

 

4.2.4 Invoking Selection Algorithms 

 

Two generic forms to invoke selection algorithms were implemented and also two 

generic selection algorithms. These characteristics of the algorithms were derived from 

the binary nature of the relationships, and for the reflexive or irreflexive property of the 

relationship. The functions for invoking selection algorithms are presented in the Table 3. 

 

Table 3. Algorithm invocation related API 

Func. Interface Description 

8 ContextModelObject[] runSelectByObject(ObjectID 

objecteid, String algorithm, [String ObjectTypeName]) 
Search with the desired algorithm for 
objects. In case of the is-in algorithm it 
will search for objects  that contain the 

objecteid as the object of an is-in 

relationship. The object type is optional, 
but specified will filter by object type. 

9 ContextModelObject[] runselectBySubjects(ObjectID 

objecteid, String algorithm, [String ObjectTypeName]) 
Search with the desired algorithm for 
objects. In case of the is-in algorithm it 



38 

 

will search all objects contained by the 

same container as the objecteid. The 

object type is optional, but specified will 
filter by object type. 

 

4.2.4.1 Feeders Invocation 

 

To be useful the model must be kept up-to-date. One of the methods to kept the model 

updated is by requesting information (polling) from the context sources (such as sensors) 

when it is required. For example, asking for the location of mobile user, in a cell network, 

only when the system needs that location.  

 

The software components responsible for providing context information are the feeders 

(see Figure 9). Feeders such as a Temperature feeder or Location feeder must be 

implemented and represented in the object model. The Context Manager will invoke 

those feeders (on behalf of the applications) in order to request context information. The 

Context Manager internally will find an appropriate feeder depending on the information 

the application needs. Applications are able to ask the Context Manager to invoke the 

feeders by the interface described in Table 4. The implementation of feeders will be 

explained later in this chapter. 

 

Table 4. Feeding requets invocation 

Func. Interface Description 

5 ObjectID feedModel(ObjectID targetObject, ObjectID 

attribueType, String attributeName) 

 

The Context manager will use the 
internal findFeeders function to find all 
the feeders that are able to supply such 

an attributeType. The resulting set of 

candidate feeders will then be filtered on 
the basis of their needs being met from 
the attributes of the target object. If more 
than one candidate feeder remains after 
this filtering process then the feeder 
manager will simply select the first one. 
However, in future versions of the model 
it will perform a more intelligent selection 
of a feeder based on qualities such as 
the feeder’s accuracy, cost-of-use, etc. 

 

4.3 Feeders 

Feeders can be seen as pieces of software that provide context information. Normally 

feeders are associated with sensors such as thermometers, GPS devices, decibel 



 

39 

 

 

meters, anemometers etc. A feeder can push context information into the model or it can 

be polled by the Context Manager. The information can be reflected in the model as a 

relationship or as a property of one object. For example, a feeder could provide 

information on the location of Mobile phone Operator (MO) subscribers, and, when 

required, the feeder could add/update information about devices (mobile phones) and 

their locations. In this particular example, the feeder would update the relationship of the 

mobile with the cell where it is detected; in principle it will update the is-in relationship. 

Any feeder can update the model by using the general purposed interface provided for 

that (the Context Manager Interface). 

 

The feeders must implement a web service interface to be polled. The interface is shown 

in the following table (Table 5). 

Table 5.  Feeders Interface 

Func. Interface Description 

1 ObjectID feedModel(ObjectID objecteid, 

AttributeName attributeName, ServiceURL 
ContextManagerURL) 

When the Context Manager is requested 
to feed the object model it passes the 
request to the feeder. The feeder must 
provide information about the object 
identified in the model with the value of 

the parameter objecteid, the 

attributeName corresponding to the 

attribute to be feeded (attributeName  

is optional). This information must be 
provided to the service pointed by the 

ContextManagerURL parameter. 

 

Feeders must know how to update the information in the model. Feeders can also be 

used as wrappers of existing applications such as GIS, or services that provide weather 

conditions. Moreover feeders can provide context information from several sources, for 

instance, it is possible to create a feeder that using information given by a GPS device, 

transforms the coordinate information into symbolic information by using a GIS. 

  



40 

 

  



 

41 

 

 

5 Deployment and Validation 

5.1 Introduction 

 
One of the typical utilization scenarios of context information is to discover services using 

the user context. In order to test the proposed Context Model and architecture a context-

aware complaint application was developed for use from a citizen’s smart phone. In 

order to clarify the deployment of the Context Model Architecture the following scenario 

is presented to identify the pre-requisites for set up and use. 

 

Scenario 4. “John was walking in a garden and sees a damaged fountain. He 

wants to inform the public authority about the situation. So, on his smartphone he 

opens an application that helps him to report the situation to the public authority.” 

 

The application uses the Context Manager functionalities to help citizens find complaint 

services using their current context. But, firstly the context model must be populated with 

objects representing the citizen, their smart phone, the relationships between them, and 

feeders set-up to automatically update the model (e.g. to ascertain the operator cell 

location of the smart phone). After this initial setup procedure the application is able to 

query the Object Manager to, for example, ask about objects related to the user in the 

real world and to ask about “unreal” objects such as services. These queries are used to 

perform an automatic identification, or honing down, of objects that the user may like to 

complain about in their surrounding environment, followed by the identification and 

connection to the appropriate end-service to handle their complaint. In addition to these 

physical objects we also represented the local government services as objects within the 

model, and linked them to their related objects. For example, a parks & gardens 

complaint service may be linked to the various green areas of the city, whereas the 

highways complaint service may be linked to the physical road infrastructure that is also 

represented within the model [4].  

 

The following sections will present the way the model is populated and how the 

complaint application works alongside the Context Manager, describing its particular 

application interaction model. 



42 

 

5.2 Populating the Model 

The complaint application can be developed by a government body, and in or trial we 

worked with the municipality of Vila Nova de Cerveira. The model was populated with the 

municipality public equipment objects and the various inter-relationships between them.  

 

 

Figure 15. Vila Nova de Cerveira 

 

Some public equipment such as roads, avenues, streets, squares, plazas, gardens, 

points of interest (POIs), and car parks are identifiable on maps and were added to the 

model. Other public equipment was indentified in the field and then later located on a 

map (see Figure 15).  

 

Smaller public equipment such as public lights, trash cans, and drain covers were 

grouped and created as a single object in the model. For instance all the drain covers in 

the “Praça Rui Diniz” were grouped and named as “Drain covers at Praça Rui Diniz”. 

Objects were grouped because in the small screen of a smart phone it is very difficult to 

present long lists of objects to select. Also, a “Public equipment” object was created for 

abstracting all the public equipment objects, and also one object for each kind of public 

equipment, i.e. one “Drain cover” object for abstracting all the drain covers (see Figure 

16).  

 



 

43 

 

 

 

Figure 16. Object modeling 

 

The relationship Is-A connects the abstract object to a real instance of it, , e.g. “Drain 

covers at Praça Rui Diniz” Is-A “Drain cover”. Some relationships were simplified in the 

model. For instance, the theoretical Is-A relationship was modeled as RDF property (a 

literal), and the relationship Has-A were also modeled as RDF property. That 

modification allows the use of XML namespaces representing schemas instead of having 

more RDF lines, to define this so helping to reduce the size of the model files and 

making for a more computing efficient model. 

 

The location dimension of the user was initially planned to be obtained from the mobile 

operator; but some issues (please see the section 5.2.2 Feeder implementation issues) 

made this impossible to use as the source of the context information. To solve this 

problem an alternative source of location information was used. 

 

A run-once initialization program was made to create all the objects in the model, 

including relationships. The program used the Context Manager to populate the model. 

 

There are other objects such as feeders and the Municipality complaint services that we 

have not mentioned here in describing the initial setup of the Context Model. These 

objects will be covered later in the Feeder and Service sections. 

5.2.1 Feeders 

One feeder that provides location was represented in the model. The feeder has two 

relations, one that describes the kind of relationship the feeder can provide, and other 

descries the “Access Point” of the feeder.  

 



44 

 

 

Figure 17. Location feeder representation 

 

One feeder was created to provide location information. It provides the symbolic location 

of the mobile phones. These symbolic locations corresponded to areas in VNC, which 

were created as objects in the model. The public equipment objects were linked to these 

areas by creating relationships between them. The main relationships created were Is-In 

relationships, with some objects considered primarily as containers for other objects, 

such as streets, gardens and car parks. As the Is-In relationship is transitive, many other 

objects were included in these relationships. Relationships between the areas and the 

complaint services and the areas they correspond to were also created. 

5.2.2 Feeder implementation issues 

The Vila Nova de Cerveira (VNC) municipality does not have its own existing 

infrastructure with sensors that provide context information to the feeders. The external 

alternatives were to use the information provided by the MOs or to use smartphones with 

GPS devices. There are four detectable signals from MOs in VNC, three Portuguese 

operators at this time (TMN, Vodafone ad Optimus), and one Spanish (Telefonica). The 

MOs are able to provide some kind of position information, by processing the received 

signals from the mobile phone, it is possible to measuring the time the signals take to 

arrive to the antennas, or by measuring the power used for the phone to transmit the 

signal. For this procedure the MO must install in their antennas and reception equipment 

special software and hardware. Moreover the MO must develop software interfaces that 

allow third parts to query the location of mobile devices. The OSA Parlay[36] consortium 

propose an open API for this purpose. Finally, it is possible to query the mobile operator 

about the cell location of one mobile phone. However none of these possibilities were 

available in VNC from any operator. 

 

An alternative approach is to transmit via GPRS the current cell identification from the 

smartphone (using some special software); with this cell identification it is possible to 

calculate the position of the mobile phone with a lower accuracy. In order to explore this 

possibility an attempt to identify MO broadcasting cells was made. Two cells were 



 

45 

 

 

indentified from the selected MO (Optimus). However the geographical large coverage of 

the cells combined with the small size of the VNC made it impossible to use this 

information to distinguish just two areas within the town. 

 

Therefore we selected a solution that used smart phones equipped with GPS, where an 

application running in the smart phone transmitted the last area where the smart phone 

had been detected (by reading the coordinates from the GPS device). In the other side, 

the localization feeder provides the location of the mobile device when the Context 

Manager asked for it. 

5.2.3 Complaint Services 

There are four departments responsible for public equipment in the VNC Council: Water, 

Solid Wastes, Ways & Gardens and Lighting.  For each one of these divisions a 

complaint service was created. The complaint services were represented too in the 

model as the same way as feeders. 

 

 

Figure 18. Complaint service representation 

 

The Water Complaint Service has several relationships (see Figure 18). In the same way 

as the feeders, each complaint service has an access point that is the URL where the 

user is redirected after the service is discovered. The type of the service is given by the 

relationship Is-A Report Complaint. This categorization helps the Complain Application to 

discover the service. The “Serves” relationship means that this service can be used to 

report anomalies of the kind of objects “Drain Covers” as shown Figure 18. The Water 

Complaint service also has “Serves” relationships with other kind of objects represented 

in the model that are also related with water, such as hydrants and grating covers. 

 

The developed complaint services have a user interface accessible via web. The user is 

able to view and add to the information about the complaint using this interface. The 



46 

 

complaint services receive input from the user, and also context information from the 

Context Aware application. This information is further processed by the back office in the 

municipality. 

  

5.3 Context Aware Complaint Application 

 

The Context Aware Complaint Application was developed for discovering appropriate 

complaint services and presenting them to the users. The complaint application has a 

web user interface and runs in an application container. The communication with the 

Context Manager is made through direct invocation (in Java) . The Context Manager is 

also running in the same application container. The application container used is Apache 

Tomcat [37].   

 

From the point of view of the user, the application works as follows: When the user wants 

to report an anomaly, they run the micro browser in their smart phone and open an URL 

with the address of the service (it is possible that the link to this address was previously 

stored as a bookmark to make access quicker). A menu with a list of available 

applications is the presented in the browser and the user selects the link that points to 

the Context Aware Complaint Application. It is supposed that this complaint application is 

accessible in a portal of government services available to the user (see Figure 19 a).  

When the user selects the the Context aware complaint application it will present a menu 

to drive the selection of the kind of objects to report an anomaly (Figure 19 b). Then the 

complaint application, based on the context of the user, will present the individual objects 

that can present anomalies in that area (Figure 19 c). Finally the Complaint application 

will redirect the user to the discovered complaint service, and the user will interact with it 

in order to report the anomaly (Figure 19 c). Note, it is also possible to pass context 

information to the complaint service for further processing (e.g. the location of the user). 

 



 

47 

 

 

a.  b.  c.  d.  

Figure 19. Menu driven interface showed to the user 

 

From the user point of view it is a quite simple application, but from the Context Manager 

and from the Context Aware Complaint Application point of view the interactions are 

more complex. Those interactions are described in the next section. 

 

5.3.1 Interaction Model 

 

The interaction model is the way the Context Aware Complaint Application (CA) interacts 

with the model and with the user. It is possible to use any number of different interaction 

models depending on the needs of the Context Aware Application. 

In summary, the CA briefly perform the following process: When the user is connected to 

the CA in their first HTTP-GET message, the context aware application creates the 

relation between the smartphone and the user. The CA ask to the Context Manager to 

find the location of the user, and the location feeder is asked to feed the model with the 

user’s smartphone location. Next the CA asks the context manager for the objects near 

to the user (those objects are representations of both virtual and real objects). Finally the 

first interface (which is the response of the first HTTP-GET) is presented to the user 

(Figure 19 b). Finally, the CA presents the service that the user needs through a menu 

driven filtering strategy. 

 

Working with micro browsers as user interface has some limitations. In general, micro 

browsers do not support the full implementation of technologies found in normal web 

browsers. For instance, technologies such as Java Script, AJAX, etc. are not available or 

are very limited, in micro browsers. For this reason the communication with the CA is 



48 

 

limited to responses (from the CA) initiated by interactions from the user. However, the 

advantage in using a web user interface is that many smart phones have a micro 

browser and the application container (in our case Apache Tomcat) manages the issues 

related with user session, user authentication (if necessary) and multi-user access. 

 

 

Figure 20. The general picture of the environment 

 

The general picture of the environment is shown in the Figure 20. The interactions of the 

CA with the user and the feeder are presented in complete detail in the sequence 

diagram of the Figure 21. 

 



 

49 

 

 

 

Figure 21. Complaint Application interaction model 

 

Scenario: The CA receives a request from the user’s mobile phone. The application 

discovers the appropriate complaint service. 

 



50 

 

0. The browser sends a get request to the CA (Figure 19 a). 

1. The CA obtains a reference to the Context Manager and adds a “user” object to the 

object model. 

2. The Context Manager returns the “user” object ID. 

3. The CA adds a “mobile terminal” object to the object model. 

4. The Context Manager returns the “mobile phone” object ID. 

5. The CA adds a “with” relationship object with its object attribute set to the user object 

ID and with its subject attribute set to mobile phone object ID. 

6. The Context Manager returns the “with “relationship object ID. 

7. The CA requests the Context Manager to feed the mobile phone object with an 

attribute named “Is-In” and of the type “Is-In relationship”. This corresponds to 

requesting the mobile phone’s position. 

8. The Context Manager finds all feeders that can feed an object with an Is-In 

relationship.  

9. This set of candidate feeders are filtered so that only feeders whose needs are 

satisfied by the object´s attributes are considered. 

10. The Context Manager requests the feeders to feed the mobile phone object with the 

Is-In relationship, and to name the attribute with the specified name. 

11. The feeder requests the Context Manager for the TerminalID attribute of the mobile 

phone. 

12. The TerminalID attribute is returned. 

13. The feeder requests the object with the objectID attribute (the mobile phone). 

14. The object (the mobile phone) is returned. 

15. The feeder obtains the mobile phone´s location from the mobile operator or for the 

GPS system. 

16. The feeder finds the object in the Context Manager that represents the cell id or the 

area returned from the mobile operator or the GPS system. 

17. The id of the cell object is returned. 

18. An Is-In relationship is created between the mobile phone and the cell or area. 

19. The object ID of the new relationship is returned. 

20. The feeder returns to the Context Manager the objectID of the new object 

21. The Context Manager returns to the application the objectID of the new object. 

22. The application requests from the Context Manager the user location context. 

23. The Context Manager returns the user location contexts. 

24. The CA requests from the Context Manager the objects that are located in user 

location context. 

25. The Context Manager returns the list of objects co-located with the user. 



 

51 

 

 

26. The application computes the types of objects co-located with the user. 

27. The application returns to the user the list of types (Figure 19 b) 

28. The user selects the complaint target object type 

29. The application computes the objects of selected type. 

30. The application computes the Complaint services associated to objects of select type 

(Figure 19 c). 

31. The user selects Report complaint service associated to respective object (as a 

hyperlink) 

32. The user is redirected to the complaint service by selection the desired object (Figure 

19 d). 

 

One of the advantages of the separation of the Context Manager and the Context aware 

applications is the possibility to create new Interactions Models. Also it is possible to 

make small changes in the Interaction Models (for instance in model the presented 

Figure 1) and obtain a new behavior without modifying the Context Manager and the 

applications that provide contextual information (feeders). 

 

5.4 User Testing 

In order to test the Context Manager, it is necessary to test it with all other applications 

showed in the Figure 20.  Those applications are the Context Aware Application (e.g. 

Complaint Application), the context feeder (e.g. localization service) and services to be 

discovered (e.g. Complaint Services).  

 

A test was conducted in Vila Nova de Cerveira to know the users thoughts about the 

complaint application. Since only some components present a user interface (i.e. the 

Context Aware Application and Complaint Services), the user only sees theses 

interfaces and will therefore only produce direct feedback about these applications. 

However for the correct functioning of those applications and user interfaces, the Context 

Manager must be working well.  

5.4.1 Test scope 

In the test three tasks were selected for the users to perfom, as follows: 

 Make a complaint 

 Check Complaint Status 

 Cancel Complaint 

 



52 

 

The first task, Make a complaint, needs all the steps that Figure 21 shows. The other two 

tasks (Check Complaint Status and Cancel Complaint) can be performed without those 

steps. The user interface is presented in a web micro browser, where also the interface 

is composed mainly by text options; and where each option is an hyperlink to the next 

step. The Figure 19 shows the user interface style. 

 

Ten random testers were selected to use the application. The users were divided in three 

groups, two groups of 3 people and one of 4 people. Then each group made a walk in 

different areas of the city (VNC) and were asked individually to use the application 

(performing the three tasks). 

 

Of the 10 users participating, 4 users had previous experience of using mobile 

applications and 6 users had no previous experience in the use of mobile applications. 

Eight were man, two were female. 

 

One of the key questions to asked to the test users was if they understood the menu 

driven approach derived from the Interaction Model presented in the section 5.3.1. For 

this purpose evaluated if the user recognized the elements of the interface (Recognition 

Exercise). Another important point to respond was to check if the users could complete 

each one of the three tasks (Performance Exercise). Finally some impressions and 

feedback were collected from the users. In particular we wished to understood if they 

noticed and understood the use of context-awareness in the application. 

5.4.2 Findings 

5.4.2.1 Recognition Exercises 

As seen from the table below, element recognition of the different elements of the 

interface was on average very good. This was due to the fact that this application is 

basically based on text interactions. Sometimes even, text was in excess and some 

graphical elements could have helped the interaction. 

  



 

53 

 

 

 

Table 6. Recognition of the interface elements 

Scale: 3 = Total recognition 2 = Partial 1 = no recognition. 

 

 

5.4.2.2 Performance Exercises 

Performance exercises in these type of tests should be centred on the successful of the 

task completion instead of how long it took completion time. This is because of the 

artificial time constraints of the “think aloud” method (where the test group was 

accompanied and asked questions while they used the application) performed in these 

tests. Also, it was the first time they had used the application and, in many cases, the 

first time they had used a smart phone device). Therefore the results were focused in the 

success rate for task completion rather that the time they took. 

 

Table 7. Task achievement results 

 Make 
Complaint 

Check 
Complaint 

Cancel 
Complaint  

Avg. per user 

User 01 3 3 3 3 

User 02 3 3 3 3 

User 03 2 2 3 2,33 

User 04 2 2 3 2,33 

User 05 2 3 3 2,66 

User 06 3 3 3 3 

User 07 2 3 3 2,66 

User 08 2 2 3 2,33 

User 09 3 3 3 3 

User 10 2 2 3 2,33 

Avg. per task 2,4 2,7 3 2,66 

Achievement degree scale: 3 = achieved. 2 = partially achieved. 1 = not achieved. 0 = abandoned. 

 

Elements \ Users 01 02 03 04 05 06 07 08 09 10 Avg. 

Description of  
pages 

3 3 3 2,93 3 3 3 3 3 2,92 2,9 

Available 
Functionality 

3 3 2,73 2,86 3 3 2,85 3 3 2,92 2,9 

Task Icons 3 3 2,73 2,66 2,86 3 2,85 2,85 3 2,64 2,8 

Average per user 3 3 2,82 2,81 2,95 3 2.9 2.95 3 2,82  



54 

 

The success rate for most tasks was very good, all tasks were achieved in most cases 

though in a few cases only partially. On a user-by-user basis there were 4 users which 

had clear difficulties completing the tasks, nevertheless they did succeed. 

5.4.2.3 User Impressions and feedback 

Although the user´s had no direct interaction with the model they clearly understood the 

benefits derived, such as the filtering of information and some users noticed the change 

of elements in the menus when they change the area of testing. This was thanks to the 

Context component which helped the elements presented in the user interface to change 

according to the area. Also the users noticed that the complaints were sent to the right 

service. The users understood the application interface. 

In summary the user’s understood the user interface and application functionality, and 

appreciated the benefits of how context awareness was used. These features were 

provided through the context model and therefore, although the users had no direct 

interaction with it, it certainly made a beneficial impact to the application user experience. 

 

  



 

55 

 

 

6 General Conclusions 

 
This dissertation presented some key areas for consideration in developing a Context 

Aware Mobile Government Application. Initially we presented the key requirements in 

order to develop such an application. A set of core applications is necessary in order to 

support the creation of new context aware applications, and this set of applications must 

understand context in the same way and hide the complexities of context from other 

applications. An understanding of context can be reached by using an approach to 

model the surrounding environment. Modeling the context with an object model result in 

a very compressible way to make abstractions of the world, and an object-oriented 

construction is capable of representing practically any part of our surrounding 

environment. More specifically, location, often considered an object or property unto 

itself, may be modelled as a relationship between two objects, so allowing any object to 

be considered as a place. Practically all the model’s elements may be represented using 

the same generic object construct, including relationships, types, and class hierarchies. 

The object model was implemented using RDF, which allows the representation of 

knowledge. There are several tools that help to manipulate RDF in different stages of the 

developing and deployment. 

 

The developing and deployment of a Context Aware Mobile Application was also 

presented. The Context Management application was developed using open standards 

to intercommunication with other applications. A real scenario in Vila Nova de Cerveira 

was also modeled and represented. In this scenario two hundred and twenty objects 

were modeled incliding public equipment, relationships and services.  

 

Some challenges were faced in the development process. One issue was pertaining how 

the context aware applications must interact with the Context Manager application. For a 

complaint scenario an interaction model were defined. This interaction model is 

presented to the user as a context-filtered menu driven application. One of the 

advantages of our general approach is the freedom to use the Context Manager in 

several ways, by modifying or creating new interaction models and by adding different 

selection algorithms for object querying. 

 

Another challenge faced in the deployment of the solution was in the provision of context 

information. The location context dimension of mobile phones (or users with mobile 

phones) was intended to be acquired by the cell identification from the mobile phone 



56 

 

operator. However, technical and bureaucratic issues made this source unsuitable. The 

solution for the location information was to create a service that feeds the location to the 

model using as a source a GPS embedded in the mobile device. This additional 

development also demonstrates in some way the openness and the flexibility that the 

approach presented in this dissertation brings to new extensions, deployments and 

developments. It also demonstrates the need to allow the evolution of the infrastructure 

for supporting context aware mobile government applications, mainly regarding context 

acquisition. 

 

Below we present how our design decisions and developed components met the 

requirements of the context aware applications presented in chapter two. Each subtitle 

corresponds to a requirement and the text corresponds to how the solution dealt with 

such a requirement. 

 

 Requirement: A model for context information is necessary 

The requirement was solved by using the model proposed in chapter three. The 

model for context information is based in objects and relationships between those 

objects where relationships are also modeled whit the same object construct. 

Modeling using objects and relationships is a very understandable form to create 

abstractions of the surrounding environment. The conceptual model allows 

modeling several kinds of entities, such as material objects (e.g. places and 

people), areas or regions, and virtual objects such as user-services.  

 

 Requirement: It is necessary to represent the model for context information using 
adequate data structures. 
 
The model was represented withg RDF. RDF gives formality to the model and 

allows a consistent representation. There are tools such as Jena and Protégé 

[33] that support RDF. Jena is set of Java classes that allow manipulating RDF in 

a higher level. Protégé is a very versatile tool and helps to model knowledge. 

Since RDF is not intended to be human readable, initially the models for specific 

scenarios can be incubated in Protégé and later converted to RDF to be used in 

context aware applications.  

 

 Requirement: The management application must allow other applications to 
communicate with it in a standard way 
 

The Context Manager is a Java Class that can be used by direct invocation or by 

invoking web services. An API was defined to for the both ways to interact with 



 

57 

 

 

the Context Manager. The definition of web services found in [38] is: “Web 

services provide a standard means of interoperating between different software 

applications, running on a variety of platforms and/or frameworks. Web services 

are characterized by their great interoperability and extensibility, as well as their 

machine-processable descriptions thanks to the use of XML. Programs providing 

simple services can interact with each other in order to deliver sophisticated 

added-value services”. The Web Services is a recommendation of the World 

Wide Web Consortium. By using the API and also web services in the Context 

Manager the communication requirement is achieved. 

 

 Requirement: The management application must allow the addition of new forms 
of context information. 
This requirement can be divided and solved in two parts. One part is about 

accepting new forms of context and the other is about acquiring context 

information. Firstly the selected model allows the representation of new context 

information. For instance let us imagine the hearth beat of the user as new 

context information. Initially the hearth beat is modeled as an object and 

relationship can be created between beings with a heart and objects representing 

hearth beat. It is clear that it is possible to model new forms of context. Secondly, 

in order to acquire heart beat it is necessary to have a feeder that uses the 

provided API of the Context Manager to feed the contextual information in some 

way. The development of new feeders it is also achievable because the provided 

API. 

 

 Requirement: It is necessary to add value to the context information. 

This requirement is achived by inferring new context from known context, and 

also by transforming context. For instance, a feeder could transform GPS 

coordinates into a symbolic representation (by using a GIS). Furthermore, the 

model infers which objects are near-by other objects. This knowledge (near-by) is 

an added value to the context. 

 

 Requirement: It is necessary to hide complexity of context from the applications 

by supporting them in using context. 

By using the Context Manager the application does not need to deal with the 

context information acquisition, storage and management. The Context Manager 

is in charge of this task. The acquisition is made by feeders and the Context 

Manager invokes them. Regarding querying context information, although the 



58 

 

Context manager can be queried at a high level by using the exposed API, the 

context aware application must know which algorithms are suitable to be used (or 

new ones developed if necessary). However, the selection algorithms (such as 

the Is-In Algorithm) can be seen as a high level query method, and if is possible 

to say that most of the complexities are hidden to the applications. 

 



 

59 

 

 

References 
 

1. José, R., et al. Os Sistemas de Informação Geográfica no suporte a Serviços 
Móveis para o Cidadão. in ESIG 2004 - National Conference on Geographical 
Information Systems. 2004. Lisbon. 

2. Rodrigues, H., J. Pascoe, and C. Ariza. On the Development of an Open Platform 
for m-Government Services. in FIP TC8 Working Conference on Mobile 
Information Systems (MOBIS'05). 2005. Leeds, UK: Springer. 

3. USEMEGOVConsortium. The USE-ME.GOV Project Web Site.  2006  [cited 
2006]; Available from: http://www.usemegov.org/. 

4. Pascoe, J., H. Rodrigues, and C. Ariza. An Investigation into a Universal Context 
Model to Support Context-Aware Applications (accepted paper). in Second 
International Workshop on Context-Aware Mobile Systems. 2006. Montpellier - 
France: Springer Verlag. 

5. Merriam-Webster-online-dictionary. 
6. Abowd, G.D., et al., Towards a better understanding of context and context-

awareness. Handheld and Ubiquitous Computing, Proceedings, 1999. 1707: p. 
304-307. 

7. Schilit, B., N. Adams, and R. Want. Context-aware computing applications. in 
Workshop on Mobile Computing Systems and Applications. 1994. Santa Cruz, 
CA, USA. 

8. Mostéfaoui, G., J. Pasquier-Rocha, and P. Brézillon. Context-Aware Computing: 
Aguide for Pervasive Computin Community. in International Conference on 
Pervasive Services, 2004. 2004. 

9. Cheverst, K., et al. Experiences of Developing and Deploying a Context Aware 
Tourist Guide: The GUIDE Project. in MOBICOM. Boston, MA, USA: Dey, A.K., 
Abowd. 

10. Dey, A.K., G.D. Abowd, and D. Salber, A conceptual framework and a toolkit for 
supporting the rapid prototyping of context-aware applications. Human-Computer 
Interaction, 2001. 16(2-4): p. 97-+. 

11. Chen, H., F. Perich, and T.J. Finin, A. SOUPA: Standard Ontology for Ubiquitous 
and Pervasive Applications. in International Conference on Mobile and 
Ubiquitous Systems: Networking and Services. 2004. Boston, MA. 

12. Strang, T., C. Linnhoff-Popien, and K. Fran, CoOL: A context ontology language 
to enable contextual interoperability. Distributed Applications and Interoperable 
Systems, Proceedings, 2003. 2893: p. 236-247. 

13. Chen, H., T. Finin, and A. Joshi. A context broker for building smart meeting 
rooms. in Knowledge Representation and Ontology for Autonomous Systems 
Symposium. 2004. 

14. Lamsweerde, A.v. Requirements engineering in the year 00: A research 
perspective. in 22nd International Conference on Software Engineering. 2000: 
ACM Press. 

15. Strang, T. and C. Linnhoff-Popien. A context modeling survey. in UbiComp 1st 
International Workshop on Advanced Context Modelling, Reasoning and 
Management. 2004. Nottingham. 

16. Pascoe, J., The stick-e note architecture: extending the interface beyond the 
user, in Proceedings of the 2nd international conference on Intelligent user 
interfaces. 1997, ACM Press: Orlando, Florida, United States. 

17. Martin, D., et al. DAML Services.  2006  [cited 2006 2006/08/28]; David 
Martin:[Available from: http://www.daml.org/services/owl-s/. 

18. Wang, X., et al., Semantic Space: An Infrastructure for Smart Spaces. IEEE 
Pervasive Computing, 2004. Vol. 3, No. 3: p. 32-39. 

19. OpenGIS. Geography Markup Language.  2006  [cited 2006 17-08-2006]; 
Available from: http://www.opengeospatial.org/standards/gml. 

http://www.usemegov.org/
http://www.daml.org/services/owl-s/
http://www.opengeospatial.org/standards/gml


60 

 

20. Wang, X., et al. Ontology Based Context Modeling and Reasoning using OWL. in 
Context Modeling and Reasoning Workshop at PerCom. 2004. 

21. Strang, T., C. Linnhoff-Popien, and K. Frank. Integration Issues of an Ontology 
based Context Modelling Approach. in Proceedings of the IADIS International 
Conference WWW/Internet. 2003. Algarve, Portugal. 

22. Chen, H.L., An Intelligent Broker Architecture for Pervasive Context-Aware 
Systems, in Faculty of the Graduate School. 2004, University of Maryland: 
Maryland. 

23. Gu, T., et al. An Ontology-based Context Model in Intelligent Environments. in 
Communication Networks and Distributed Systems Modeling and Simulation 
Conference. 2004. San Diego, California, USA. 

24. OpenLS. Open Location Services.  2006  [cited 2006 17-08-2006]; Available 
from: http://www.opengeospatial.org/projects/initiatives/openls-1.1. 

25. Cisco-Systems. Sweden's Stockholm Subway Implements Indoor Location-Based 
Services Platform with Cisco Systems and Appear Networks.  2006  [cited 2006 
18/08/2006]; Available from: 
http://newsroom.cisco.com/dlls/partners/news/2006/pr_prod_05-02.html. 

26. Christensen, E., et al. Web Services Description Language (WSDL) 1.1.  2001  
[cited; Available from: http://www.w3.org/TR/wsdl. 

27. Pinto, H.V., Noe and R. José. Using a private UDDI for publishing location-based 
information to mobile users. in 7th ICCC/IFIP International Conference on 
Electronic Publishing (ELPUB2003). 2003. Guimarães, Portugal. 

28. Martin, D., et al. OWL-S: Semantic Markup for Web Services.  2004  [cited 2006 
24/10]; Available from: http://www.w3.org/Submission/OWL-S/. 

29. W3C. Resource Description Framework (RDF).   [cited 2006 2006/09/21]; 
Available from: http://www.w3.org/RDF/. 

30. Hibernate.   [cited 2006; Available from: http://www.hibernate.org/. 
31. Michael, K., L. Georg, and W. James, Logical foundations of object-oriented and 

frame-based languages. J. ACM, 1995. 42(4): p. 741-843. 
32. Ranganathan, A., et al., Use of ontologies in a pervasive computing environment. 

Knowledge Engineering Review, 2003. 18(3): p. 209-220. 
33. John, H.G., et al., The evolution of Protégé: an environment for knowledge-based 

systems development. Int. J. Hum.-Comput. Stud., 2003. 58(1): p. 89-123. 
34. Labs, H. Jena – A Semantic Web Framework for Java.   [cited 2006 2006-10-03]; 

Available from: http://jena.sourceforge.net/. 
35. Prud'hommeaux, E. and A. Seaborne. SPARQL Query Language for RDF.  2006  

[cited 2006; Available from: http://www.w3.org/TR/2006/CR-rdf-sparql-query-
20060406/. 

36. Consortium, T.O.P. The OSA Parlay Initiative.   [cited 2006 2006-10-15]; 
Available from: http://www.parlay.org. 

37. The-Apache-Software-Foundation. Apache Tomcat.  2006  [cited 2006 2006-10-
16]; Available from: http://tomcat.apache.org/. 

38. W3C-Advisory-Committee. Web Services Activity Statement.  2006  [cited 2006 
10/22]; Available from: http://www.w3.org/2002/ws/Activity. 

 
 

http://www.opengeospatial.org/projects/initiatives/openls-1.1
http://newsroom.cisco.com/dlls/partners/news/2006/pr_prod_05-02.html
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/RDF/
http://www.hibernate.org/
http://jena.sourceforge.net/
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/
http://www.w3.org/TR/2006/CR-rdf-sparql-query-20060406/
http://www.parlay.org/
http://tomcat.apache.org/
http://www.w3.org/2002/ws/Activity

	Acknowledgements
	Contents
	List of figures
	List of tables
	Introduction
	The USE-ME.GOV project
	Context Awareness Concepts
	Context in aware computing
	Context categorization and acquisition

	Context aware systems
	Objectives of this dissertation

	Context management applications requirements
	Introduction
	Context Information Requirements
	Model for context Information
	Representing and storing context Information

	Application Context Requirements
	Ability to communicate with other applications
	Ability to accept new forms of context
	Ability to add value to the context Information
	Ability to make complexities in context information transparent to users and applications

	Conclusion

	Context Model
	Introduction
	The selected model
	Using the Object Model
	Modeling Objects
	Modelling Relationship Objects
	Selection algorithms
	Context model representation

	Conclusions

	Implementation
	Context management architecture overview
	Management Application and Context Model Implementation
	Representing Objects
	Selection Algorithms
	The Context Manager
	Functionalities related with object creation
	Object querying

	Invoking Selection Algorithms
	Feeders Invocation


	Feeders

	Deployment and Validation
	Introduction
	Populating the Model
	Feeders
	Feeder implementation issues
	Complaint Services

	Context Aware Complaint Application
	Interaction Model

	User Testing
	Test scope
	Findings
	Recognition Exercises
	Performance Exercises
	User Impressions and feedback



	General Conclusions

