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Abstract  
The application of near infrared (NIR) spectroscopy for industrial process monitoring is achieving 

increasing importance over the last twenty years. In fact, the real time monitoring capacity of NIR 

spectroscopy is a very important feature for process monitoring, prediction and control as it allows 

a fast evaluation of the state of the process. However, the application of NIR spectroscopy in 

wastewater treatment processes is still to be explored. Although some applications of the technique 

for wastewater monitoring have been reported in the literature, there is still a need for more 

investigation related with applications, limitations and advantages of the technique when 

compared with other methods.  

An activated sludge reactor for aerobic treatment of a complex medium was monitored in situ with 

a NIR transflectance probe and traditional chemical parameters analysed off-line. NIR 

spectrophotometric data measured at the feed, reactor and settler were coupled to principal 

component analysis (PCA) to infer about the ability of this monitoring system to detect changes in 

the feed influent. The analysis of the score plots resulting from PCA permitted to identify the 

moments at which the perturbations occurred and to follow the consequent instability induced in 

the reactor till the day where the system is recuperated. The promising results obtained, suggest the 

interest in more detailed studies on the feasibility of NIR spectroscopy as an alternative method for 

monitoring and control of wastewater treatment processes.  

 

Keywords: activated sludge process, chemometrics, Near Infrared Spectroscopy (NIR) on-line 

monitoring, wastewater treatment  

 

 

INTRODUCTION 
Activated sludge systems are among the most widely used secondary biological process treatments. 

It consists of inoculating a high filamentous and floc-forming bacteria concentration responsible for 

the oxidation of the organic matter in an aerated tank. Subsequently, the flocculated biomass is 

separated by means of their settling ability from the treated effluent in a settling tank. Part of the 

settled biomass is then returned to the aerated tank in order to maintain a constant biomass 

concentration. As most biological processes, aerobic systems are sensitive to sudden changes in 

feedstock composition, which cause significant variability in the process conditions. So far, the 

control of such processes is most of the times achieved through manual sample extraction with off-

line analysis of a few key process parameters such as total solids (TS), volatile solids (VS), 

chemical oxygen demand (COD), etc. This kind of analysis is time consuming, expensive, and can 

only provide a temporary view of the system’s performance. Therefore, fast, simpler and 

inexpensive analysis techniques, that allow continuous and in situ monitoring, are needed. Near 

infrared spectroscopy (NIR) is being proposed as a valuable candidate (Benson, 1996). The low 

reflectivity and absorptivity in the NIR-range makes it possible to analyse samples that are strongly 

light scattering, such as opaque liquids and slurries (Hansson, 2003). The NIR region permits to 

record the response of the molecular bonds of certain chemical species to the IR radiation and 

consequently originate the characteristic spectrum of the sample being analysed.  

Among the advantages of NIR spectroscopy, when compared to standard methods, are the facts that 

it is a non-destructive and non-invasive, fast, low maintenance cost technique that do not use 
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reagents, do not produce residuals and allows the determination of several parameters 

simultaneously (Hanson et al., 2003; Pons et al., 2004; Uddin et al., 2006). The main disadvantages 

attributed to NIR technologies are the fact that although being considered a very flexible method, it 

is often affected by the operation conditions like temperature, agitation, aeration, dispersive light, 

etc. These interferences difficult the calibration process and reduce the quality of the results for 

quantitative assessments (Blanco et al., 2001). Moreover, it is not possible to obtain direct 

information from the technique by itself. In fact, due to the large amount of information inherent to 

each spectrum, the technique is always associated with chemometric tools that extract and report the 

most relevant information that can be taken from the spectral data. Chemometric tools allow 

correlating the spectral patterns with variations in the physical and chemical properties of the 

sample being analysed. This can be a problem when no skilled hand exists. However, specialized 

qualifications are mostly needed for models development. After, the analysis of the results given by 

those models is relatively simple and intuitive and no especial qualifications are needed to interpret 

the information.  

Numerous applications are being given to NIR spectroscopic methods for monitoring, prediction 

and control of industrial processes (Heikka et al., 1997; Geladi e Forsström, 2002; McGill et al., 

2002; Lopes et al., 2004a). The applications include a broad range of areas ranging from food to 

petrochemical industries. The advantages that have been achieved by application of NIR techniques 

to those processes let us admit that similar good results could be obtained if the NIR spectroscopy is 

applied to environmental monitoring and correlation purposes. So far, the applications of the NIR 

technology to environmental processes are scarce, mostly due to the great complexity of the large 

number of chemical species present and to the intrinsic composition changes in the matrix. To our 

knowledge only a few works were published reporting correlating methods between NIR spectral 

data and process parameters (Stephens and Walker, 2002; Hansson, 2003, Holm-Nielsen et al., 

2006) 

The aim of this work is to conjugate NIR spectral data with chemometric tools to develop 

multivariable supervision models to monitor the operation status of an activated sludge reactor 

without using further analytical information. 

 

METHODOLOGY 
Process. The lab-scale plant is based on a 14 L activated sludge tank and 25 L total volume 

followed by a 2.5 L settler. An effluent with and average inlet CODin = 650 mg/L and  

Qin = 4.5 L/d was fed to the reactor which was inoculated with biomass collected from another 

continuous aerobic reactor fed with a similar composition influent. In order to create system 

imbalances the influent charge was approximately doubled after five days of operation and then 

maintained around 950 mg/L in the following days. A schematic layout of the process plant is 

shown in Figure 1a. The efficient agitation of the system is guaranteed by the aeration process with 

an air diffuser that covers the bottom of the reactor. The bioreactor was equipped with a TFK 325 

thermometer (WTW, Weilheim, Germany), one SensoLyt pH electrode connected to a 296 R/RS 

monitor (WTW), a TriOxmatic 690 dissolved oxygen probe (WTW) and a NIR spectrometer probe 

(OceanOptics, model 512).  

The plant was monitored at three important points: at the influent, reactor and settler. Daily 

minimum volume samples were taken to measure VSS concentrations (reactor and settler) and COD 

concentrations (influent and settler). The analyses were done by weight differences and closed 

reflux colorimetric methods, respectively. Each sample was analysed in duplicate. In order to 

extensively monitor the evolution of the process inside the aerated reactor, the NIR probe was 

immersed in the reactor and NIR spectrum was acquired every 5 minutes. Simultaneously to each 

influent and settler sampling, a minimum of 5 spectra were obtained at the same monitored points.  

NIR. The Ocean Optics NIR 512 model, a portable dispersive NIR equipment working in the range 

from 900 to 1800nm and including a PDA cooling detector, was used. A transflectance probe 
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(Ocean Optics/T300RT) is connected through optical fibbers (OceanOptics/QP400-2-VISNIR) to a 

light source (Stellarnet/SL1) and to the NIR spectrometer which in turn is connected to a PC by a 

USB 2.0 cable. The beam coming from the light source passes trough the sample as illustrated in 

Figure 1b. The optical path is twice the value of the mechanical gap of the transflectance probe. It is 

adaptable and depends on the characteristics of the reactor content. In this work the optical path was 

equal to 1 cm. The returned beam is send to the NIR 512 detector connected to the PC allowing the 

immediate spectra visualization and acquisition. Spectra are acquired using a programme from 

OceanOptics (OOIBase32/Ocean Optics). This software allows the configuration of certain 

parameters like the integration time, average spectra, filter type (to avoid noise mostly when low 

integration times are used) and the temperature of the detector. All these parameters were 

previously optimized in order to improve the quality of the spectra acquired. When measuring for 

the first time, a reference spectrum is taken as in traditional spectroscopic methods. The reference 

spectrum is checked regularly and if changes occur, the above mentioned parameters may be 

adjusted in order to fix the deviations. 

 

 

 

 

 

 

 

 

 

(a)        (b) 

 

Figure 1. (a) Schematic layout of the plant: (1) effluent, (2) feeding pump, (3) aerated tank, (4) 

aeration system, (5) settler, (6) air pump; (7) outlet, (8) dissolved oxygen probe; (9) pH probe, (10) 

NIR spectrometer probe. (b) Schematic layout of the NIR transflectance probe 

 

Data analysis and calculation 
Principal Components Analysis (PCA) (Jackson, 1980) is one of the most widely used chemometric 

tools for data compression and information extraction. The general objective of the application of 

the method is to describe the data using far fewer factors than original variables with no significant 

loss of information.  

PCA finds combinations of variables, usually named factors that describe major trends in the data. 

For a given data matrix X with m rows and n columns, PCA decomposes the data matrix X as the 

sum of the outer product of vectors ti and pi plus a residual matrix E: 
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where k must be less than or equal to the smaller dimension of X, i.e. k ≤ min{m,n}. The ti vectors 

are known as scores and contain information on how the samples relate to each other. The pi 

vectors are known as loadings and contain information on how the variables relate to each other. In 

matricial terms Equation 1 can be written as 
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where n represents the number of objects (spectra), p represents the number of variables 

(wavelengths) and d the number of PC’s. T, L and E represent the scores, the loadings and the 

residuals matrix. 
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On a PCA analysis the (ti, pi) pairs are arranged in descending order according to the amount of 

variance described by the pair. The first pair captures the greatest amount of variation in the data 

that it is possible to capture with a linear factor and each subsequent pair captures the greatest 

possible amount of variance remaining after subtracting tipT
i from X. 

For the particular case of spectroscopic data, PCA identifies the major sources of correlated 

variance in the collection of spectra by defining a series of ranked factors and assigning each 

spectrum a score based on the relative contribution of each factor. The sources of variance, once 

identified, can aid in the visualization of the major data trends. In this way, the data collection can 

be reduced from a complicated multidimensional representation to a more easily visualized two or 

three-dimensional space (score plots) describing the main information present in the data (Lourenço 

et al., 2006). 

The MatLab version 6.5 Release 13 (The Mathworks, Inc) was utilized to data treatment, calibration 

and validation of the chemometric models. The chemometric functions included in the PLS MatLab 

Toolbox (PLS Toolbox, Eigenvector Research, Inc) were used to generate the PCA model.  

 

RESULTS AND DISCUSSION 
Data pre-treatment. The collected spectra were pre-treated by first applying the standard normal 

variate method (Barnes et al., 1989) by subtracting raw data from the mean of each spectrum and 

dividing by the standard deviation of the absorbencies of each sample. The second derivative was 

then applied to the data according to the method of Savitzky-Golay (Savitzky and Golay, 1964). 

This procedure reduces the spectral noise and the effect of light dispersion due to the presence of 

particles as mentioned by Karlsson et al. (1995). The authors compared different pre-treatment 

methods and concluded that the Savitzky-Golay method is the most efficient, at least when dealing 

with spectral data pre-treatment. Figure 2 exemplifies the differences in the raw (a) and pre-treated 

(b) spectra for the data collected at the aerobic reactor during a week of operation. Pre-treated data 

was used for PCA model development.  

(a)        (b) 

Figure 2. Raw (a) and pre-treated (b) spectra for the data collected at the aerobic reactor during a 

week of operation.  

 

Model development. The number of components used in a PCA model represents a measure of the 

data complexity and can be regarded as the number of independent underlying phenomena. There 

are several methods which can be used to establish the correct number of PC’s in a PCA model. In 

the present case this number was assessed using a bootstrap strategy (re-sampling method). This 

method re-samples the spectra and builds several PCAs. Then the standard deviation of the 

eigenvalues (or captured variance) is estimated. Figure 3 represents the percentage of variance 

captured by each PC as a function of the number of PCs. The confidence interval thus obtained is 

used to verify statistical significance of each PC. In these data only 2 components appear to be 

statistically significant at a significance level equal to 0.05. This conclusion was the same for the 

spectra captured in the feed, reactor and settler. 
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Figure 3. Percentage captured variance for each PC in the PCA model of mean centred spectra of 

samples collected from the feed (●), the reactor (■) and the settler (▲).  

 

The detection of anomalies by analysis of data as represented in Figure 2 can be a hard or even 

impossible task. In this case it is possible to distinguish groups of spectra, probably indicating 

similar operating conditions, and more isolated spectra most probably remarking disturbances on 

the system. However, on-line monitoring has to accent on more direct, practical and clear 

information in order to detect possible disturbances as soon and accurate as possible and to extract 

the maximum information that can in reality be ‘hidden’ from direct visual observation.  

 

A more explicit way to analyse and detected changes in the measured data is through a score plot 

analysis. A score plot is any pair of score vectors plotted against each other, in which each sample 

spectrum appears as a data point and closely interrelated samples appear clustered together. The 

score plot of PC1 vs PC2 from the PCA model with two components generated from the pre-treated 

sample spectra for each of the monitored zones is shown in Figure 4.  

The figures present the evolution of the spectra measured for a week of operation in the feed (a), in 

the reactor (b) and in the settler (c). All the samples taken on a same day of operation are 

represented by the same symbol in the three figures. At the influent it is possible to perfectly 

distinguish three clusters. The first one identifies the feed samples before the increase of the COD 

(circles in Fig. 4a). After the charge increment, a second cluster appears including the samples 

corresponding to the higher COD fed to the system (squares in Fig. 4a). Finally, the third cluster 

corresponds to the samples with an average COD equal to 950 mg/L corresponding to the days after 

the increment of the influent charge. According to the COD values, samples represented by 

triangles in the figure should also be located inside this third cluster instead of being closer to the 

samples with higher COD. It is believed that the reason for this behaviour has to do with the fact the 

on day 19, the feed with a CODin = 1200 mg/L was contaminated with microorganisms which 

promoted the degradation of the organic matter decreasing the CODin that was monitored on day 20 

(corresponding to the triangles in the figure). The samples located in the third cluster on the score 

plot diagram correspond to feed samples prepared on the corresponding monitoring day.  On the 

reactor (Figure 4b), it is also possible to distinguish three clusters however, the ‘frontiers’ are not so 

clear in this case. Here, the large increase in CODin is again easy to identify (1
st
 arrow) but on the 

second cluster appears a third group of data that was not present on the influent analysis mentioned 

before. This state evolves to an intermediate state that conduces to a third data cluster where the 

samples correspondents to the last days of operation are located, when the new stabilization point of 

the system appears. Following the arrows on the figure it is possible to identify the different states 

of operation inside the reactor but it is not possible to precisely identify the moments when the 

perturbations occur. This is easily understood having in mind the non-linear and slowly response 

characteristics of a biological process like the one being studied. Finally, Figure 4c, refers to the 

monitoring process of the settler. Here, two major periods can be identified: one including the 
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samples located inside the circle and the other including the samples that evolve along the arrow. 

The samples in the circle include data from day 19
 
(when the perturbation occurred) and day 20. At 

this point the settler was not yet affected by the increase in the influent charge. However, after day 

21 the samples are located in a second cluster, meaning that a change was detected in the settler 

conditions. This observation can be easily understood knowing that the hydraulic residence time of 

the reactor was around 2 days. 

 

(a) (b) (c) 

 
Figure 4. Score-plot of the first two principal components from the PCA model of the NIR spectra 

from the feed (a), reactor (b) and settler (c) sample sets. The symbols between brackets on figure b 

help to identify the days which are represented in each cluster.  

 

During the days following the increase in the influent charge, the probe was immersed in the reactor 

for a continuous in loco monitoring in order to follow the effect of the perturbation on the process. 

As shown in Figure 5, the scores evolve along the plot originating clusters clearly indicating that 

changes are occurring in the reactor. They reflect changes due to variations in the organic 

compounds concentrations as well as due to the presence of particles (concentration, size, etc). In 

fact, NIR spectra reflect both the chemistry and physics of the influent stream. NIR absorption 

bands are originated by C-H, N-H and O-H bounds. However, because measurements are being 

made in transmitance mode and samples are slurries there is also the effect of light scattering that is 

originated by suspended particles. An increase in the particle number (or particle size) increases the 

internal diffuse reflectance phenomena which in practice increases the absorbance. As can be seen 

in Figure 6f, the concentration of the biomass in the reactor is increasing also promoting in some 

way the evolution of data along the score plot diagram.  

  

 

(a)          (b) 

Figure 5. Score plots obtained after a continuous monitoring period with the probe immersed in the 

reactor for days 20 (a) and 21 (b), after the increase in the influent charge. 

 

 

(▲,■,♦) 
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An interesting way to monitor the state of the process along the different days of operation is by 

representing on the same score plot the data for the three monitoring points of the process. Figure 6 

presents the sequence of the score plots obtained for different days of operation following the 

moment where the CODin was largely increased.  

 

(a) (b)   (c) 
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Figure 6. Evolution of the state of an aerobic biological reactor monitored through the analysis of 

score plots including the three monitored points of the reactor: Feed (●), Reactor (■) and Settler 

(▲). Figure (f) represents the evolution of the COD in the feed and the VSS in the reactor.   

 

From figure a to b it is possible to detect a first change on the reactor corresponding to the moment 

where the influent charge changed from 600 to 1200 mg/L. One day after the perturbation, the 

reactor is still under unstable operating conditions or at least at conditions that deviate from the 

starting conditions. After five days of operation, the system is recovered and it is possible to assist 

again to the differentiation between the three monitored points of the process. It is interesting to 

notice that data from the influent or the settler moved along the score plot indicating that the new 

conditions are not equal to the starting conditions, i.e., the system evolved to a different equilibrium 

state.  

 

CONCLUSIONS 
The preliminary results presented in this work showed that NIR spectra, collected along a pilot 

installation of an aerobic biological wastewater treatment process, contain information that can be 

extracted and used for qualitative process monitoring. The descriptive capacity of PCA is evident in 

the score plot of a PCA model using 2 PCs applied to the NIR spectra of samples collected at the 

feed, the reactor and the settler of the pilot installation. It was possible to identify the moment when 

an induced perturbation occurred and to follow the evolution of the process until a new equilibrium 

state was reached. These results support the use of on-line monitoring methods in quality 

assessment of biological wastewater treatment processes monitoring and control. From these 

preliminary studies it can thus be concluded that NIR spectroscopy associated with simple PCA can 

be a valuable tool for wastewater quality monitoring. 

 

 

Day 19 and COD = 608 mg/L Day 19 and COD = 1200 mg/L Day 20 and COD = 950 mg/L 

Day 21 and COD = 900 mg/L Day 24 and COD = 892 mg/L 
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