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Abstract. This paper proposes a novel traffic engineering framework able to
automatically provide near-optimal OSPF routing configurations for QoS con-
strained scenarios. Within this purpose, this work defines a mathematical model
able to measure the QoS compliance in a class-based networking domain. Based
on such model, the NP-hard optimization problem of OSPF weight setting is
faced resorting to Evolutionary Algorithms. The presented results show that, in-
dependently of other QoS aware mechanisms that might be in place, the proposed
framework is able to improve the QoS level of a given domain only taking into
account the direct influence of the routing component of the network. The devised
optimization tool is able to optimize OSPF weight configurations in scenarios ei-
ther considering a single level of link weights or using multiple levels of weights
(one for each class) in multi-topology routing scenarios.

1 Introduction

The integration of new types of applications in TCP/IP based networks has fostered
the development of several solutions to provide QoS (Quality of Service) [1] support
to end-users and corresponding applications in place. In this perspective, ISPs (Internet
Service Providers) have Service Level Agreements (SLAs) [2] with end-users and with
other peered ISPs that should be obeyed. However, there is not an unique solution to
create a QoS aware networking domain and, in general, any solution requires a number
of components working together. Independently of specific QoS solutions adopted in a
given network domain, there are a set of components which, by their nature, have a ma-
jor influence in the QoS performance of the network. One example of such components
is the routing mechanism that is used in a given domain.

The research efforts presented in this paper focus on the most commonly used intra-
domain routing protocol, the Open Shortest Path First (OSPF) [3,4], trying to devise
a traffic engineering framework able to provide network managers with near-optimal
OSPF link weight configurations. To accomplish this goals, this work will follow the
traffic engineering perspective of previous works (e.g. [5]) assuming the existence of a
demand matrix associated with the network (there are several alternatives to estimate
such matrices, see [6] [7]). In practice, this matrix represents an estimation of the traf-
fic demands between each source/destination router pair of the network domain (e.g. an
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ingress/egress node pair). Based on such information, the aim is to devise optimal OSPF
link weight configurations which optimize a given objective function, a process which
is usually viewed as a NP-hard optimization problem. As result, the main objective of
the current proposal is to devise a traffic engineering framework able to automatically
provide near-optimal OSPF configurations to network administrators. This main objec-
tive is supported by several innovative aspects of the proposed framework which are
effective contributions when compared with previous work in the area (e.g. [5]): (i)
extend previous models to tackle multiconstrained QoS optimization; (ii) develop an
optimization framework in order to support multiservice networks based on the Class
of Service paradigm; (iii) allow for versatile multiconstrained optimization based on an
unique level of OSPF weights or resorting to scenarios using multiple levels of OSPF
weights (as proposed by IETF in [8]) and (iv) achieve near-optimal OSPF configuration
resorting to the field of Evolutionary Computation to improve the network performance.

In this context, the framework proposed in this paper should be viewed as a network
management tool which, while focusing only at the OSPF routing level, aims at opti-
mizing the overall QoS performance of a given domain. This does not hinder that other
complementary QoS aware mechanisms might be used by network administrators, ei-
ther to improve the network performance or to provide more strict QoS guarantees.
However, the key point is that, based on our experiments, class-based networks using
the proposed optimization framework are able to clearly outperform the QoS perfor-
mance obtained by networks using common OSPF weight setting heuristics.

2 Problem Description

In the example of Figure 1 several network nodes are interconnected by links with dis-
tinct capacities and propagation delays representing a given ISP networking domain.
Lets assume that the ISP resorts to specific techniques in order to have an estimate of
the clients overall demands. In a network traffic engineering perspective such informa-
tion is usually modeled and viewed as a demand matrix which summarizes for each
source/destination router pair a given amount of resources required to be supported by
the ISP. To obtain such information the ISP may resort to techniques having distinct
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levels of accuracy and requiring different computational efforts [6]. Based on such in-
formation, and taking into account that the routing process might have an high influence
in the QoS performance of a given domain, it is possible to optimize the OSPF weight
setting process in order to obtain more efficient configurations of the network. To illus-
trate such concepts lets assume the ISP network domain example depicted in Figure 1.
Lets also assume that after studying the network behaviour, the ISP can have an estimate
of the client demands and is able to map such values (demands) to matrices summariz-
ing for each source/destination router pair (e.g. an ingress/egress router pair) a given
amount of bandwidth and/or end-to-end delay required to be support by the ISP. Based
on that, the optimization methods of OSPF weight setting will try to find configurations
aiming at maximizing the overall QoS performance of the network.

Figure 1 shows a very simple scenario involving an individual demand between two
network nodes (X and Y). Assuming that this demand is expressed as a given bandwidth
requirement (e.g. 90Mbps), then the optimization methods would try to minimize the
network congestion and, consequently, assign OSPF weights to force a data path induc-
ing the lowest level of losses in the traffic (PATH 1 in the case of the scenario presented
in Figure 1). In opposition, if the demand is mainly expressed in terms of a delay target1,
then the ISP, in the absence of other traffic, should be able to compute OSPF weights
that will result in a data path with the minimum propagation delays between X and
Y (see PATH 2 in Figure 1). Moreover, in Figure 1 if a given demand has simultane-
ously bandwidth and delay constraints, it is expected that the OSPF weights set by the
optimization algorithms are chosen in order to find a data path representing a tradeoff
between the bandwidth and delay metrics (i.e. in a multiobjective perspective). Also
note that if the network domain represented in Figure 1 is also viewed as a multiser-
vice domain, e.g. supported by a class-based IP infrastructure, then each router pair of
a given ISP might have also specific per-class bandwidth and delay demands. It is easy
now to understand the NP-hard nature of the problem and how difficult it is to correctly
set OSPF weights using simple heuristics. The proposed optimization framework as-
sumes that the OSPF routing scheme is able to operate with one level of OSPF weights
(i.e. one weight per link), which is the currently most common scenario, but is also able
to provide near-optimal solutions when multiple levels of OSPF weights are used in the
network. By this way, an additional feature of the proposed optimization model is the
ability to assess the QoS improvements obtained when the network domain migrates to
a multi-topology routing perspective, allowing for class-based QoS routing.

3 Mathematical Model

The mathematical model used in this work represents routers and links by a set of nodes
(N) and arcs (A) in a directed graph G = (N, A) [9]. In this model, ca represents
the capacity of each link a ∈ A. A demand matrix Dc is available for each class c
(c ∈ C), where each element dc

st represents the demand of traffic from class c, between
nodes s and t. For each arc a, f c

st,a represents how much of the traffic demand from
class c between s and t travels over arc a. The total load on each arc a for class c

1 e.g. if a large part of the traffic crossing the domain through nodes X and Y is high delay
sensitive.
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(lca) can be defined as in Eq. (1) and the total load in arc a (la) is therefore given by:
la =

∑
c∈C lca. The link utilization rate ua is given by: ua = la

ca
. It is then possible to

define a congestion measure for each link (Φa = p(ua)), using a penalty function p that
has small values near 0, but as the values approach the unity it becomes more expensive
and exponentially penalizes values above 1 [5]. To obtain the penalty related to each
class, this value is weighted and Φc

a can be obtained as in Eq. (2).

lca =
∑

(s,t)∈N×N

f c
st,a (1) Φc

a = Φa
lca
la

(2) γc(w) =
∑

(s,t)∈N×N

γc
st(w) (3)

In OSPF, all arcs have an integer weight and every node uses these weights in the
Dijkstra algorithm [10] to calculate the shortest paths to all other nodes in the network.
All the traffic from a given source to a destination travels along the shortest path. If
there are two or more paths with the same length, traffic is evenly divided among the
arcs in these paths (load balancing) [11]. Let us assume a given solution, a weight
assignment (w), and the corresponding loads and utilization rates on each arc. In this
case, the total routing cost for each class is expressed by Φc(w) =

∑
a∈A Φc

a(w) for
the loads and corresponding penalties calculated based on the given OSPF weights w.
The congestion measures can be normalized (Φ∗

c ) over distinct topology scenarios and
its value is in the range [1,5000]. It is important to note that when Φ∗

c equals 1, all
loads are below 1/3 of the link capacity; in the case when all arcs are exactly full,
the value of Φ∗

c is 10 2
3 . This value will be considered as a threshold that bounds the

acceptable working region of the network. As explained, it is also useful to include
delay constraints in this model. Delay requirements were modeled as a matrix DRc

(one per each class c), that for each pair of nodes (s, t) ∈ N × N gives the delay
target for traffic of class c between s and t (denoted by DRc

st). In a way similar to the
model presented before, a cost function was developed to evaluate the delay compliance
for a solution, that takes into account the average delay of the class c traffic between
the two nodes (Delcst), a value calculated by considering all paths between s and t with
minimum cost and averaging the delays in each. The delay in each path is the sum of the
propagation delays in its arcs (Delcst,p) and queuing delays in the nodes along the path
(Delcst,q). Note that in some network scenarios the latter component might be neglected
(e.g. if the propagation delay component has an higher order of magnitude than queuing
delays). However, if required, the Delst,q component might be approximated, resorting
to queuing theory [12], taking into account the following parameters at each node: the
capacity of the corresponding output link (ca), the classes link utilization rates (lca) and
more specific technical information such as the type of scheduling mechanisms used in
the network nodes and corresponding parameter and queue size configurations.

Given this framework, the delay compliance ratio for a given pair (s, t) ∈ N × N

and class c is, therefore, defined as dcc
st = Delcst

DRc
st

. A penalty for delay compliance can

be calculated using function p. The γc
st function is defined according to γc

st = p(dcc
st).

This allows the definition of a delay cost function, given a set of OSPF weights (w),
where the γc

st(w) values represent the delay penalties for each end-to-end path, given
the routes determined by the OSPF weight set w (see Eq. (3)). This function can be nor-
malized dividing the values by the sum of all minimum end-to-end delays to reach the
value of γ∗

c (w) (for each pair of nodes the minimum end-to-end delay is calculated as
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the delay of the path with minimum possible overall delay). It is now possible to define
the optimization problem addressed in this work. Indeed, given a network represented
by a graph G, the demand matrices Dc and the delay requirements matrix’s DRc, the
aim is to find the set of OSPF weights w that simultaneously minimize the functions
Φ∗

c(w) and γ∗
c (w), for c ∈ C. This is a multi-objective optimization problem and a

quite simple scheme was devised to define an overall cost function, where the cost of
the solution is given by Eq. (4) where

∑
c∈C(αc + βc) = 1. This scheme, although

simple, can be effective since all cost functions are normalized in the same range. The
previous problem formulation considers a single OSPF weight set that is applied to all
the traffic. An alternative is to consider that each class has its own distinct weight set
(represented by wc), as in Eq. (5).

f(w) =
∑

c∈C

(αcΦ
∗
c(w) + βcγ

∗
c (w)) (4) f(w) =

∑

c∈C

(αcΦ
∗
c(wc) + βcγ

∗
c (wc)) (5)

4 Evolutionary Algorithms and Heuristics for OSPF Setting

In order to improve the quality of the OSPF configurations this work resorts to Evolu-
tionary Algorithms (EAs). In the proposed EA, each individual encodes a solution as a
vector of integer values, where each value (gene) corresponds to the weight of an arc
in the network (the values range from 1 to wmax). Therefore, the size of the vector
equals the number of arcs in the graph (links in the network). In the case of multiple
sets of weights (one per each class), the size of the solution is given by the number
of classes multiplied by the number of links. The sets of weights are, in this case, still
encoded in a single linear vector, that represents the concatenation of the individual sets
of weights. Therefore, the EA is similar in both situations varying only in the decoding
process. The individuals in the initial population are randomly generated, with the arc
weights taken from a uniform distribution in the allowed range. In order to create new
solutions, several reproduction operators were used, more specifically two mutation
and two crossover operators: Random Mutation, replaces a given gene by a new ran-
domly generated value, within the allowed range [1, wmax]; Incremental/decremental
Mutation, replaces a given gene by the next or by the previous value (with equal proba-
bilities) and constrained to respect the range of allowed values; Uniform crossover and
Two-point crossover, two standard crossover operators, applied in the traditional way
[13]. All operators have equal probabilities in generating new solutions. The selection
procedure is done by converting the fitness value into a linear ranking in the population,
and then applying a roulette wheel scheme. In each generation, 50% of the individu-
als are kept from the previous generation, and 50% are bred by the application of the
genetic operators.

In order to assess the order of magnitude of the improvements obtained by the pro-
posed framework a number of traditional weight setting heuristic methods was also im-
plemented [5], to provide a comparison2 with the results obtained by the EA, namely:

2 The results of the heuristics are only compared with the EAs results for scenarios with a single
level of weights. For multiple levels of weights only the EAs results will be plotted to assess
the improvement obtained in the network QoS.
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Unit, sets all arc weights to 1 (one); InvCap, sets arc weights to a value inversely pro-
portional to the capacity of the link; L2, sets arc weights to a value proportional to the
physical Euclidean distance (L2 norm) of the link.

5 Experimental Framework and Results

The experimental platform that was used in this work is presented in Figure 2. In order
to evaluate the effectiveness of the proposed EAs, a number of experiments was con-
ducted. For this purpose, a set of 12 networks was generated by using the Brite topol-
ogy generator [14], varying the number of nodes (N = 30, 50, 80, 100) and the average
degree of each node (m = 2, 3, 4). This resulted in 12 networks ranging from 57 to
390 links (graph edges). The link bandwidth (capacity) was generated by an uniform
distribution between 1 and 10 Gbits/s. The network was generated using the Barabasi-
Albert model, using a heavy-tail distribution and an incremental grow type (parameters
HS and LS were set to 1000 and 100, respectively). In the generated examples, the
propagation delays were assumed as the major component of the end-to-end delay of
the networks paths. Thus, the network queuing delays at each network node were not
considered (i.e. Delcst,q = 0).

OSPF Scenario #n

Computing Cluster

Heuristics

OSPF Weight Setting ModuleOSPF Routing Simulator

Brite Topology
Generator

Network Generator

EA

of Class #n
Delay and Demand

−L2

−InvCap

−Unit

Fig. 2. Experimental platform for OSPF performance evaluation

Next, for each network, the overall demand matrices (D) were generated. For each
of the 12 instances a set of three distinct instances of D were created. A parameter (Dp)
was considered which determined the expected mean of the congestion in each link
(ua) (values for Dp in the experiments were 0.1, 0.2 and 0.3). In the experiments a sce-
nario with two classes was considered. Class 1 was defined as a class with an average
of 75% of the overall traffic and class 2 with 25%. In each origin/destination pair, the
demand from D was split between the two classes. The proportion of traffic assigned to
class 1 (d1

st) was generated, for each case, from a uniform distribution within the range
P1(1±h), where P1 is the average proportion of class 1 and h is a parameter that defines
traffic heterogeneity between the different origin/destination nodes (h is set to 20% in
this work). In each case, the traffic demand of class 2 is the remaining from the original
traffic (d2

st = dst − d1
st). Using this method the matrices D1 and D2 were created for

each problem instance. For the DR matrices, the strategy was to calculate the average
of the minimum possible delays, over all pairs of nodes. A parameter (DRp) was con-
sidered, representing a multiplier applied to the previous value to get the matrices DRc
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(values for DRp in the experiments were 3, 4 and 53). This method was used to create
the DR2 matrices, since the class 1 was considered not to impose delay constraints4.

In the experiments the following weights were set to each optimization aim:
α1 = 0.5, β1 = 0, α2 = 0.25 and β2 = 0.25. In this way, both classes have a total
weight of 50%, and in the case of class 2 both aims are taken to be of equal importance.
Due to the fact that both class have a similar overall contribution for the optimization
aim (50%), it is expected that the optimization process using the EA will give similar
importance to the objectives of each class. Overall, a set of 12 × 3 × 3 = 108 instances
of the optimization problem were considered. The proposed EA, the heuristics and the
OSPF routing simulator were implemented by the authors using the Java programming
language. The EA was run for a number of generations ranging from 1000 to 6000, a
value that was incremented proportionally to the number of variables optimized by the
EA. The EA’s population size was kept in 100 and the wmax was set to 20. The running
times varied from a few minutes in the small networks, to a few hours in the larger
ones. So, in order to perform all the tests, a computing cluster with 46 dual Xeon nodes
was used. For all the optimization instances several results were collected, to allow to
assess the effectiveness of the EA and of the heuristics used for comparison. Since the
number of performed experiments is quite high, it was decided present aggregate results
to draw conclusions. In this way, in the next sections the results obtained in all of the
108 optimization instances are averaged by Dp and DRp (to understand the quality of
the obtained solutions for distinct difficulty levels of the optimization instances) and by
the number of edges considered in the experiments (to study the scalability issues of
the solutions). In all figures presented in the following sections the data was plotted in
a logarithmic scale, given the exponential nature of the penalty function adopted. In the
figures the white area represents the acceptable working region whereas a gray area is
used to identify regions with increasing levels of QoS degradation.

5.1 One Level of OSPF Weights

Figures 3 and 4 plot the QoS results obtained for class 1. As previously explained, this
class is only constrained by the congestion performance (function Φ∗

1). The comparison
between the methods in both figures shows an impressive superiority of the EA when
compared to the heuristic methods. In fact, the EA achieves solutions which manage a
very reasonable behavior in all scenarios (both for results averaged by Dp and by DRp),
while the other heuristics manage very poorly. Regarding the results averaged by Dp,
even InvCap, an heuristic quite used in practice, gets poor results when Dp is 0.2 or
0.3, which means that the optimization with the EAs assures good network behavior in
scenarios where demands are at least 200% larger than the ones where InvCap would
assure similar acceptable levels of congestion (i.e. results within the white area of the
figures). For the results averaged by DRp (Figure 4) the superiority of the EAs results
is clearly visible for all the scenarios considered. Figure 5, on the other hand, represents

3 Note that in this case lower values of DRp represent harder optimization problems.
4 In this specific experimental scenario, the class 1 was considered as only having bandwidth

constraints while class 2 imposes both delay and bandwidth constraints. A practical example
of this scenario might be obtained if one considers that class 1 is used to support elastic traffic
(e.g. generated by TCP sources) while class 2 traffic is used to support delay sensitive traffic.
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the congestion values obtained by class 1, but aggregated by the number of arcs (links).
It is clear that the results obtained by the EAs are quite scalable, since the quality levels
are not affected by the number of nodes or edges in the network graph.

To analyse the performance of class 2 a distinct graphical representation is used. As
explained before, class 2 was considered as a multiconstrained QoS class, both in a
congestion and in a delay perspective. In that way, the graphical representation of the
results plotted by Figures 6 and 7 (Dp and DRp averaged values, respectively) have
the values of the two penalty measures in each axis (x axis for congestion and y axis
for delay). In these graphs, the good overall network behavior of the solutions provided
by the EA is clearly visible, both in absolute terms, regarding class 2 QoS behavior in
terms of congestion and delays, and when compared to all other alternative methods.
In fact, it is easy to see that no single heuristic is capable of acceptable results in both
aims simultaneously. L2 behaves well in the delay minimization but fails completely in
congestion; InvCap class 2 congestion results are acceptable only for Dp = 0.1 but fail
completely in the delays. EAs, on the other hand, are capable of a good compromise
between both optimization targets. As observed, EA solutions are well within the white
area of the figures, which means that on average the congestion and delay demands
of class 2 are satisfied by the networking domain using the solutions provided by the
proposed framework using an unique level of OSPF weights.
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In

Fig. 6. Class 2 congestion vs delay results aver-
aged by Dp (1 level of weights)

Fig. 7. Class 2 congestion vs delay results aver-
aged by DRp (1 level of weights)

5.2 Two Levels of OSPF Weights

The results discussed in the previous section showed that EAs are able to obtain near-
optimal OSPF weight settings satisfying the QoS demands of the traffic classes. This
section will now focus in the task of using several levels of OSPF weights to improve
the network performance. Thus, the objective is to verify if the good results obtained
by the EAs in scenarios with one level of weights can even be improved if two levels of
weights are considered. For this purpose, in the optimization process of the overall cost
function, two distinct levels of OSPF weights are now considered. One of the levels is
used to compute the network paths for traffic belonging to class 1, while a distinct set
of weights is used to route class 2 traffic. Based on this assumption, novel EA solutions
were obtained for all instances of the optimization problem previously described (108
instances). The figures included in this section provide a comparison between the results
obtained assuming one level of OSPF weights and the ones obtained using two levels
of weights5.

The results presented in Figures 8 and 9 show the congestion cost values associ-
ated with class 1 (cost function Φ∗

1). In this case, the congestion cost values obtained
in all optimization instances are averaged by demand levels, Dp, and delay require-
ments, DRp ( see Figures 8 and 9, respectively). As observed, in both scenarios the
improvements of using two levels of weights are visible for all values of Dp and DRp.
As expected, higher improvements are obtained in scenarios assuming harder QoS re-
quirements, i.e. for Dp = 0.3 and DRp = 3. In these scenarios, the cost function Φ∗

1
achieves an improvement close to 21%. As expected, the results also show that as harder
the QoS requirements get in a given network domain, the higher are the improvements
expected to be obtained from the use of multiple levels of OSPF weights.

A different view of the congestion results of class 1 is presented in Figure 10. In
this case, the values are averaged by the number of edges of the optimization instances.
As before, the improvements obtained using two levels of weights are clear. In fact,
for all values of number of edges, the Φ∗

1 function cost values decrease in scenar-
ios assuming two levels of weights (the higher improvement is obtained for the sce-
nario with 234 edges where Φ∗

1 is reduced in a value close to 36%). As regards to the

5 In this case, due to the quality of the solutions obtained by the EAs, the figures only include the
acceptable working region, i.e. the white area of the figures presented in the previous section.
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performance of class 2, Figures 11 and 12 present the results of the improvements ob-
tained in the congestion (Φ∗

2) and delay (γ∗
2 ) cost functions averaged by the number

of edges used in the experimental scenarios. The improvements on each function are
visible, since in all scenarios there is a congestion and delay performance gain. As ex-
ample, there is a maximum congestion cost improvement close 30% (scenario with 84
edges) and a delay cost improvement with reaches a value of 60% (scenario with 234
edges).

As for the case of class 1 it is important to study the improvements observed in the
class 2 performance when harder optimization problems are considered. In this context,
the congestion and delay cost values of class 2 are also averaged according with the
Dp and DRp values. This information is provided by Figures 13 and 14 where the
performance of class 2 is analysed for distinct values of the Dp and DRp. As observed
in Figure 13, for similar values of Dp there is a congestion and delay performance gain
in class 2 when two levels of weights are used. The same reasoning is valid for the case
of Figure 14 showing the values of the congestion and delay cost functions averaged
by the DRp parameters. In fact, it can be observed in both graphics that as the number
of weight levels increases, the plots are shifted toward to the lower left corner of the
graphs, which confirms the achievement of solutions having simultaneously a better
delay and congestion performance.
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Fig. 11. Class 2 congestion results averaged by
edges (1 vs 2 levels of weights)
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6 Conclusions and Further Work

This work presented a novel traffic engineering optimization framework able to pro-
vide near-optimal OSPF weight configurations to network administrators. Resorting to
a large number of QoS constrained scenarios, it was shown that high quality network
configurations can be obtained using techniques inspired on the Evolutionary Computa-
tion field. The proposed framework is able to deal with single or multiple levels of OSPF
weights. The results showed that, independently of other QoS aware mechanisms that
might be in place, the proposed framework is able to improve the QoS level of a given
class-based domain only taking into account the direct influence of the routing compo-
nent of the network. In the future, the consideration of more specific EAs to handle this
class of multi-objective problems [15][16] will also be taken into account. In a similar
way, it is also possible to study the impact of link failures in the solutions devised by
the proposed framework. Another important future research topic is the study of the
sensibility of the achieved EA solutions to changes in the demand matrices. This spe-
cific research topic will allow for the use of this type of management tools in scenarios
where the demands matrices are obtained in a more finer-grain temporal perspective.
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