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Abstract

An optimal resource allocation approach to stochastic multimodal
projects had been previously developed by applying a Dynamic Program-
ming model [2] [3], which proved to be very demanding computationally.
Approximations to the initial model had been also developed, still within
DP framework [4]. Computing times were improved, but demonstrated
the need for further developments. In this paper we report on the appli-
cation of a recently developed technique for global optimization, the Elec-
tromagnetism Algorithm (EMA) [1], to this problem and demonstrate its
superior performance to previously attempted approximations.
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1 Problem Definition

The problem treated in this paper may be stated as follows. We are given a

multimodal activity network (that is, each activity can be performed at any

number of levels of resource intensity applied to it, with resulting shorter or

longer duration), with stochastic work content {Wa} for each activity a ∈ A,
where A is the set of activities, with |A| = n. We assume that the Wa’s are
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stochastically independent. The total cost incurred in the performance of the

project is composed of two parts: the “resource cost” which is assumed to be

proportional to the square of the intensity of resource usage for the duration

of the activity, with constant of proportionality equal to ka representing the

marginal cost per unit of the resource; and the “tardiness penalty” which is

proportional to the amount of tardiness from a specified due date T , with con-

stant of proportionality equal to cL representing the marginal cost per period.

The duration of an activity, denoted by Ya, depends on its work content and

on the amount of resource allocated to it; Ya =Wa/xa, a random variable. For

the sake of simplicity of exposition we make the following assumptions: (i) The

work content of each activity is a random variable (r.v.) exponentially distrib-

uted with parameter λa, which may be different for different activities; (ii) The

intensity of resource allocation is restricted to be within a lower and an upper

bounds xa ∈ [la, ua] with 0 ≤ la ≤ ua < ∞; (iii) There is only one resource of
unlimited availability so that it does not impose any limitations on the number

of concurrent activities. The goal is to minimize the total cost by selecting the

intensity xa of resource application to each activity a ∈ A.
This problem was first treated by dynamic programming [2], and was tested

on a set of examples [3] which alerted us to the impending difficulty of applying

the approach to large scale problems. In that research, since our focus was on

“proof of concept", we could not claim achieving the exact optimum, mainly due

to the need to discretize the decision space at a finite number of points (a max-

imum of five was used). Still, successive implementation with increasingly finer

mesh should give the optimum to any desired degree of accuracy. Lowering our

sights, our attention was then directed to devising approximation procedures,

still within the framework of DP, that would not detract seriously from the

quality of the solution while improving the computational performance. These

approaches are described in Tereso et al. [4]. Continued interest in seeking

better approximations impelled us to apply a totally different approach to this

problem, in the hope of achieving our objective. We settled on the Electromag-

netism Algorithm (EMA) of Birbil and Fang [1] as the most promising candidate
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among the known meta-heuristic approaches, for three good reasons. First, its

exceptional performance in determining the optimum for all the problems on

which it has been implemented, as reported by Birbil and Fang [1]. Second,

the speed with which it converges to the optimal solution. Third, its novelty.

This approach has been implemented successfully on numerous deterministic

functions; but never in a stochastic setting such as ours. To the best of our

knowledge, this is the first application of the EMA to a stochastic optimization

problem. This paper is a report on our findings with this approach.

In section 2 we give a synopsis of the fundamental concepts of the EMA pro-

cedure since we suspect that most readers will not be familiar with it. Section

3 describes its application to our problem. Section 4 summarizes our computa-

tional results. Finally, section 5 gives the conclusions and the directions of our

continued research on this paradigm.

2 The Electromagnetism Algorithm

The EMA [1] is based on the principles of electromagnetism: two particles

experience forces of mutual attraction or repulsion depending on their charges.

One may think of each point as being a “particle” in the n-dimensional space

(of decision variables), with an associated “charge”. The particle is free to move

in the space, with concomitant change in the decision variables. The particle’s

charge determines the magnitude of the force of attraction or repulsion between

it and any other point in the space. The strength of the attraction/repulsion is

directly proportional to the product of their charges and inversely proportional

to the distance between them. The direction of the force between any two

particles is along the line between them. The resultant (in vector sense) of all the

forces acting on each particle from all other particles in the space determines the

magnitude and direction of movement of the particle. All particles are displaced

simultaneously by an amount ∆ to be determined at each stage of calculations,

which decreases with progress in the iterations and relative stability of the best

response. With the new layout of the particles in the space of decisions, the
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same steps are repeated until iteration is halted according to any of several pre-

specified conditions that usually relate to the incremental gain in the objective

function over the last few iterations or to the total number of iterations.

3 Application of the ElectromagnetismAlgorithm

In our case, we have a set of activities with associated stochastic work con-

tent, and the single resource to allocate to them. The correspondence between

the above narrative and our problem may be conceived as follows. We have

to contend with four structural parameters: (i) The size of the population of

particles M. In our experimentation we fixed M = 15 for all networks. (ii) The

number of samples K of the vector of work contents. We selected K = 100.

(iii) The number of iterations I of the application of the EMA to convergence

(or abortion). In our experiments the stopping condition we selected was to

halt when the number of iterations performed is 25n, as suggested in Birbil and

Fang [1], since this number of iterations was found to be ample for convergence.

(iv) The number of replications R of the experiment. We chose R = 4. The

import of these parameters will become clear as our detailed description of the

experimental layout progresses.

Observe that each particle x(m) is a vector of n elements, defined by the

vector of resource allocation

x(m) =
³
x
(m)
1 , · · · , x(m)n

´
; m = 1, · · · ,M. (1)

Here,M is the size of the population of particles and n is the number of activities

in the project. For instance, in a project of n = 30 activities, and M = 15, we

take 15 points in the hypercube defined by the n inequalities la ≤ xa ≤ ua. We
select the M particles to span the feasible space of the resource allocation,

as much as possible. Figure 1 illustrates a minuscule project of only n = 2

activities, M = 5 particles, and the forces on particle #3. Each particle in this

space is defined by its two dimensions, x(m) =
³
x
(m)
1 , x

(m)
2

´
, for m = 1, · · · , 5.

The “charge” of each particle is a measure of the value of the objective function
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Figure 1: Forces on particle #3

at that point, which is denoted by v
¡
x(m)

¢
, m = 1, · · · ,M . This value is

determined through Monte Carlo sampling of the vector of work content (wa)a∈A
which, together with the allocation x(m), determine the “resource cost” as well

as the time of project completion, denoted by t(m)P through standard critical

path calculations. Knowledge of t(m)P enables one to determine the penalty for

tardiness beyond the specified project due date T.

We define vmin as the minimal value among all M points,

vmin = min
m

n
v
³
x(m)

´o
.

It is important, for stability reasons, to “normalize” and “scale” these values,

which result in the charge q(m) at point x(m). This charge is evaluated as follows,

q(m) = exp

"
−n× v(x(m))− vminPM

k=1

£
v(x(k))− vmin

¤# , m = 1, 2, ...,M.
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Observe that a large v(x(m)) results in a small q(m), and conversely, a small

v(x(m)) results in a large q(m). Indeed, at vmin the charge is 1, the maximum.

The charge q(j) of particle j determines the force of attraction or repulsion

between particle j and the other particles. For each pair of particles x(j) and

x(k) suppose that v
¡
x(j)

¢
< v

¡
x(k)

¢
, which implies that q(j) > q(k). Then

particle x(k) is “attracted” to particle x(j) by a force given by

F (j, k) =

"³
x(j) − x(k)

´
× q(j)q(k)°°x(j) − x(k)°°2

#
, ∀ j, k, (2)

and particle x(j) is “repulsed” by particle x(k) by a force of the same magnitude

in the opposite direction. The direction of the attraction/repulsion force is

along the line between the two particles with the arrow pointing from x(k) to

x(j) for particle k and the reverse for particle j (i.e., along the same line away

form k). The (vector) resultant force F (m) on each particle m is calculated by

conventional methods to yield the magnitude of the force and its direction of

movement; see Fig.1. The force F (m) is then normalized to yield,

F (m) = vector sum (F (j,m)) , j 6= m, m = 1, · · · ,M.

This procedure is repeated for each particle x(m), m = 1, · · · ,M to yield the

values of the forces at all M particles in the population. Each particle x(m) is

then moved in the specified direction by a random step given by,

x(m
0) ← x(m) + β · (RNG)(m) · F (m)norm

β ∈ (0, 1) ,

in which β is selected randomly and (RNG)(m) is the “range" of movement of

the particle; a measure of the allowed feasible movement toward the upper or

lower bounds, depending on the movement of the point.

The movement of the particles continues X(1) → X(2) → · · · → X(I) until

the stopping condition is satisfied (with I = 25n). The allocation that yielded

vmin when iteration is halted is selected as the “optimal” allocation.

For each replication (R) of the experiment, a set of K = 100 W ’s is gen-

erated and stays fixed thereafter. For each of the M particles consecutively
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generated during the EMA iterative process, the corresponding value of the ob-

jective function is evaluated, for each of the W ’s generated. In other words, we

evaluate the value of the objective function for each of the particles, for each

of the 100 W ’s. The value of the particle is based on the average of the 100

values, v(m) =
PK
k=1 v

(k)/K. It is these values that are used in the EMA to

decide on the forces acting on the particle. Finally, when we stop the movement

of the particles (i.e., after 25n movements) we have one particle vmin which

average value (over the 100 W ’s) is minimal. And to gain some idea about

the variability of vmin the whole experiment (with M particles and different K

samples of the work content) was replicated R times. In our experimentation we

took R = 4. The minimum over these four replications is the value we quote in

Table 1.

4 Experimental Layout
and Computational Results

The program outlined above was implemented in Matlab on a set of fourteen

projects that ranged in size from 3 to 76 activities. The networks under study

can be seen in the internet1, or requested by e-mail from the lead author2. The

results obtained (on a Pentium IV, 3 GHz, 1 GB RAM) are in the same web

pages cited, and are summarized in Table 1. In all networks, the allocation to

any activity, xa, is constrained to be in the interval [0.50, 1.50]. The resource cost

proportionality constant ka is normalized at 1, the same for all activities. The

tardiness penalty cL is as given in Table 1. The “PERT Expected Value” is the

length of the so-called “critical path” following the PERT model. This, together

with the due time T give an idea about the “tightness” of the imposed due time

(recall that the PERT expected duration is an underestimate of the exact ex-

pected duration), and was maintained in the range (T/E (PERT )) ∈ [1.03, 1.09]
throughout. The value of K was fixed at 100 for all experiments; that is, 100

work content samples were generated for each iteration in each experiment. The
1www.dps.uminho.pt/pessoais/anabelat (Topic: research).
2 anabelat@dps.uminho.pt.
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experiment was repeated R = 4 times. The values quoted in Table 1 are the best

in the four replications, as explained above. The restriction to 2 and 3 discrete

points in the DP approach was necessary to keep the computing time within

reasonable limits. Still, DP failed to reach a solution for networks of n ≥ 24
within 48 hrs. This is where the superiority of the EMA is manifested. In fact,

the EMA gives a better “best value" than DP in several instances of even small

networks. The cause lies in the discretization required by the DP approach,

which clouds the assertion of optimality of its results.

PERT DP DP DP EMA EMA

Net n Dur’n T cL Points Best Cost DP Time Best Cost Time

1 3 15 16 2 3 43.32 0.1 sec 36.57 14.0 sec

2 5 115 120 8 3 304.62 1.0 sec 277.53 32.4 sec

3 7 62.9 66 5 3 209.94 3.0 sec 207.33 1.1 min

4 9 100 105 4 3 387.20 1.1 min 379.67 1.8 min

5 11 26.67 28 8 3 106.76 7.4 min 115.19 2.3 min

6 11 62.08 65 5 3 280.85 45.5 min 286.30 2.7 min

7 12 44.72 47 4 3 182.91 5.8 hr 183.19 3.5 min

8 14 35.5 37 3 2 116.49 31.9 min 122.67 4.2 min

9 14 178.57 188 6 2 645.39 6.5 hr 710.27 5.0 min

10 17 44.98 49 7 2 160.12 4.2 hr 137.53 7.5 min

11 18 106.11 110 10 2 339.07 30.2 hr 375.43 9.7 min

12 24 212.05 223 12 2 - > 48hr 1212.00 18.5 min

13 38 143.99 151 5 2 - > 48 hr 834.77 1.0 hr

14 76 115.01 121 4 2 - > 48 hr 559.19 6.2 hr

Table 1. Experimental Results

5 Conclusions and Future Research

The results demonstrate:

1. The superiority of the EMA in value over the DP approach for many
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networks. As stated before, this is due to the large “mesh” used in DP

(only 3 points in the first seven networks and 2 points in the remaining

(larger) seven networks). Finer mesh should yield better results, at the

cost of (severely) increased computational burden.

2. The computational superiority of the EMA over DP for the larger networks

by several orders of magnitude.

3. The advantage of the use of EMA with repeated experimentation. This ad-

vantage is twofold. First, it does provide an estimate of the expected cost of

the project. Second, one can use the replication of the experiment R times

for any given network to estimate the range of variation of the expected

value. As an example, this was done with Net 5 in the above table. The

results of the best values were as follows: 127.71, 115.19, 122.62, 132.06,

for an average of 124.40 and variance ≈ (7.25)2 . The best average cost is
115.19 which corresponds to the allocation

x∗ = (1.50, 1.50, 0.64, 1.38, 1.50, 1.45, 0.69, 1.47, 1.50, 1.50, 0.99) . (3)

(Observe that 5 of the 11 activities were at the upper bound of resource

allocation, which may hint at securing a smaller expected value if the re-

source capacity is increased — an important indication to management.)

More importantly, assuming normality, one can ascertain that with prob-

ability of approximately 97.7% the optimal expected value of this project

is larger than 109.90. To be sure, all four values lie above this value. Fur-

thermore, by adopting the x∗ of (3) we are only 115.19 − 109.90 = 5.29

units away from the lower bound on cost, or less than 4.8%.

4. The assumption of exponential distribution of the work content was made

for ease of discretization of the work content in the DP approach, and is

central in the analysis of Markov activity networks. It is irrelevant to the

EMA approach which would accept any distribution, since the random

variables enter the approach only via the sampled W ’s.
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Matlab is not the ideal language for industrial applications, and we are

confident that if the logic of EMA is coded in another language such as C or

C++ by an expert programmer the time required to reach a solution will improve

by at least one order of magnitude. It is important to achieve efficient codes

because, while it is true that the result given by EMA is the optimal vector x∗,

this is a static policy which may be, and in all probability shall be, modified

dynamically later. To change the picture from a static optimum to a dynamic

one, we propose that only the allocations to the activities along the cutset

at the start of the project are implemented. The resource allocation to other

activities should await the progress of the project. As the project progresses

some of the activities in the initial cutset will be completed and the status of

the project will change. At which time the new information is incorporated into

the model and the EMA is re-run. This process continues until the project is

completed. Therefore, in the span of time in which the project is “alive" the

EMA procedure may be run several times, each on a different network, possibly

with updated values on the distributions. The networks get smaller and smaller

as activities are completed, and consequently the time required to run EMA

also gets smaller.

Apart from improved programming of the logic of the EMA, our research

is currently directed towards the improvement of the performance of the EMA

itself, possibly through improved local search, improved dynamic update of the

step size, and improved layout of the particles in the feasible space.
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