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Abstract 

The use of cancer biomarkers to anticipate the outlines of 
disease has been an emerging issue, especially as cancer 
treatment has made such positive steps in the last few years. 
Progress in the development of consistent malignancy 
markers is imminent because advances in genomics and 
bioinformatics have allowed the examination of immense 
amounts of data. Osteopontin is a phosphorylated glycopro­
tein secreted by activated macrophages, leukocytes, and 
activated T lymphocytes, and is present in extracellular fluids, 
at sites of inflammation, and in the extracellular matrix of 
mineralized tissues. Several physiologic roles have been 
attributed to osteopontin, i.e., in inflammation and immune 
function, in mineralized tissues, in vascular tissue, and in 
kidney. Osteopontin interacts with a variety of cell surface 
receptors, including several integrins and CD44. Binding of 
osteopontin to these cell surface receptors stimulates cell 

Introduction 

Recently, the use of cancer biomarkers to predict future 
patterns of disease has been an emerging issue, especially as 
cancer treatment has made such positive strides in the last few 
years (l-11). Breakthroughs in the development of reliable 
cancer biomarkers may be imminent because of advances in 
genomics and computer technology, which allow the analysis 
of vast quantities of data (12-17). 

A biomarker is any substance, which when detected in 
biological samples or tissues, is associated with an increased 
risk of a disease. The term cancer biomarker most commonly 
refers to serum markers such as the prostate-specific antigen; 
markers for inherited mutations, such as the breast and 
ovarian cancer susceptibility genes BRCAI and BRCA2 , and 
markers for somatic or noninherited mutations, which account 
for most cancers (18-20). Growth factors, which circulate in the 
blood and may contribute to the development of tumors, are 
under investigation as possible cancer biomarkers. 

Despite promising new methods and findings, controversy 
abounds in this field, as a consequence, none of the biomarkers 
used nowadays have adequate sensitivity, specificity, and 
predictive value for population screening (21). Nevertheless, it 
is highly desirable to pursue new biomarkers suitable for 
population screening and early diagnosis (22). 
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adhesion, migration, and specific signaling functions. Over­
expression of osteopontin has been found in a variety of 
cancers, including breast cancer, lung cancer, colorectal cancer, 
stomach cancer, ovarian cancer, and melanoma. Moreover, 
osteopontin is present in elevated levels in the blood and 
plasma of some patients with metastatic cancers. Therefore, 
suppression of the action of osteopontin may confer signifi­
cant therapeutic activity, and several strategies for bringing 
about this suppression have been identified. This review 
looks at the recent advances in understanding the possible 
mechanisms by which osteopontin may contribute function­
ally to malignancy, particularly in breast cancer. Furthermore, 
the measurement of osteopontin in the blood or tumors of 
patients with cancer, as a way of providing valuable prognos­
tic information, will be discussed based on emerging clinical 
data. (Cancer Epidemiol Biomarkers Prev 2007;16(6):1-11) 

Serum biomarkers are produced by body organs or tumors, 
and when detected in high amounts in the blood, can be 
suggestive of tumor activity. These markers are nonspecific for 
cancer and can be produced by normal organs as well. Most 
biomarkers are used infrequently for screening purposes. They 
are more often used to evaluate. treatment effects or to assess 
the potential for metastatic disease in patients with established 
disease. In this context, osteopontin, a phosphorylated glyco­
protein found in all body fluids, extracellular matrix (ECM) 
components, and the proteinaceous matrices of mineralized 
tissues (23, 24), also constitutes a possible biomarker. Osteo­
pontin was found to be overexpressed in the tumors and 
serum of women with ovarian cancer and was correlated with 
progression (25, 26). Recent studies have shown that the 
overexpression of osteopontin was also related with breast 
cancer evolution and metastasis (23); therefore, there is a 
potential utility for osteopontin in monitoring disease status in 
patients with breast cancer. 

This review aims to provide an overview of the character­
istics, functions, and mechanisms of interaction of osteopontin 
that could be further exploited in developing its value as a 
breast cancer biomarker, either to provide important diagnosis 
information, to evaluate treatment effects, or to assess the 
potential for metastatic disease in patients. 

The Occurrence of Osteopontin in Normal Human 
Tissues 

In human tissues, osteopontin has been found to be produced by 
epithelial cells of the gastrointestinal, urinary and reproductive 
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tracts, the gall bladder, pancreas, lung bronchi, lactating breast, 
salivary glands, and sweat ducts (27). Osteopontin was 
localized to the luminal surfaces in these sites, as well as in 
human secretions including blood, milk (28, 29), and urine (30). 
Overall, these findings suggested that osteopontin might have 
a protective role in interactions between epithelial surfaces and 
the external environment. 

In milk, osteopontin is likely to have a physiologic role (29), 
as it was noticed that milk is a rich source of the protein. Cell 
growth, differentiation, and a high degree of tissue remodeling 
occurs during various stages in the mammary gland. During 
pregnancy and lactation, these processes ensure the establish­
ment of the spatial relations between stromal and epithelial 
cells, and the organization of the latter into a branched tree of 
ducts and terminal alveoli. The highly metabolic active 
epithelial cells lining the ducts rest on a basal membrane of 
collagen and other ECM proteins, and signals from the ECM to 
the cells are important for cell differentiation and milk 
secretion (31). The description of expression and regulation 
of osteopontin mRNA in the developing mammary gland 
has been carefully described in mouse by several researchers 
(32-34). In vitro experiments with mammary epithelial cells 
transfected with osteopontin antisense mRNA show the same 
characteristics as transgenic epithelial cells in vivo. The 
transfected cells tested positive for matrix metalloproteinase­
2/procollagenase activity, whereas the control cells did not; 
hence, up-regulation of matrix metalloproteinase-2 and down­
regulation of osteopontin seem to be partly responsible for 
abnormalities in the mammary gland. Possibly, matrix metal­
loproteinase-2 and osteopontin compete for integrin-binding 
on cells, and binding of osteopontin may induce normal cell 
differentiation, whereas binding of matrix metalloproteinase-2 
induces undesired tissue degradation (34-36). 

In bone, osteopontin is produced by the matrix-synthesizing 
osteoblasts at the mineralization front and by bone-resorbing 
osteoclasts (37-39). The osteopontin in bone is mainly localized 
to the cement lines and surfaces of mature bone trabeculae 
(40). Osteopontin preferentially accumulates at cell-matrix and 
matrix-matrix interfacial structures in bone. Hence, osteopon­
tin has multiple presumed functions, including the attachment 
of osteogenic cells to the bone matrix, control of mineralization 
(41-43), coupling of bone formation, and resorption (44, 45). 
Moreover, osteopontin is expected to add physical strength to 
the ECM, as it can be cross-linked by transglutaminase to 
various matrix proteins, including collagen (46). 

Besides epithelial and bone cells, osteopontin is also 
produced by activated macrophages and lymphocytes (47-51), 
as well as kidney tubule cells, arterial endothelial and smooth 
muscle cells, cells of the inner ear (38), fibroblastic cells in 
embryonic stroma, and in wound healing sites (52). 

The Structure of Osteopontin 

Osteopontin was identified, together with bone sialoprotein, as 
a major sialoprotein in the mineral ECM of bone (53-56). The 
name "osteopontin" was introduced to reflect the potential of 
the bone protein to serve as a bridge between cells and 
hydroxyapatite through RGD (arginine-glycine-aspartate mo­
tif) and polyaspartic acid motifs discovered in the primary 
sequence of the protein (39). However, the same gene product 
was identified as a putative Iymphokine produced by 
activated lymphocytes and macrophages and called Eia-L 
(early T lymphocyte activation gene 1; ref. 47); and thus, a 
more general pattern of expression for osteopontin emerged. 
Accordingly, secreted phosphoprotein I was introduced as an 
alternative name, to reflect the broader functional role of this 
protein, and in some genomic contexts, represents its "official" 
name (57, 58). Nevertheless, the name osteopontin has largely 
been retained, in keeping with the nomenclature used for the 
human gene (59). 

The amino acid sequence of osteopontin is nowadays 
available for several species, i.e., rat (39), mouse (60), human 
(61), pig (62), rabbit (63), and cow (64). The referenced 
mammalian osteopontin sequences are identical in - 33% of 
the residues, and in addition, many similar amino acids 
are conserved between the sequences. Identical residues are 
scattered in clusters. More specifically, the larger clusters are 
located in the hydrophobic leader sequence (the first 16 
residues), in a potential site for N-linked glycosylation, and 
in several sites for O-linked glycosylation and phosphoryla­
tion. A stretch of consecutive aspartic acid residues was also 
found in all species, as well as a cell attachment RGD motif 
almost immediately followed by a thrombin cleavage site. 

Generally, osteopontin is extremely hydrophilic with a low 
isoelectric point (3.5) and displays an unusual amino acid 
composition with 42 serine, 48 aspartic acid, and 27 glutamic 
acid residues, together constituting almost half the residues in 
human osteopontin (298 residues; refs. 65, 66). It is important 
to notice that 27 out of the 42 serine residues are phosphor­
ylated (67). 

When purified and isolated in solution, osteopontin was 
found to be flexible along its entire length and to have no 
significant regions that persist in a Single structural environ­
ment for more than a few milliseconds (68). That a protein is 
completely flexible in solution does not mean that it will 
always remain so. Portions of this protein that strongly interact 
with other proteins (such as factor H and the av~~3 or other 
integrin structures and CD44 for osteopontin) will almost 
certainly adopt specific structures in relation to their binding 
partners (68). 

The conservation among mammalian species of certain 
residues is presumably indicative of the functions osteopontin 
performs (38). For instance, osteopontin has been found to play 
a role in bone mineralization both due to its characteristic 
amino acid composition and interaction with integrin receptors 
on cells lining these surfaces (39, 69). The RGD motif that is 
particularly exposed in the osteopontin molecule represents a 
major, although not unique, binding ligand for the family of 
integrin receptors, and was found to be involved in cell 
attachment, cell migration, and intracellular signaling (70). 

Osteopontin Gene Expression and Regulation 

Genes encompassed within a 600 kb region on human 
chromosome 4 encode several noncollagenous bone and dentin 
proteins (Fig. 1). They include osteopontin, bone sialoprotein, 
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Figure 1. Chromosomal location of the SIBLING genes and gene 
structure of human osteopontin. The gene location of human 
osteopontin has been mapped to the long arm of chromosome 4, 
close to the bone sialoprotein (BSP), dentin matrix protein I (DMPI), 
and dentin sialophosphoprotein (DSPP) genes. Exons are boxed; 
filled boxes, coding regions; open boxes, untranslated regions. 
Adapted from refs. (73, 200, 20 I). 
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dentin matrix protein I, and dentin sialophosphoprotein, all of 
which have been categorized as members of the small integrin­
binding ligand N-linked glycoprotein (SIBLING) family­
related proteins (68). The four proteins are somewhat similar 
being secreted, sialylated, phosphorylated, and acidic in 
nature. The SIBLING family is the result of duplication and a 
subsequent divergent evolution of a single ancient gene (68). 
The primary sequences of the proteins, however, do not show 
homology and these are therefore not the basis for calling them 
a related family (68). Rather, the exon-intron boundaries and 
the similar properties of the individual exons define the 
SIBLING family. 

Osteopontin is encoded by a single copy gene located on the 
human chromosome 4 (71), the mouse chromosome 5 (57), and 
the pig chromosome 8 (72). The gene structure of human 
osteopontin is presented in Fig. 1, and a similar structure with 
seven exons and six introns is seen in the genes encoding 
osteopontin from other species. Codon triplets are not 
interrupted by introns, and consequently, exon skipping will 
not affect the codon triplets in the remaining exons, The 
human gene sequence spans - 9 kb and the open reading 
frame consists of 942 nucleotides from the start codon (in exon 
2) to the stop codon (in exon 7; ref. 73). 

The predicted molecular weight of a protein translated from 
human osteopontin mRNA is 35 kOa (39). The 5'-untranslated 
region includes exon 1, which starts with a transcription 
initiation site (AGC), whereas the 3'-untranslated region 
consists of the last part of exon 7, which includes three 
potential polyadenylation attachment signals (AATAA; refs. 
61,71,73). Exon 2 encodes the signal peptide and the first two 
amino acids in the mature protein; exons 3 and 5, the two 
characteristic Ser-Ser-Glu-Glu phosphorylation sequences; 
exon 4, the two transglutaminase-reactive glutamine residues; 
and exon 6, the aspartic acid-rich sequence. Exon 7 is the 
largest exon encoding approximately half of the proteins 
including the RGO motif and the central thrombin cleavage 
site. 

The expression of osteopontin is induced by many factors, 
e.g., tumor promoters and chemical agents, acting on specific 
cell types and through different signaling pathways. In most of 
the studies reported, control is exerted on the level of 
transcription (70). The promoter sequence of osteopontin 
provides clues for understanding the molecular basis of 
transcriptional regulation. Analyses of the osteopontin pro­
moters have uncovered many potential sites for transcription 
factor interactions (72, 73), and a still increasing number of 
transcription factors have been shown to be directly implicated 
in osteopontin transcription. Among others, these include 
progesterone, glucocorticoids, la25-dihydroxyvitamin 0 3, and 
basic helix-loop-helix proteins, such as activator protein-l. 
Activator protein-I, for example, interacts with a highly 
conserved enhancer-like element present in many viral and 
cellular genes, including the osteopontin gene. Collectively, 
these genes are controlled by the Fos and [un family of 
oncoproteins, and consequently, osteopontin is believed to be 
an effector of activated oncogenes functioning to facilitate 
tumor growth and metastasis (70). 

The murine osteopontin promoter sequence contains a ras­
activated enhancer, which is believed to be partly responsible 
for the increased transcription of osteopontin observed in ras­
activated cell lines (74). lnduction of osteopontin transcription 
and tumorigenic transformation by 12-0-tetradecanoylphor­
bol-13-acetate in a mouse epidermal cell line (75) suggests the 
existence of 12-0-tetradecanoylphorbol-13-acetate-responsive 
elements in the osteopontin gene as well. As for viral 
regulation of osteopontin, v-Src, which is a viral oncogene 
produced by the Rous sarcoma virus, is known to stimulate the 
activity of the osteopontin promoter in mice (76). 

The active metabolite of vitamin 0, IlX25-dihydroxyvitamin 
0 3, also regulates osteopontin expression in mouse epidermal 

Table 1. Osteopontin receptors and receptor-binding 
motifs 

Receptor Name Motif Reference 

J.ntegrin (lv~3 RGD (44) 
(lv~l RGD (202) 
(lv~5 RGD (202) 
(l5r~1 RGD (203) 
(lSr'>l Unknown (85) 
(l401 SVVYGLR (204) 
(l901 SVVYGLR (93) 

(NHTterminal thrombin 
cleaved fragment) 

Nonintegrin CD44 Non-RGD (97-99) 
(v6-10) 

NOTE: RGD, Arg-Gly-Asp motif; SVVYGLR, Ser-Val-Val-Try-Gly-Leu-Arg 
motif; CD44 (v6-10), CD44 variants, isoforrns 6-10. Except for aql3lo all integrins 
bind the uncleaved osteopontin and an NHz-terminal thrombin-cleaved 
fragment, which contain the RGD and SVVYGLR sequences. Integrin 09131 only 
binds the NH2"terminal thrombin-cleaved fragment. 

cells. However, the induction of osteopontin synthesis and 
secretion is not correlated with the transformation of the cells 
as in the case of 12-0-tetradecanoylphorbol-13-acetate stimu­
lation (75). In addition, vitamin 0 also influences osteopontin 
levels in osteoblasts, and several vitamin 0 response elements 
have been identified in the mouse, chicken, pig, and human 
osteopontin genes. Moreover, it has been shown that vitamin 0 
not only regulates osteopontin at the transcriptional level, but 
also seems to modulate the phosphorylation state of osteo­
pontin because vitamin O-stimulated osteoblasts secrete a 
nonphosphorylated form of the protein (77). 

Osteopontin Metabolism and Receptors 

As described above, osteopontin is expressed by a variety of 
cells and is involved in various processes mediated by receptor 
interactions (38). Osteopontin is regarded as a molecule that 
mediates cell-matrix and cell-cell communication, and in many 
cases, this communication results in the adhesion or targeted 
migration of cells (78). The interaction between osteopontin 
and cells is mediated by specific receptor-binding motifs in 
the osteopontin sequence and receptors on the cell surface 
(Table 1). Like other proteins in the ECM (such as collagen, 
fibronectin, vitronectin, laminin, and others) osteopontin exists 
both as an immobilized ECM molecule in mineralized tissues 
and as a cytokine in body fluids containing the RGO sequence, 
which facilitates RGO-dependent interactions with integrin 
receptors and mediates cell attachment/signaling (38, 79). 
RGO-independent interactions with both integrin and non­
integrin receptors have also been shown (70). 

Integrins are transmembrane, dimeric proteins consisting of 
rx and ~~ subunits. There are multiple forms of both subunits 
and each heterodimer can bind a wide variety of ligands with 
which a cell may come in contact. Ligand binding to integrins 
could induce clustering and activation of the focal adhesion 
complex, which includes a number of regulatory and 
structural proteins, such as focal adhesion kinase, Src, and 
cytoskeletal proteins. There is evidence that activation of 
different components of the focal adhesion complex could in 
turn activate a number of different signal transduction path­
ways, affecting cellular properties including adhesion, migra­
tion, proliferation, and survival (80). 

Osteopontin has been shown to interact with a number of 
different integrins via the RGO sequence, including lXv~3' lXv~1 

and lXv~5 (38, 81, 82). More recently, additional integrins 
have been found to interact with osteopontin, including lX4~1 

(83), lX9r~1 (84), and lX8r~1 (85). 
The best characterized osteopontin receptor is the lXvr~3 

integrin, which facilitates RGO-mediated osteopontin adhesion 
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to osteoclasts (44,81), smooth muscle cells (49,86), and tumor 
cells (87, 88). Close to the RGD sequence, a site for thrombin 
cleavage is conserved in all known osteopontin species (67,89, 
90). The susceptibility of osteopontin to thrombin cleavage 
opens the possibility that osteopontin may be cleaved during 
the course of blood coagulation, and in tissues and fluids 
exhibiting thrombin-like proteolytic activity. Interestingly, 
several studies have provided information suggesting that 
thrombin-cleaved osteopontins exist side-by-side with the full­
length protein in vivo (38). It seems to be an important 
characteristic of the protein because cleavage products have 
been observed in rat plasma and rat tumors (28), human milk 
(89), and pig bone (54). Fragments of osteopontin originating 
from either unknown or other proteolytic activities have also 
been identified in human milk (67) and in human uterus (91). 
Functionally, fragments of osteopontin produced by thrombin 
cleavage amplify the effects of the full-length protein (92). For 
example, a variety of human cell lines exhibit more extensive 
cell attachment and spreading on thrombin-cleaved osteopon­
tin compared with uncleaved osteopontin (92). 

The receptor on the cells mediating the attachment is the 
av~33 integrin, introducing this receptor as a major functional 
receptor for thrombin-cleaved osteopontin. The cleavage of 
osteopontin may change the conformation of the molecule, 
more specifically, the conformation of the sequence around the 
RGD motif, and thereby affect the binding to the av~3 integrin 
by allowing greater accessibility to the receptor (92). The RGD 
motif is contained in the NHz-terminal fragment of thrombin­
cleaved osteopontin and it is this fragment that promotes a 
stronger response (ref. 87; Fig. 2). 

Likewise, the SVVYGLR sequence is located in the NH2­

terminal fragment (Fig. 2), and when osteopontin is cleaved 
by thrombin, this sequence and the RGD motif are exposed. 
Consequently, RGD- and SVVYGLR-binding integrins are 
likely to compete for osteopontin binding, however, the 
consequences of this competition have not been fully 
explored (93). 

The CD44 family includes multiple protein isoforms, 
encoded by a single gene and generated by alternative 
splicing, and several of the isoforms have been shown to be 
overexpressed in malignant cells (94-96). CD44 is a major cell 
surface receptor for hyaluronate, and various forms of CD44 
could also bind to osteopontin (97, 98). 

Tumor cells are stimulated to spread following this 
interaction, however, this phenotype also seems to involve 
the ~l integrin subunit (98). Osteopontin and CD44 interac­
tions inhibit the expression of interleukin-lO by macrophages 
(50) and are possibly involved in the formation of metastases 
(99,100). 

Osteopontin and Malignancy 

Several studies have described a link between osteopontin and 
cancer in the past years. The first evidence of this link was 
reported by Senger and coworkers, who described a transfor­
mation-specific secreted phosphoprotein produced by a 

Thrombin 

143 152 153 296 

RGDSVVYGLRISKSKK 

Figure 2. Thrombin cleavage of human osteopontin. Thrombin 
cleavage at Arg152_Ser153 generates an NH2-tenninal fragment with 
the RGD and SVVYGLRsequences at the carboxyl-terminal, Both of 
these motifs arc recognized by integrin receptors as described in the 
text. 

number of transformed cell lines in culture (89, 101, 102). 
Afterwards, similar properties were attributed to a protein 
isolated from bone that was named osteopontin (55, 56, 103). 
This protein was sequenced by Prince (103) and several 
structural features, such as the presence of the RGD motif, 
were elucidated and discussed providing evidence for some of 
its functions. Subsequently, Smith and Denhardt (104) cloned a 
cDNA named "2ar" which was inducible by tumor promoter 
treatment of murine JB6 epidermal cells. Ultimately, Craig 
et al. (105) showed that the bone-derived osteopontin was the 
same as the protein encoded by the 2ar clone. 

The association of osteopontin with malignancy was also 
supported by the fact that a ras-transformation of nontumori­
genic NIH 3T3 cells was shown to confer them a metastatic 
ability (106). Moreover, osteopontin gene expression was 
found to be induced in these cells, then pointing to a direct 
relationship between osteopontin expression and the acquisi­
tion of the metastatic phenotype by the cells (107). A novel ras­
activated enhancer was later identified in the osteopontin 
promoter (74). 

Furthermore, increasing levels of osteopontin expression 
have also been found in multistage carcinogenesis in mouse 
skin (108). Taken together, these experimental studies strongly 
suggest that osteopontin may playa role in tumor progression 
and metastasis. 

The Role of Osteopontin in Cancer 

The roles of osteopontin in many of its diverse physiologic 
settings have been discussed in a number of recent reviews. 
For example, the role of osteopontin in inflammation and 
immune function have been reviewed by Weber and Cantor 
(78), Uede et al. (109), and Giachelli and Steitz (45), in 
mineralized tissues by Denhardt and Noda (70), and in 
vascular tissue by Ramos (110). A functional role for 
osteopontin in tumor progression and malignancy has been 
claimed by several researchers. Multiple and complex mech­
anisms are involved in the role of osteopontin in cancer, 
including interactions with cell surface receptors, growth 
factor /receptor pathways, and proteases. The interactions 
of osteopontin with various cell surface receptors could 
induce the activation of various signal transduction pathways, 
resulting in changes in the expression of a series of genes, the 
proteins of which contribute to altered cell behavior, including 
migration and invasion. These effects of osteopontin likely 
vary between cell types, depending for example on which 
integrins are expressed and which signal pathways can be 
activated. There is compelling evidence that soluble osteopon­
tin could, in a variety of situations, help cells survive an 
otherwise lethal insult. Remarkably, this survival signaling is 
mediated by receptors that are generally considered to be 
receptors for ECM components. Denhardt and coworkers 
suggest that osteopontin delivers an antiapoptotic "ECM-like" 
signal via multiple ligand-receptor interactions to cells, both 
adherent and nonadherent (79). 

Cell Surface Receptors and Osteopontin. A variety of 
integrins have been found to be expressed by tumor cells and, 
depending on the degree of the tumor differentiation, some 
integrins may be up-regulated or down-regulated (111). The 
overexpression of integrins is thought to cause constitutive 
activation of signaling pathways leading to increased growth 
of tumor cells (112-114). 

Particularly, the av~33 integrin has been related to some 
aspects of malignancy and metastasis (112, 115, 116). Recently, 
a highly tumorigenic, metastatic breast cancer cell line (MDA­
MB-435) was found to use the av~33 integrin for migration 
towards osteopontin, whereas two nonmetastatic breast cancer 
cell lines (21PT and 21NT) were found to use aV~I, and av~5 

integrins (117). Additionally, a coordinated regulation of 
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osteopontin and Uv~-',3 integrin has been found in some tissues 
(86, 118). The expression of Uv~-',3 integrin has also been linked 
to breast cancer progression through an interaction with 
protein kinase C-u activity. Using highly metastatic MCF-7 
human breast cancer cells transfected to overexpress protein 
kinase C-u, Carey and coworkers (119) found that UV~-',3 

expression was modulated by increased protein kinase C-u 
activity. The same cells were used to investigate the integrin­
mediated suppression of apoptosis (120) and it was found that 
tumor cells capable of binding osteopontin via the Uv03 
integrin may have a survival advantage. 

As mentioned previously, osteopontin could also bind 
nonintegrin cell surface receptors, such as CD44 (38, 97, 98, 
100,121). The osteopontin and CD44 interactions could as well 
be mediated through integrins, as there is some evidence that 
osteopontin binding by CD44 variants and 01-containing 
integrins could cooperate to promote cell spreading and 
migration (98). Fujisaki and colleagues (122) proposed a 
mechanism for the adhesion and migration of colorectal 
carcinoma cells that describes CD44 induction of integrin 
expression, and function by both a direct pathway and also via 
hepatocyte growth factor (HGF) and its receptor (c-Met), This 
may represent an alternate pathway through which CD44 
signals to activate integrin function, aiding in the adhesion and 
migration of tumor cells. 

Growth Factor Receptor Pathways and Osteopontin. 
Osteopontin transcription may be activated by the ras 
oncogene (74), and plays a key role in neoplastic transforma­
tion, metastasis (24), and cancer progression (123). Osteopontin 
is usually absent or expressed at a low level in normal tissues 
but is up-regulated in certain preneoplastic and neoplastic 
epithelia (28, 123, 124), including that of the breast (125). 
Transfection of an expression vector for osteopontin induces 
malignant transformation and induction of metastasis in a 
benign rat mammary epithelial cell line (126), whereas 
transfection of osteopontin antisense eDNA inhibits these 
processes in a cell line already overexpressing osteopontin 
(127, 128). These results suggest that osteopontin overexpres­
sion may represent a key molecular event in tumor progres­
sion and metastasis, particularly that of the breast. Unlike 
many proto-oncogenes activated by a gain of function 
mutation, osteopontin is not typically mutated during stepwise 
tumorigenesis (24). Instead, various responsive elements in its 
promoter regulate osteopontin expression for its diverse 
physiologic roles (129-132), and it is presumably these 
elements that allow the overexpression of osteopontin in 
certain cancers. 

Interactions of osteopontin with growth factor receptor 
pathways may influence tumor cell behavior. Tumor cell 
migration can be influenced by HGF and its receptor, Met. In 
Webb and coworkers' study (133), HGF and Met receptor 
signaling was associated with a transformed phenotype in ras­
transformed NIH 3T3 cells. Furthermore, the HGF pathway 
was recently reported to affect the adhesion and invasion of 
cancer cells (134). 

The correlation between osteopontin and the HGF /Met 
pathway was further explored in breast cancer models, and a 
synergistic relationship between osteopontin and HGF in 
inducing cell migration was found (117). Additionally, 
integrin-mediated induction of cell migration in response to 
osteopontin was accompanied by an initial increase in Met 
kinase activity, followed by an increase in Met mRNA and 
protein expression levels (117). 

Cell Proteases and Osteopontin. Several studies have 
described the interactions between integrins and other 
membrane receptors, such as urokinase-type plasminogen 
activator (uPA) and its receptor (uPAR), which have been 
implicated in tumor metastasis. Proteolytic enzymes are 
believed to contribute to metastasis and tumor growth in 

several ways (135-138), i.e., via degradation of ECM compo­
nents and facilitating migration and invasion, or by activation 
of other proteases. 

Osteopontin, either transfected into breast cancer cell lines or 
added exogenously to them, was shown to increase both the 
invasiveness of the cells and uPA expression (139),possibly due 
to cell surface interactions between osteopontin-binding integ­
rins (e.g., uv0s) and uPA/uPAR. It has been shown that uPAR­
bound uP A is required for uvr-'>s integrin-mediated cell 
migration of human pancreatic carcinoma cells (140). Likewise, 
Carriero and coworkers (141) have shown that uvr-'>s integrin 
interaction with uP AR promotes the migration of human breast 
cancer (MCF-7) cells. Thus, osteopontin may increase the 
malignant abilities of cancer cells in part via integrin-mediated 
induction of uPA and interactions with uPA/uPAR. On the 
other hand, down-regulation of uPAR has been linked to the 
dormancy of tumor cells in vivo (142). Accordingly, there is a 
possibility that binding and activation of specific cell surface 
integrins by osteopontin could take tumor cells out of dormancy 
by promoting interactions between integrin and uPAR. 

In other cell types, osteopontin has also been found to 
induce the expression and activity of other proteases such as 
members of the metalloproteinase family, which can contribute 
to metastasis via multiple mechanisms (135-137, 143, 144). 
These studies provide evidence that osteopontin may playa 
critical role in tumor cell regulation of matrix proteolysis, e.g., 
in invasion and metastasis. 

The Role of Osteopontin in Angiogenesis. Angiogenesis is 
the formation of new blood vessels that allows for sustained 
growth and metastasis of tumor cells. This complex process 
requires the coordinated action of growth factors and their 
receptors, extracellular proteins, adhesion molecules, and 
proteolytic enzymes (145-148). 

Some studies have reported an implicated osteopontin in 
angiogenesis, nevertheless, many of the results remain 
circumstantial and further clarification on the details of this 
possible role are required. The association of osteopontin with 
this process is a consequence of its ability to bind the Uvr-'>3 
integrin, which in turn, is a marker of angiogenesis and is 
expressed by neovascular endothelial cells (86). 

Brooks and coworkers (149, 150) found that uv133 integrin 
expression increases during angiogenesis, and that by blocking 
this integrin, angiogenesis can be inhibited. Moreover, a role 
for the Uv~-',3 integrin in signaling the survival and differenti­
ation of vascular cells during angiogenesis in vivo was shown. 
Additionally, this integrin and osteopontin have been found to 
be significant in vascular repair and regeneration, as osteo­
pontin can stimulate the adhesion and migration of endothelial 
cells, and UV~-',3 and osteopontin are simultaneously up­
regulated following vascular damage (86). 

A role in protecting endothelial cells from apoptosis has 
been reported for osteopontin, possibly via the activation of 
nuclear factor KB (151). Furthermore, osteoprotegerin expres­
sion, a tumor necrosis factor receptor, induced by the 
interaction between osteopontin and Uv03' has been found to 
protect endothelial cells from apoptosis (152). The increased 
endothelial cell survival promoted by osteopontin supports the 
association of osteopontin with malignancy. In addition, 
osteopontin contributes to angiogenesis through effects on 
the expression of vascular endothelial growth factors (153). 
Endothelial cell migration is stimulated by the cooperation 
between the vascular permeability factor (vascular endothelial 
growth factor) with osteopontin and Uv03 integrin. Although 
the expression of vascular endothelial growth factor, osteo­
pontin, and integrin Uvr"3has been related with angiogenesis in 
glioblastomas (154), and has been associated with poor 
prognosis in patients with in stage I lung adenocarcinoma 
(155), any clinical role for osteopontin in angiogenesis remains 
to be clarified. 
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The Role of Osteopontin on Tumor Cell Survival. Besides 
the possible contributions of osteopontin to the metastatic 
phenotype presented above, osteopontin has also been shown 
to exert a role in cancer by enhancing the survival of several 
cell types, through interactions with various host defense 
systems. The affected cells include tumor cells, vascular 
endothelial cells, or tumor-infiltrating cells of the immune 
system, and these effects might have conflicting influences on 
the malignancy and growth of a tumor. An example may be 
the case when osteopontin indirectly favors the survival of 
tumor cells via macrophage liaison. Interactions between 
osteopontin and uy f33 integrins were found to affect the nitric 
oxide production by macrophages (72, 156). Produced by a 
number of different cell types, including activated macro­
phages and vascular endothelial cells, nitric oxide can act as a 
powerful signaling molecule, as well as causing localized 
cytotoxicity. Although nitric oxide is effective against micro­
bial invaders and tumor cells, osteopontin was found to inhibit 
its synthesis (157-161), and therefore, plays an important role 
in tumor defenses against the immune system (156, 157). 
Moreover, nitric oxide has been reported to have tumor­
promoting effects, however, its role in malignancy is far from 
being fully understood (162-164). Osteopontin production by 
tumor cells could promote tumor growth and metastasis by 
protecting them from nitric oxide (156, 158). In this way, 
osteopontin-producing tumor cells would be favored for 
growth, relative to tumor cells that did not produce osteo­
pontin. Nevertheless, tumor cells that secrete osteopontin 
might promote their own destruction by attracting host 
inflammatory cells, such as macrophages that can be cytotoxic 
to the tumor cells (49, 78). Thus, the interactions of osteopontin 
with various aspects of host defense systems, might in some 
cases, lead to opposing effects on tumor growth and survival. 

The Significance of Osteopontin in Human Cancer 

At present, it is fully accepted that osteopontin expressed by 
tumor cells alters their malignant properties, specifically by 
affecting their ability to grow, invade, and metastasize. 
However, as osteopontin is known to be expressed in both 
normal and malignant tissues, an elucidation of its significance 
in human cancer is required. Recent studies suggest that 
osteopontin levels in the blood or tumors of patients with 
cancer may provide useful clinical information on patient 
prognoses. 

The Occurrence of Osteopontin in Human Tumors. The 
expression of osteopontin in human tumors was initially 
shown in several human carcinomas by Brown and coworkers 
(27). Considerably higher levels of osteopontin mRNA were 
found in all tumors screened (colon, breast, lung, stomach, 
endometrium, and thyroid) as compared with corresponding 
normal tissues. Nevertheless, two examples of benign tumors 
(colonic adenomas from a patient with familial polyposis and a 
uterine leiomyoma) showed similar osteopontin mRNA levels 
compared with normal tissues. Moreover, cells that were 
positive for osteopontin transcripts were most abundant at the 
advancing edge of tumors and near areas of necrosis. 
Supporting these findings, other studies also showed osteo­
pontin mRNA and protein overexpression in several cancers, 
such as lung (165), breast (166) and esophageal cancers (167), 
gastric cancers (168), prostate cancers (169), and gliomas (170). 
Osteopontin expression in tumors has been identified by 
immunohistochemistry, specifically localized in the macro­
phages in some tumors, and in both tumor cells and macro­
phages in others (171). 

The significance of osteopontin from different sources 
within a tumor is poorly understood, although prognostic 
studies in breast cancer (166) suggest that this may be 
important for the biology of the tumor. Several researchers 

have shown the presence of osteopontin in microcalcifications 
in breast tumor tissues (172, 173) and in ectopic calcification in 
other tumors, such as serous papillary cystadenocarcinoma of 
the ovary, meningiomas, papillary carcinoma of the thyroid, 
and pilomatricomas (174-176). 

Tumor Aggressiveness and the Occurrence of Osteopontin 
in Primary Tumors. Osteopontin expression in some tumors 
that can be detected in both tumor cells and several host cells 
has triggered an emerging interest in its potential usefulness as 
a marker of tumor aggressiveness and patient prognosis. 

The potential to predict a poor patient prognosis based on 
osteopontin overexpression was first reported by Chambers 
and coworkers (165). Osteopontin expression was followed 
both in lung tumor samples and normal tissue. The results 
pointed to osteopontin expression in tumor samples and 
negligible expression in normal tissues. The osteopontin 
protein was localized by immunohistochemistry to both lung 
tumor cells and tumor-associated macrophages. The relation of 
osteopontin expression in tumors and poor patient survival 
was found to have statistical significance. Results obtained by 
Shijubo and coworkers (155) also suggest that osteopontin 
overexpression in lung tumors might be an indicator of poor 
prognosis. 

The association of osteopontin with breast tumor progres­
sion was studied by Tuck and coworkers (177) using samples 
from a patient who had bilateral mammary carcinomas of 
similar histology that later developed metastatic recurrence. 
The tumor in the right breast had spread to the lymph nodes, 
whereas the left-sided tumor had not. The patient later 
developed right-sided local recurrence followed by wide­
spread metastatic disease. The findings from this case suggest 
that osteopontin. both in tumor cells and in plasma, may be a 
marker for tumor aggressiveness in breast cancer, and 
elevated levels in a primary tumor may predict for future 
development of metastasis. To confirm these results, the same 
group studied the expression of osteopontin mRNA and 
protein in the tumors of 154 women with lymph node­
negative breast cancer (166). It was found that immunohisto­
chemical staining for osteopontin protein was increased in the 
infiltrating macrophages and lymphocytes of 70% of the 
tumors, a proportion too high to be discriminatory in 
predicting patient survival. However, osteopontin staining 
localized specifically to the tumor cells was shown in 26% of 
the tumors. Osteopontin mRNA was detected in tumor cells 
and in inflammatory cells, indicating that both cell types 
could be a source for osteopontin detected within tumors. 
This study supports the idea that osteopontin levels within 
tumor cells may be a useful predictor of patient outcome in 
breast cancer, and also that osteopontin may playa functional 
role in tumor progression and aggressiveness. A correlation 
between osteopontin expression and an increased invasive­
ness or metastatic potential has also been reported in other 
human tumors (168, 170). 

Osteopontin expression was detected in prostate cancer, 
being expressed by the tumor cells themselves (169, 178). 
Nevertheless, there is some controversy over whether osteo­
pontin expression was associated with malignancy of the 
prostate carcinoma (169) because in one study, evidence was 
also found for the overexpression of osteopontin in benign 
glandular hyperplasia of the prostate (178). Likewise, in 
ovarian cancer, the role of osteopontin in malignancy is 
unclear, and although some studies point to a positive 
correlation of osteopontin with ovarian cancer progression 
(26), others show contradictory conclusions depending on the 
tumor-malignant potential (179). Tiniakos and coworkers 
found that osteopontin expression was higher in tumors of 
low malignant potential as compared with benign ovarian 
tissue; however, invasive carcinomas showed generally lower 
osteopontin levels (179). Liapis and coworkers (180) discussed 
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a possible explanation, as they found that ovarian tumors of 
low malignant potential underexpress the Q'vr"3 integrin, to 
which osteopontin can bind, in comparison with invasive 
ovarian carcinomas. Therefore, the absence of Q'v~3 integrin 
expression in tumors of low malignant potential may account 
for the lack of responsiveness to the malignancy-promoting 
effects of osteopontin, even in the presence of higher levels of 
osteopontin. On the other hand, as the primary mechanism of 
the spreading of ovarian carcinoma is different from other 
cancers, it is possible that osteopontin plays different roles in 
cancers that spread by different routes. 

The Meaning of Osteopontin in the Blood of Patients with 
Cancer. Recently, several studies have pointed to the potential 
of osteopontin to provide clinical information useful in the 
management of patients with breast and perhaps other 
cancers. Osteopontin serum levels were found to be increased 
4- to 10-fold in a variety of human disseminated carcinomas, 
including breast, lung, and prostate (28, 181); and these higher 
levels were correlated with higher tumor grade. 

An antigen-capture ELISA, using a combination of mouse 
monoclonal and rabbit polyclonal antibodies, was developed 
in order to assess osteopontin blood levels (182, 183). This 
methodology permits quantitative, rapid, and reproducible 
measurement of osteopontin levels in blood plasma and other 
fluids. Studies with women volunteers showed that osteopon­
tin levels did not differ between premenopausal and post­
menopausal women (182, 183). Moreover, it was found that 
although osteopontin can be hormonally regulated in some 
tissues (58, 184), osteopontin blood levels do not reflect 
hormonal changes over the menstrual cycle. After establishing 
the basal levels of osteopontin in healthy women, Singhal and 
coworkers (184) used the same assay to test for an association 
between elevated blood osteopontin levels and patient 
outcome in breast cancer. Plasma osteopontin levels were 
measured in patients with metastatic breast cancer, control 
patients (women on follow-up after treatment for primary 
breast cancer, with no evidence of disease), and healthy 
patients. Elevated plasma osteopontin was found to be 
associated with a shorter survival, larger numbers of sites of 
metastatic involvement, and poorer outcome for women with 
metastatic breast cancer. 

Breast Cancer Biomarkers 

Regardless of the recent spectacular advances in molecular 
medicine, genomics, proteomics, and translational research, 
mortality rates for the most prevalent cancers have not been 
significantly reduced (14, 15, 17). Some of the best available 
options to combat cancer include primary prevention, earlier 
diagnosis, and improved therapeutic interventions. We are 
now witnessing the development of new drugs against cancer 
that are based on rational instead of empirical designs. 
Hopefully, some of these drugs will prove to be more effective 
at the clinic than older generations of medicines. In terms of 
primary prevention, we still don't have any robust strategies 
because although the major mechanisms underlying both 
cancer initiation and progression are well established, they are 
extremely complex. These processes are genetic, and epige­
netic processes leading to mutations in several genes and 
alterations in chromosomal structure are likely accompanied 
by self-perpetuating changes in signal transduction pathways. 

One of the best strategies to combat cancer is by early 
diagnosis and administration of effective treatment (185). 
Another approach includes close monitoring of the cancer 
patient after initial treatment (usually surgery) to detect early 
relapse, and then, additional prescribed therapy. A third 
valuable approach would be the stratification of patients into 
subgroups that respond better to different types of treatment 
(individualized therapy). Medical imaging and serum or tissue 

biomarkers are valuable tools for monitoring these patients in 
order to optimize clinical outcomes. 

A handful of cancer biomarkers, such as prostate-specific 
antigen, breast and ovarian cancer susceptibility genes (BRCAl 
and BRCA2) for example, are currently used routinely for 
population screening, disease diagnosis, prognosis, monitoring 
of therapy, and prediction of therapeutic response. Neverthe­
less, it is important to notice that most of the biomarkers used 
nowadays haven't got adequate sensitivity, specificity, and 
predictive value for population screening. Biomarkers are 
clinically recommended mainly for monitoring the effective­
ness of therapeutic interventions. Some biomarkers are also 
invaluable tools for the early diagnosis of cancer relapse, 
which may trigger additional treatments before the appearance 
of clinical symptoms. With current cancer biomarkers, much is 
left to be desired in terms of clinical applicability. We need 
new cancer biomarkers that will further enhance our ability to 
diagnose, prognose, and predict therapeutic response in many 
types of cancer. Because biomarkers can be analyzed relatively 
noninvasively and economically, it is worth investing in 
discovering more biomarkers in the future. 

Breast cancer statistics show that >1.2 million persons will 
be diagnosed with breast cancer worldwide this year, accord­
ing to the WHO. According to the American Cancer Society, an 
estimated 212,920 new cases of invasive breast cancer are 
expected to occur among women in the U.S. during 2006. As 
breast cancer is the most frequently diagnosed cancer in 
women, it is imperative that new alternative tumor markers be 
developed. Several breast cancer markers have been studied, 
although just a few proved to be effective (10, 11). For example, 
serum tumor marker levels, such as carcinoembryonic antigen 
and others, may reflect disease progression and recurrence, but 
have not proven to be sensitive for early disease detection 
(186). Recently, mammaglobin and maspin have been de­
scribed as potential markers of early breast cancer as well as to 
detect occult metastasis (187-189). Estrogen and progesterone 
receptors have been used as markers of prognosis and 
predictors of response to antiestrogen therapy, and are 
established as a standard of care for patients with breast 
cancer (190-192). In addition, cell cycle markers (e.g., Ki-67; ref. 
193), growth factors and receptors (e.g., HER2; ref. 9), tumor 
suppressor genes (e.g., p53; ref. 194), and cell adhesion 
molecules (e.g., E-cadherin and P-cadherin; refs. 195-198)have 
been studied as possible breast tumor markers. In this context, 
osteopontin also represents an. interesting alternative as a 
breast cancer marker. Using a cDNA microarray system, it was 
found that osteopontin was overexpressed in the tumors and 
serum of women with a recent diagnosis of ovarian cancer (25). 
Additionally, Kim et al. (26) showed that osteopontin concen­
trations in plasma were higher in patients with ovarian cancer 
as compared with healthy controls, or women with benign 
ovarian disease or other gynecologic cancers, thus an associ­
ation between levels of osteopontin and ovarian cancer suggest 
that future research assessing its clinical usefulness would be 
worthwhile (199). 

Recent studies have shown that osteopontin overexpression 
is also related with breast cancer evolution and metastasis (23); 
therefore, there is a potential utility of osteopontin in 
monitoring the disease status of patients with breast cancer. 

Conclusions 

A host of interesting advances in molecular medicine, 
genomics, and proteomics have led to the discovery of several 
potential tumor markers. This review focuses on the functional 
roles and clinical significance of osteopontin in cancer and 
metastasis, and its potential as a biomarker. Osteopontin 
seems to be more than just a marker of malignancy because 
this protein may play a functional role in malignant-gene 
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expression and/or cancer cell behavior. Multiple and complex 
mechanisms are involved in the role of osteopontin in cancer, 
including interactions with cell surface receptors, growth 
factor/receptor pathways, and proteases; therefore, much 
remains to be learned about these mechanisms and the 
functional contributions of osteopontin produced by different 
cell types in order to establish appropriate antiosteopontin 
therapeutic strategies. Several possible therapeutic approaches 
to interfere with the malignancy-enhancing effects of os teo­
pontin, thereby reducing tumor cell growth and metastasis, are 
being developed. As discussed, one of the best strategies to 
combat cancer is by early diagnosis and administration of 
effective treatment. In spite of the number of cancer bio­
markers currently used routinely, their usefulness still remains 
limited due to the lack of adequate sensitivity, specificity, and 
predictive value for population screening. Additional clinical 
trials are required to validate the use of biomarkers in order to 
establish their efficacy and enhance our ability to diagnose, 
prognose, and predict therapeutic responses. Some studies 
have established an association between elevated osteopontin 
levels in patients' tumors or blood with a poor diagnosis; 
hence, it could represent a tumor marker for use in the breast 
cancer arena waiting to be fully exploited. 
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