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Abstract. In this work, the main goal is to develop and evaluate a num-
ber of optimization algorithms in the task of improving Quality of Service
levels in TCP/IP based networks, by configuring the routing weights of
link-state protocols such as OSPF. Since this is a complex problem, some
meta-heuristics from the Evolutionary Computation arena were consid-
ered, working over a mathematical model that allows for flexible cost
functions, taking into account several measures of the network behavior
such as network congestion and end-to-end delays. A number of exper-
iments were performed, resorting to a large set of network topologies,
where Evolutionary Algorithms (EAs), Differential Evolution and some
common heuristic methods including local search were compared. EAs
make the most promising alternative leading to solutions with an effec-
tive network performance even under unfavorable scenarios.

Keywords:Traffic Engineering, Quality of Service Routing, Evolutionary
Algorithms, Differential Evolution, OSPF.

1 Introduction

The relevance of implementing Quality of Service (QoS) support mechanisms in
IP-based networks has been fostered in the last few years by the integration of a
number of new applications. Several distinct QoS aware architectures and traffic
control mechanisms have been proposed in order to provide distinct service levels
to networked applications [13]. In this context, Internet Service Providers (ISPs)
have agreements with their clients and with other ISPs that have to be obeyed.
To face such requirements, there is an important set of configuration tasks that
have to be performed by network administrators in order to assure that correct
resource provisioning is achieved in the domain.

There is not an unique solution to create a QoS aware infrastructure and
any solution requires a number of components working together. However, in-
dependently of the particular solutions adopted that might be in place, there
are components which have a crucial importance. One of such components has
the ability to control the data path followed by packets traversing a given Wide
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Area Network (WAN). In a WAN, consisting of a single administrative domain,
there are alternative strategies for this purpose: Intra-domain routing protocols
or Multi-Protocol Label Switching (MPLS) [2].

This work will focus on intra-domain routing protocols, and more specifically
on the most commonly used today: Open Shortest Path First (OSPF) [12]. Here,
the administrator assigns weights to each link in the network, which are used
to compute the best path from each source to each destination node using the
Dijkstra algorithm [5]. The results are then used to compute the routing tables
at each node. Since in OSPF the weight setting process is the only way admin-
istrators can affect the network behavior, this choice is of crucial importance,
having a major impact on network performance. Nevertheless, in practice, sim-
ple rules are typically used, like setting the weights inversely proportional to the
link capacity, often leading to sub-optimal resource utilization.

An ideal way to improve the process of OSPF weight setting is to implement
traffic engineering, assuming that the administrator has access to the traffic
demands between each pair of nodes in the network. This was the approach
taken by Fortz et al [7] where this task was viewed as an NP-hard optimization
problem by defining a cost function that measures network congestion. Some
local search heuristics have been proposed, as well as the use of meta-heuristics
[6]. However, such approaches did not accommodate delay based constraints that
are crucial to implement QoS aware networking services.

In this paper, a number of optimization algorithms (Evolutionary Algorithms,
Differential Evolution, local search) are employed to calculate link-state rout-
ing weights, that optimize traffic congestion while simultaneously complying to
specific delay requirements. A mathematical model of the problem that accom-
modates both congestion and delay constraints is used to define a bi-objective
cost function and therefore to develop fitness functions for the algorithms, which
are then used to calculate the optimal OSPF weights for each network link.

An important and direct outcome of the research work presented in this paper
is the ability of developing network management tools which automatically pro-
vide network administrators with near-optimal routing configurations for QoS
constrained networking scenarios. In this context, devising efficient and accurate
routing optimization methods will be a major contribution for pursuing optimal
routing configurations in the Internet.

2 Problem Description

The general routing problem [1] represents routers and links by a set of nodes
(N) and arcs (A) in a directed graph G = (N, A). In this model, ca represents
the capacity of each link a ∈ A. A demand matrix D is available, where each
element dst represents the traffic demand between nodes s and t. For each arc
a, the variable f

(st)
a represents how much of the traffic demand between s and t

travels over arc a. The total load on each arc a (la) can be defined as:

la =
∑

(s,t)∈N×N

fst
a (1)
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while the link utilization rate ua is given by: ua = la
ca

. It is then possible to define
a congestion measure for each link (Φa = p(ua)) [7], using a penalty function p
that has small values near 0, but as the values approach the unity it becomes
more expensive and exponentially penalizes values above 1 (Figure 1).
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Fig. 1. Graphical representation of the penalty function p

In OSPF, all arcs have an integer weight. Every node uses these weights in the
Dijkstra algorithm [5] to calculate the shortest paths to all other nodes in the net-
work. All the traffic from a given source to a destination travels along the shortest
path. If there are two or more paths with the same length, traffic is evenly divided
among the arcs in these paths (load balancing) [10].

Let us assume a given solution, a weight assignment (w), and the correspond-
ing utilization rates on each arc (ua). In this case, the total routing cost is
expressed by Φ(w) =

∑
a∈A Φa(w) for the loads and corresponding penalties

(Φa(w)) calculated based on the given OSPF weights w. In this way, the OSPF
weight setting problem is equivalent to finding the optimal weight values for each
link (wopt), in order to minimize the function Φ(w). The congestion measure can
be normalized (Φ∗(w)) over distinct topology scenarios and its value is in the
range [1,5000]. It is important to note that when Φ∗ equals 1, all loads are below
1/3 of the link capacity; in the case when all arcs are exactly full, the value of Φ∗

is 10 2
3 . This value will be considered as a threshold that bounds the acceptable

working region of the network.
In order to include other QoS metrics, it was necessary to include delay con-

straints in this model. Delay requirements were modeled as a matrix DR, that
for each pair of nodes (s, t) ∈ N × N gives the delay target for traffic between
s and t (denoted by DRst). In a way similar to the model presented before, a
cost function was developed to evaluate the delay compliance for a solution, that
takes into account the average delay of the traffic between the two nodes (Delst),
a value calculated by considering all paths between s and t with minimum cost
and averaging the delays in each.

The delay compliance ratio for a given pair (s, t) ∈ N × N is, therefore, de-
fined as dcst = Delst

DRst
. A penalty for delay compliance can be calculated using
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function p. The γst function is defined according to γst = p(dcst). This allows
the definition of a delay cost function, given a set of OSPF weights (w):

γ(w) =
∑

(s,t)∈N×N

γst(w) (2)

where the γst(w) values represent the delay penalties for each end-to-end path,
given the routes determined by the OSPF weight set w. This function can be
normalized dividing the values by the sum of all minimum end-to-end delays to
reach the value of γ∗(w) (for each pair of nodes the minimum end-to-end delay
is calculated as the delay of the path with minimum possible overall delay).

It is now possible to define the optimization problem addressed in this work.
Indeed, given a network represented by a graph G, a demand matrix D and a
delay requirements matrix DR, the aim is to find the set of OSPF weights w
that simultaneously minimizes the functions Φ∗(w) and γ∗(w). When a single
objective is considered the cost of a solution w is calculated using functions
Φ∗(w) for congestion and γ∗(w) for delays. For multi-objective optimization a
quite simple scheme was devised, where the cost of the solution is given by:
f(w) = αΦ∗(w) + (1 − α)γ∗(w). This scheme, although simple, can be effective
since both cost functions are normalized in the same range.

3 Algorithms for OSPF Weight Setting

3.1 Evolutionary Algorithms

In this work, Evolutionary Algorithms (EAs) [9] are proposed to address the
problems defined in the previous section, both by considering the single or the
multi-objective formulation. In the proposed EA, each individual encodes a so-
lution as a vector of integer values, where each value (gene) corresponds to the
weight of an arc in the network (the values range from 1 to wmax). Therefore,
the size of the individual equals the number of arcs in the graph (links in the
network). The individuals in the initial population are randomly generated, with
the arc weights taken from a uniform distribution in the allowed range.

In order to create new solutions, several reproduction operators were used,
more specifically two mutation and one crossover operator:

– Random Mutation, replaces a given gene by a randomly generated value,
within the allowed range;

– Incremental/decremental Mutation, replaces a given gene by the next or by
the previous value (with equal probabilities) within the allowed range;

– Uniform crossover, a standard crossover operator [9].

In each generation, every operator is used to create new solutions with equal
probabilities. The selection procedure is done by converting the fitness value into
a linear ranking in the population, and then applying a roulette wheel scheme.
In each generation, 50% of the individuals are kept from the previous generation,
and 50% are bred by the application of the genetic operators. In the experiments
a population size of 100 individuals was considered.
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3.2 Differential Evolution

The DE method differs from the previous EA essentially in the reproduction op-
erators. DE generates trial individuals by calculating vector differences between
other randomly selected members of the population. In this work, a variant of the
DE algorithm called DE/rand/1 was considered that uses a binomial crossover
[11]. In this case, the following scheme is followed for each individual i:

1. Randomly select 3 individuals r1, r2, r3 distinct from i;
2. Generate a trial vector based on: t = r1 + F · (r2 − r3)
3. Incorporate coordinates of this vector with probability CR;
4. Evaluate the candidate and use it in the new generation if it is at least as

good as the current individual.

Since OSPF weights are integer, it is necessary to round the values used
in the DE before the evaluation. It is important to notice that in the DE all
individuals in the population go throught the previous reproduction step. In the
experiments, the population size was 20, F was set to 0.5 and CR to 0.6.

3.3 Local Search

A local search (LS) scheme was devised to improve the quality of a solution and
works as follows: taking a set of weights wi, a link is randomly selected to start
the process. Firstly, it tries to increase the value of this weight by 1, if this implies
that the solution is better. This process is repeated while the solution improves.
If the first increase operation did not lead to a better solution, a decrease is tried
and repeated while the solution improves.

The process is repeated for the next position, until all positions have been
tested. The overall process is then repeated while the solution improves. Based
on this LS operator, a multi-start LS (MS-LS) algorithm was devised: it starts
with a random solution and applies the LS operator; this process is repeated
and the best solution found is kept. The process is terminated when a maximum
number of solutions has been evaluated.

3.4 Heuristic Methods

A number of heuristic methods were implemented [7] in order to assess the
order of magnitude of the improvements obtained by the proposed methods
when compared with the traditional weight setting heuristics, namely:

– InvCap - sets each link weight to a value inversely proportional to its
capacity;

– L2 - set each link weight to a value proportional to the its Euclidean distance;
– Random - a number of randomly generated solutions are analyzed and the

best is selected.
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4 Experiments and Results

In order to evaluate the proposed algorithms, a number of experiments was
conducted. The experimental platform used in this work is presented in Figure 2.
All the algorithms and the OSPF routing simulator were implemented using
the Java language. The first step was the generation of a set of 12 networks
by using the Brite topology generator [8], varying the number of nodes (N =
30, 50, 80, 100) and the average degree of each node (m = 2, 3, 4). This resulted
in networks ranging from 57 to 390 links (graph edges). The link bandwidth was
generated by an uniform distribution between 1 and 10 Gbits/s. The network
was generated using the Barabasi-Albert model, using a heavy-tail distribution
and an incremental grow type (parameters HS and LS were set to 1000 and
100, respectively). In all experiments only propagation delays were considered.

OSPF Scenario #n

OSPF Routing Simulator

Computing
Cluster

Generator
Brite Topology

Delay and Demand
Matrices

Heuristics

 Multiobjective Optimization
OSPF Weight Setting and

−InvCap
−Random
−L2

EA, DE, MS−LS

Fig. 2. Experimental platform for OSPF performance evaluation

Next, the demand and delay constraints matrices (D and DR) were generated.
For each of the networks a set of three distinct D and DR matrices were created.
A parameter (Dp) was considered, giving the expected mean of congestion in
each link (ua) (values for Dp in the experiments were 0.1, 0.2 and 0.3). For
DR matrices, the strategy was to calculate the average of the minimum possible
delays, over all pairs of nodes. A parameter (DRp) was considered, representing
a multiplier applied to the previous value (values for DRp in the experiments
were 3, 4 and 5). Overall, a set of 12× 3× 3 = 108 instances of the optimization
problem were considered.

The termination criteria of the optimization algorithms (EAs, DE and LS) was
the maximum number of solutions evaluated that ranged from 50000 to 300000,
increasing linearly with the number of links in the problem. The running times
varied from a few minutes to a few hours, in the larger instances. In all cases,
wmax was set to 20. For all the stochastic algorithms, 10 runs were executed in
each case.

The results are grouped into two sets according to the cost function used.
The first considers a single objective cost function, for the optimization of net-
work congestion. The latter considers the case of a multi-objective cost function,
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dealing with both congestion and delay optimization. In all figures presented in
this section, the data was plotted in a logarithmic scale, given the exponential
nature of the penalty function adopted.

4.1 Congestion

Since the number of performed experiments is quite high, it was decided to show
only some aggregate results that can be used to draw conclusions. Table 1 shows
the results for all the available networks, averaged by the demand levels (Dp),
including in the last line the overall mean value for all problem instances. It is
clear that the results get worse with the increase of Dp, as would be expected.
Figure 3 plots the same results in a graphical way, showing in the the white
area the acceptable working region, whereas an increasing level of gray is used
to identify working regions with increasing levels of service degradation.

The comparison between the methods shows a superiority of the EA. In fact,
the EA achieves solutions which manage a very reasonable behavior in all scenar-
ios (worse case is 1.49). The heuristics manage very poorly, and even InvCap, an
heuristic quite used in practice, gets poor results when Dp is 0.2 or 0.3, which
means that the optimization with the EAs assures good network behavior in
scenarios where demands are at least 200% larger than the ones where InvCap
would assure similar levels of congestion. The results of DE and MS-LS are

Table 1. Results for the optimization of congestion (Φ∗) - averaged by demand levels

Dp Random EA DE MS-LS L2 InvCap
0.1 75.75 1.02 1.02 1.12 215.94 1.50
0.2 498.74 1.18 1.41 1.50 771.87 57.70
0.3 892.87 1.73 3.64 6.08 1288.56 326.33
Overall 489.12 1.31 2.02 2.90 758.79 128.51
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Fig. 3. Graphical representation of the results obtained by the different methods in
congestion optimization (averaged by Dp)
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acceptable, but nevertheless significantly worse than the ones obtained by the
EA, and the gap increases with larger values of Dp.

4.2 Multi-objective Optimization

In this section, the results for the multi-objective optimization are discussed.
The results are presented in terms of the values for the two objective functions
(Φ∗ and γ∗), since the value of f for these solutions can be easily obtained and
are not relevant to the analysis. Given the space constraints only the value of
0.5 will be considered for parameter α, thus considering each aim to be of equal
importance. Table 2 shows the results averaged by the demand level (Dp). From
the table it is clear that the EA outperforms all other algorithms, followed by the
DE and MS-LS. The heuristics behave quite badly, when both aims are taken
into account. A similar picture is found looking at Table 3, where the results are
averaged by the delay requirement parameter DRp.

Table 2. Results for the multi-objective optimization - averaged by Dp

D Random EA DE MS-LS L2 InvCap
Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗

0.1 88.00 106.79 1.17 1.92 1.18 2.04 1.73 4.07 215.94 1.76 1.50 260.30
0.2 481.50 136.68 1.47 2.32 1.65 2.92 3.38 8.30 771.87 1.76 57.70 260.30
0.3 949.85 148.96 2.41 3.23 4.58 5.64 15.31 15.95 1288.56 1.76 326.33 260.30
Overall 506.45 130.81 1.68 2.49 2.47 3.53 6.81 9.44 758.79 1.76 126.51 260.30

Table 3. Results for the multi-objective optimization - averaged by DRp

DR Random EA DE MS-LS L2 InvCap
Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗ Φ∗ γ∗

3 535.28 283.16 1.95 4.22 2.78 6.42 9.65 21.29 758.79 2.94 128.51 577.94
4 505.69 82.04 1.59 1.78 2.44 2.36 6.12 4.65 758.79 1.25 128.51 158.85
5 478.37 27.23 1.51 1.48 2.38 1.82 4.65 2.39 758.79 1.10 128.51 44.13

A different view is offered by Figures 4 and 5 where the results are plotted
with the two objectives in each axis. The former shows the results averaged by
the demand levels and the latter by the delay requirements parameter. In these
graphs, the good overall network behavior of the solutions provided by the EA is
clearly visible, both in absolute terms, regarding the network behavior in terms
of congestion and delays, and when compared to all other alternative methods.
In fact, it is easy to see that no single heuristic is capable of acceptable results
in both aims simultaneously. L2 behaves well in the delay minimization but fails
completely in congestion; InvCap is better on congestion (although in a very
limited range) but fails completely in the delays. DE gets results that are in an
acceptable range, but are always significantly worse than those of the EAs, and
MS-LS does not manage good results when the problem instances get harder.
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Fig. 4. Graphical representation of the results obtained by the different methods in
the multi-objective optimization (averaged by Dp)
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5 Conclusions and Further Work

The optimization of OSPF weights brings important tools for traffic engineering,
without demanding modifications on the basic network management model. This
work presented Evolutionary Computation approaches for multi-objective rout-
ing optimization in the Internet. Resorting to a set of network configurations,
each constrained by bandwidth and delay requirements, it was shown that the
proposed EAs were able to provide OSPF weights that can lead to good network
behavior. The performance of EAs was compared with other algorithms (DE,
local search, heuristics) clearly showing its superiority. The proposed optimiza-
tion framework, although requiring some computational effort, can be achieved
in useful time and implemented in a real-world scenario.
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Although a simple weighting method was used to face the multi-objective
nature of the problem, the results were of high quality. This is probably due to
the effort of normalizing both cost functions. Nevertheless, the consideration of
specific EAs to handle this class of problems [4] will be taken into account in
future work. Memetic Algorithms, that consider local optimization procedures
embedded in the EA, have also been attempted in the congestion optimization
problem [3]. Their application in this bi-objective scenario is also a research
direction that has a strong potential.

References

1. R. K. Ahuja, T. L. Magnati, and J. B. Orlin. Network Flows. Prentice Hall, 1993.
2. D. Awduche and B. Jabbari. Internet traffic engineering using multi-protocol label

switching (MPLS). Computer Networks, 40:111–129, 2002.
3. L. Buriol, M. Resende, C. Ribeiro, and M. Thorup. A hybrid genetic algorithm for

the weight setting problem in OSPF/IS-IS routing. Networks, 2003.
4. C.A. Coello Coello. Recent Trends in Evolutionary Multiobjective Optimization,

pages 7–32. Springer-Verlag, London, 2005.
5. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(269-271), 1959.
6. M. Ericsson, M. Resende, and P. Pardalos. A Genetic Algorithm for the Weight

Setting Problem in OSPF Routing. J. Combinatorial Optimiz., 6:299–333, 2002.
7. B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF

Weights. In Proceedings of IEEE INFOCOM, pages 519–528, 2000.
8. A. Medina, A. Lakhina, I. Matta, and J. Byers. BRITE: Universal Topology Gen-

eration from a User’s Perspective. Technical Report 2001-003, 2001.
9. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.

Springer-Verlag, USA, third edition, 1996.
10. J. Moy. OSPF, Anatomy of an Internet Routing Protocol. Addison Wesley, 1998.
11. R. Storn and K. Price. Differential Evolution - a Simple and Efficient Heuristic

for Global Optimization over Continuous Spaces. Journal of Global Optimization,
11:341–359, 1997.

12. T.M. ThomasII. OSPF Network Design Solutions. Cisco Press, 1998.
13. Zheng Wang. Internet QoS: Architectures and Mechanisms for Quality of Service.

Morgan Kaufmann Publishers, 2001.


	Introduction
	Problem Description
	Algorithms for OSPF Weight Setting
	Evolutionary Algorithms
	Differential Evolution
	Local Search
	Heuristic Methods

	Experiments and Results
	Congestion
	Multi-objective Optimization

	Conclusions and Further Work

