
Combining Formal Methods and Functional

Strategies Regarding the Reverse Engineering of

Interactive Applications

J. C. Silva1,2, José Creissac Campos1, and João Saraiva1

1 Departamento de Informática/CCTC, Universidade do Minho, Braga, Portugal
{jose.campos,jas}@di.uminho.pt

2 Grupo de Sistemas e Tecnologias de Informação, IPCA, Barcelos, Portugal
jcsilva@ipca.pt

Abstract. Graphical user interfaces (GUIs) make software easy to use
by providing the user with visual controls. Therefore, correctness of
GUI’s code is essential to the correct execution of the overall software.
Models can help in the evaluation of interactive applications by allow-
ing designers to concentrate on its more important aspects. This paper
describes our approach to reverse engineer an abstract model of a user
interface directly from the GUI’s legacy code. We also present results
from a case study. These results are encouraging and give evidence that
the goal of reverse engineering user interfaces can be met with more work
on this technique.

1 Introduction

Enterprise competitiveness in the information age is very much dependent on the
quality of the graphical user interfaces (GUIs) being used [10]. However, the qual-
ity of large and complex user interfaces is hard to maintain. These very rapidly
originate failures, a problem nowadays identified under the usability heading. A
very large proportion of failures in interactive systems takes place due to er-
roneous human actions [12]. As pointed out by Leveson [15], human error in
computer systems use is often due to errors in their user interface design, and
not the sole result of errors performed by the direct users of the systems.

The correctness of the user interface is essential to the correct execution
of the overall software. Regarding user interfaces, correctness is expressed as
usability: the effectiveness, efficiency, and satisfaction with which users can use
the system to achieve their goals [24]. In order for a user interface to have good
usability characteristics it must both be adequately designed and adequately
implemented, having its target users, their goals, and the operating environment
in mind.

Tools are currently available to developers that allow for fast development
of user interfaces with graphical components. However, the design of interactive
systems does not seem to be much improved by the use of such tools. Interfaces
are often difficult to understand and use for end users. In many cases users have

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55607644?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


problems in identifying all the supported tasks of a system, or in understanding
how to reach them. The problem seems to lie more on the design of the systems,
than in their actual implementation.

Problems could be largely solved if designers had methods and tools to

provide indications about the most effective interaction and presentation

techniques to support the possible user activities [22].

Traditionally design aspects of user interfaces have been the concern of
Human-Computer Interaction, while software engineers have been mainly con-
cerned with implementation aspects. Clearly there is a need to enable software
engineers to consider aspects of design when developing interactive systems.

Model-based design helps to identify high-level models which allow designers
to specify and analyse systems. Different types of models can been used in the
design and development of interactive systems, from user and task models to
software engineering models of the implementation. The authors are currently
engaged in a R&D project (IVY – A model-based usability analysis environ-
ment3) which aims at developing a model-based tool for the analysis of interac-
tive systems designs. The tool will act as a front end to the SMV model checker,
creating an abstraction layer where models of interactive systems can be de-
veloped and analysed. The models used are expressed in the MAL interactors
language [3], and express both the information present at the user interface and
the behaviour of the system in response to user input. In the context of the
project we are investigating the applicability of reverse engineering approaches
to the derivation of user interface’s abstract models amenable for verification of
usability related properties.

In this paper we present the initial results of work on investigating the ap-
plication of strategic programming and slicing to the reverse engineering of user
interfaces. Our goal is to produce a fully functional reverse engineering prototype
tool. The tool will be capable of deriving abstract models of interactive applica-
tions’ user interfaces. This will enable reasoning about the design of the system.
In particular we are interested in applying automated reasoning techniques to
ensure a thorough analysis of all possible behaviours of a given system.

In section 2 we briefly introduce the IVY project. Then in section 3 we
describe some related work. Section 4 explains the technique applied in the
reverse engineering of graphical user interfaces. Thus, we describe the model-
based technique used for reverse engineering interactive systems. In section 5
we shows the application of the actual prototype to a simple system. Finally,
in section 6 we present some conclusions and put forward our plans for future
work.

3 http://www.di.uminho.pt/ivy



Ivy tool suite

SMVJava/Swing code

XtrmSwing i2smv compiler

Reply Visualizer

Model Editor
Property Editor

Fig. 1. IVY architecture

2 About the IVY project

2.1 The project

IVY follows from the development of i2smv [3], a compiler enabling the veri-
fication of interactive systems’ models using the SMV model checker [18]. The
objective now is to develop, as a front end to SMV, a model based tool for the
analysis of behavioural issues of interactive systems’ designs. This tool will not
only translate the models into the SMV input language, but fully support the
process of modelling and analysis by providing editors, for models and proper-
ties, and a reply visualizer for the analysis of the verification process results (see
figure 1).

A considerable number of tools for model checking have been proposed. In-
teractive systems, however, have specificities that make it difficult to use typical
model checking tools [3]. Two major types of problem can be identified:

– the richness of the interaction between user and system affects the models;
– the assumptions that must be made about the user’s capabilities affects the

analysis of the verification results;

Tools are needed that facilitate modelling, and reasoning about the results of the
verification, from an interactive systems perspective. In IVY we aim at creating
an abstraction layer where models of interactive systems can more easily be
developed and analysed.

Being modular, the tool will also act as a test-bed for different styles of
modelling/analysis of interactive systems. One approach we are exploring is the
use of reverse engineering techniques to enable the generation of models from user
interface code. Our goal is to support the verification of existing user interfaces
in a semi-automated manner. This will not only be useful to enable the analysis



of existing interactive applications, but can also be helpful in a re-engineering
process when a existing application must be ported or simply updated. In this
case, being able to reason at a higher level of abstraction than that of code,
will help in guaranteeing that the new/updated user interface has the same
characteristics of the previous one.

2.2 The language

Interactors act as a mechanism for structuring the use of standard specification
techniques in the context of interactive systems specification [7]. In IVY the
MAL interactors language from [3] is used.

The definition of a MAL interactor contains a state, actions, axioms and
presentation information:

– The state of an interactor is defined by a collection of attributes.
– Actions correspond to events the system can respond to.
– Axioms allow the expression of what effect actions have on the state. In order

to describe behaviour, a deontic logic is used:
• deontic operator obl(ac): ac is obliged to happen some time in the future;
• deontic operator per(ac): ac is permitted to happen next;
• model operator [ac]exp: expr is true after action ac takes place;
• []expr: expr is true in the initial state;
• per(ac) → exp: ac is permitted only if exp is true;
• exp → obl(ac): if exp is true then action ac becomes obligatory.

– Presentation information allows us to assert that a particular attribute/action
is visible. This is done with a vis annotation on relevant attributes/actions.

This language allows us to abstract both static and dynamic perspectives
of interactive systems. The static perspective is achieved with attributes and
actions abstractions which aggregate the state and all visible components in a
particular instant. The axioms abstraction formalizes the dynamic perspective
from an interactive state to another.

3 Related work

In the Human-Computer Interaction area, quality is typically addressed by the
use of empirical methods that involve testing (a prototype of) the system. These
methods work by placing users in front of a system in order to assess its usability.
Analytic methods have also been proposed as a means of reducing the effort
of analysis. These approaches work by inspection of the system (or a model
thereof) and range from less structured approaches such as Heuristic Evaluation
[21] to more structured ones such as Cognitive Walkthroughs [16]. In all cases,
these approaches are geared towards the analysis of the design of the interactive
system, and in particular aspects related to its usability.

The use of mathematically rigorous (formal) models of the interactive sys-
tems, as a means of reasoning about usability issues, has also been proposed (see,



for example, [3, 23]). One advantage of formal approaches is that they enable the
thorough verification of the validity of the properties/system under scrutiny. One
of their drawbacks is the difficulty in incorporating human considerations in the
analysis process. Approaches such as Syndectic Modelling [8] attempt to formal-
ize the user but become too complex to be used in practice. Other approaches
have been proposed were specific aspects of human behaviour are included in
the models (see for example, [23, 4, 2]).

In Software Engineering concerns are more geared towards testing the quality
of the code produced (absence of bugs) and its correctness vis-a-vis the system’s
specification. Testing of user interface implementations has also attracted atten-
tion.

Testing typically progresses by having the code execute pre-defined test cases
and compare the result of the execution with the result of some test oracle. In
the case of interactive systems, models of the user interface are needed both to
aid the generation of the test cases, and for the test oracle. In this area, the
use of reverse engineering approaches has been explored in order to derive such
models directly from the existing interactive system.

A typical approach is to run the interactive system and automatically record
its state and events. Memon et al. [19] describe a tool which automatically trans-
verses a user interface in order to extract information about its widgets, prop-
erties and values. Chen et al. [5] propose a specification-based technique to test
user interfaces. Users graphically manipulate test specifications represented by
finite state machines which are obtained from running the system. Systa studies
and analyses the run-time behaviour of Java software trough a reverse engineer-
ing process [25]. Running the target software under a debugger allows for the
generation of state diagrams. The state diagrams can be used to examine the
overall behaviour of a component such as a class, a object, or a method.

Another alternative is the use of statical analysis. The reengineering process
is based on analysis of the application’s code, instead of its execution, as in
previous approaches. One such approach is the work by d’Ausbourg et al. [6] in
reverse engineering UIL code (User Interface Language – a language to describe
user interfaces for the X11 Windowing System, see [11]). In this case models are
created at the level of the events that can happen in the components of the user
interface. For example, pressing or releasing a button.

In the last decade the reengineering of interactive systems has also been
investigated by several authors. Moore [20] describes a technique to partially
automate reverse engineering character based user interfaces of legacy applica-
tions. The result of this process is a model for user interface understanding and
migration. The work shows that a language-independent set of rules can be used
to detect interactive components from legacy code. Merlo [9] proposes a similar
approach. In both cases static analysis is used.

We are using static analysis as in [9, 20, 6]. When compared to their work our
challenges are twofold:

– We are reverse engineering code for graphical user interfaces, as opposed
to character based user interfaces in [9, 20]. At the moment we are working



with Java/Swing (however, our long term goal is to develop a more generic
approach).

– We are more interested in models that reflect the design of the user inter-
face and the interaction that it creates, than the actual architecture of the
underlying software implementing it. Hence, we need models that are more
abstract than those produced in, for example, [19] or [6].

4 A Technique for Reverse Engineering Graphical User

Interfaces

The technique explained in this section aids in identifying a graphical user in-
terface abstraction from legacy code. This includes identifying data entities and
actions that are involved in the graphical user interface, as well as relationships
between user interface components. The goal is to detect components in the user
interface through functional strategies and formal methods. These components
include user interface objects and actions.

4.1 Graphical User Interface definition

The most usual class of user interfaces are hierarchical graphical front-ends to
software systems. These user interfaces produce deterministic graphical output
from user input and system events. A graphical user interface (GUI) contains
graphical widgets. Each widget has a fixed set of properties. At any time during
the execution of the GUI, these properties have discrete values, the set of which
constitutes the state of the GUI.

This paper focuses on techniques to reverse engineer this first class of user
interfaces. Another class of user interfaces are web-user interfaces that have
synchronization/timing constraints among objects, movie players that show a
continuous stream of video rather than a sequence of discrete frames, and non-
deterministic GUIs in which it is not possible to model the state of the software
in its entirety.

4.2 GUI Slicing Through Strategic Programming

In order to extract the user interface model from a Java/Swing program we need
to construct a slicing function [27, 17] that isolates the Swing sub-program from
the entire Java program. The straightforward approach is to define a explicit
recursive function that traverses the Abstract Syntax Tree (AST) of the Java
program and returns the Swing sub-tree. A typical Java grammar/AST, however,
has 105 non-terminal symbols and 239 productions [1]. As a result, writing such
a function forces the programmer to have a full knowledge of the grammar and
to write a complex and long mutually recursive function. We use a different
approach by using strategic programming. In this style of programming, there is
a pre-defined set of (strategic) generic traversal functions that traverse any AST
using different traversal strategies (e.g. top-down,left-to-right, etc). Thus, the



Parser (GLR)

AST

Java/Swing

full tp

GUI model

Java

Strafunski

Fig. 2. The reverse engineering process

programmer needs to focus in the nodes of interest only. In fact, the programmer
does not need to have a knowledge of the entire grammars/AST, but only of those
parts he is interested in (the swing sub-language in our case).

Strategic programming is a form of generic programming that combines the
notions of one-step traversal and dynamic nominal type case into a powerful
combinatorial style of traversal construction. Strategic programming allows novel
forms of abstraction and modularization that are useful for program construction
in general. In particular when large heterogeneous data structures are involved
(e.g. the abstract syntax tree representing a Java program), strategic program-
ming techniques enable a high level of conciseness, composability, and traversal
control [29, 28]. Strategic programming has been defined in different program-
ming paradigms. In this paper we will use the Strafunski library [14]: a Haskell
[13] library for generic programming and language processing. Strafunski not
only contains the strategic library, but also a powerful GLR parser generator. It
contains also a set of grammars for most existing programming languages (for
example, a full Java grammar).

In order to explain strategic programming and the Strafunski library in
more detail, let us consider the following Java/Swing code fragment:

...

addButton = new javax.swing.JButton();

...

After parsing this code fragment we obtain the following fragment of the
AST:

...

Statement(

StatementWithoutTrailingSubstatement(

ExpressionStatement(

semicolon2(

Assignment(

AssignmentOp(



Name2(Identifier-p(["addButton"])),

equal1,

StatementExpression(

ClassInstanceCreationExpression(

new-comma(ClassOrInterfaceType1(

Name(Identifier-p(["javax","swing","JButton"]))),

[])))))))))

...

Having the knowledge of this particular fragment of the Java grammar/AST,
we are able to define a strategic function that given the complete AST extracts
JButton object assignments. First, we need to collect the list of assignments in
a Java program. We define this function in Haskell/Strafunski as follows:

– We begin by identifying the type of strategy needed to collect the desired
information. We make use of the traversal combinator full tdTU in order to
define a function that traverses the AST in a top-down fashion (although,
in this particular example, we could use a full bu strategy).

– Next, we need to define the worker function that will do the work while
traversing the AST. This worker function identifies the tree nodes where work
has to be done. In the complete Java AST the nodes of interest correspond to
the constructor AssignmentOp (see AST above). Thus, our worker function
simply returns a singleton list with the left-hand side of the assignment
and the expression. All the other nodes are simply ignored! The functions
applyTU, full tdTU, constTU, and adhocTU are library functions used to
construct the results and apply the traversal combinators. Because they are
not relevant to understand our techniques, we omit their definitions here.

This function, named getAssignmentIdentifiers, looks as follows:

getAssignmentIdentifiers :: (Term t) => t -> [([Id],[Id])]

getAssignmentIdentifiers ast =

runIdentity (applyTU (full_tdTU worker) ast)]

where

worker = constTU [] ‘adhocTU‘ getexp

getexp (AssignmentOp left op exp) = return [(left,exp)]

Having collected the list of assignments we can now filter that list in order
to produce the list containing all JButtons objects in the Java/Swing code.

getJButtons :: (Term t) => t -> [[Id]]

getJButtons ast = jButton

where assignments = getAssignmentIdentifiers e

jButton = [a | (a,b) <- assignments

, (b==["javax","swing","JButton"])]

Functional strategic combinators allow us to construct programs that only
mention those constructors that are strictly relevant to the problem. Further-
more, they work for any abstract syntax tree and not only for the Java AST



under consideration in this paper. As a result, the strategic function we define
not only extracts the Swing fragment from a Java program, but may also be re-
used to slice another GUI toolkit for other languages/ASTs. Observe that in the
Haskell/Strafunski code presented above a small part of it is specific of the Java
language/AST. Obviously, we can easily parameterize these functions with that
language specific constructors. It also should be noticed that the basic concepts
of strategic programming are independent of the programming paradigm.

4.3 User Interface Abstraction

In order to define the slicing functions mentioned above, we defined a small set
of abstractions for the interactions between the user and the system. These are
the abstractions that we look for in the legacy code:

– User input: Any data inserted by the user;
– User selection: Any choice that the user can make between several different

options, such as a command menu;
– User action: An action that is performed as the result of user input or user

selection;
– Output to User: Any communication from application to user, such as a user

dialogue;

Through the user interface code of an interactive system and this set of
abstractions, we can generate its graphical user interface abstraction. To exe-
cute this step we combine the Strafunski library with formal and semi-formal
methods, which are mathematically-based languages, techniques, and tools for
specifying and verifying systems. The use of formal methods does not guarantee
correctness. However, they aid in making specifications more concise and less
ambiguous, making it easier to reason about them.

5 An example

This section shows the application of the prototype to a small example. Basically,
the JClass system is a simple Java/Swing ”toy” example allowing for marks
management (see figure 3).

Applying the prototype to the application’s code, enables us to extract in-
formation about all widgets presented at the interface, such as JButton, JLabel,
JComboBox, JTextField, JSlider, JProgressBar, JPanel, etc. To reverse engineer
the graphical user interface of an interactive system it is not necessary to analyse
all of the application’s functionality. Therefore, irrelevant information from the
JClass system is discarded by the tool during the slicing phase in order to make
the representations much more clear.

Once the AST for the application code is built we can apply different slicing
operations as needed. This means we can easily tailor the information (models)
we want to extract from the AST (and, thus, from the code).

Currently the prototype enables the extraction of two types of models:



Fig. 3. JClass system

– Interactors models, which capture a more Human Computer Interaction per-
spective of the system. These models are more oriented towards usability
analysis.

– Event-flow graphs which allow the analysis of the code’s quality from a
software engineering perspective.

In the first case, applied to the code of the JClass application, the tool auto-
matically generates an interactor specification including the initial application
state and dynamic actions. This interactor contains a set of attributes:

interactor JClass

attributes

number, name: String

mark1, mark2, average: Integer

addEnabled, consultEnabled, removeEnabled, clearEnabled,

exitEnabled: Boolean

one for each information input widget, and one for each button’s enabled status.
The names of the attributes are derived from the names of the widget variables
in the code. Note that the String and Integer types must later be defined in
the IVY editor.

The interactor also contains a set of actions:

actions

add, open, close, consult, remove, clear, exit,

setText_name(String), setSelectedItem_mark2(Integer),

setValue_mark1(Integer), setValue_average(Integer),

setText_number(Integer)

one for each button, and one for each input widget (representing user input).
And, finally, a set of axioms:

[] number="" & name="" & mark1=10 & mark2=10 & average=0

[] addEnabled=true & clearEnabled=true & exitEnabled=true &

consultEnabled=false & removeEnabled=false & number="" &

name="" & mark1=10 & mark2=10 & average=0

[add] number’=number & name’=name & mark1’=mark1 &

mark2’=mark2 & average’=average & consultEnabled’=true &

removeEnabled’=true & addEnabled’=addEnabled &



clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[consult] number’=number & name’=?ref1? & mark1’=?ref2? &

mark2’=?ref3? & average’=?ref4? & addEnabled’=addEnabled &

consultEnabled’=consultEnabled & removeEnabled’=removeEnabled &

clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[remove] number’=number name’=name & mark1’=mark1 & mark2’=mark2 &

average’=average & addEnabled’=addEnabled &

clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[clear] number’=?ref5? & name’=?ref6? & mark1’=?ref7? & mark2’=?ref8? &

average’=?ref9? & addEnabled’=addEnabled &

consultEnabled’=consultEnabled & removeEnabled’=removeEnabled &

clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

[setText_name(a)] name’=a & number’=number & mark1’=mark1 & mark2’=mark2 &

average’=average & consultEnabled’=consultEnabled &

removeEnabled’=removeEnabled & addEnabled’=addEnabled &

clearEnabled’=clearEnabled & exitEnabled’=exitEnabled

...

The first two axioms define the initial state of the system. The next four define
the effect of the buttons in the interface. The ?refX? expressions represent values
that must be filled in using the IVY editor. To help complete the model, each
expression is a pointer to the Java code which constructs the value to be assign.
Remember that this is a semi-automated process. At least at this stage, we do
not want to go into the semantics of the application’s functional layer. The final
axiom defines the effect of user input in the name text field. Similar axioms are
generated for all other set actions, for brevity we include only one here. We have
not included the rendering annotations in the interactor since all attributes and
actions are visible (i.e. they are all available to users).

Even incomplete, this interactor already includes considerable information re-
garding the application’s interactive behaviour. For example, the fourth axiom
expresses the interactive state after executing the consult action. We can see
that attributes number, addEnabled, consultEnabled, removeEnabled, clearEn-

abled and exitEnabled remain unchanged, and that attributes name, mark1,
mark2 and average receive new data. Once fully instantiated the model can
be used in the IVY tool for verification of its behaviour.

Alternatively the prototype is also capable of generating the JClass’s partial
event-flow graph (see figure 4). All widgets and their relationship are abstracted
to this graph. As an example, blue nodes specify JButtons abstractions, arrows
specify methods calls from one widget to another.

In this graph, we can see all graphical user interface widgets and their rela-
tionships. Through this particular example, we are able to detect all JClass’s
widgets (JButtons, TextFields, ComboBoxs, etc) and interactive methods called
from these widgets (setText, getText, getSelectedItem, setEnabled, etc).

At the same time, the event-flow graph allows us to detect irrelevant wid-
gets in the JClass system. In figure 4 these widgets are represented through
two disconnected nodes. Basically the JClass code used to generate the graph
contains two widgets which are not visualized nor manipulated by the system.



Fig. 4. JClass system’s partial GUI event-flow graph

These are the open and close nodes in the event-flow graph, which are related
to the open and close actions in the interactor specification actions set.

6 Conclusions and Current Work

In this paper we have shown how strategic programming and slicing techniques
can be combined to reverse engineer user interfaces from application code. The
results of this work are encouraging and give evidence that the goal of reverse en-
gineering user interfaces can be met. A prototype has been developed that allows
us to obtain models of the user interface’s structure and (partially) behaviour in
an automatic manner.

Currently the tool automatically extracts the software’s windows, and a sub-
set of their widgets, properties, and values. The execution model of the user
interface is obtained by using a classification of its events.

The approach has also proven very flexible. From the Abstract Syntax Tree
representation we are already able to derive both interactor based models, and
event flow graphs. In the first case the models capture a user oriented view of



the interface. In the second case the models capture the internal structure of the
code. This enables us to reason about both usability properties of the design,
and the quality of the implementation of that design.

At the moment only a subset of all Swing widgets are being processed by
the tool. Our objective has been to investigate the feasibility of the approach.
In the future, we will extend our implementation to handle more complex user
interfaces.

We will also explore broadening the scope of the approach, both at the input
and output of the tool. In the first case we plan to experiment with different
programming languages/toolkits, in order to make the approach as generic as
possible. In the second case we want to further investigate the possibility of
generating different types of models for analysis. For example, we envisage that
generating Event Matrixes in the style of [26] will be possible.

Acknowledgments

This work is partially supported by FCT (Portugal) and FEDER (European
Union) under contract POSC/EIA/56646/2004.

References

1. Tiago Alves and Joost Visser. Metrication of sdf grammars. Technical Report
DI-PURe-05.05.01, Departamento de Informática, Universidade do Minho, 2005.

2. Ann Blandford, Richard Butterworth, and Paul Curzon. Models of interactive
systems: a case study on programmable user modelling. International Journal
of Human-Computer Studies International Journal of Human-Computer Studies,
60:149–200, 2004.

3. José C. Campos and Michael D. Harrison. Model checking interactor specifications.
Automated Software Engineering, 8(3-4):275–310, August 2001.

4. José Creissac Campos. Using task knowledge to guide interactor specifications
analysis. In J. A. Jorge, N. J. Nunes, and J. F. Cunha, editors, Interactive Systems:
Design, Specification and Verification — 10th International Workshop, DSV-IS
2003, volume 2844 of Lecture Notes in Computer Science, pages 171–186. Springer,
2003.

5. J. Chen and S. Subramaniam. A gui environment for testing gui-based applica-
tions in java. Proceedings of the 34th Hawaii International Conferences on System
Sciences, january 2001.

6. Bruno d’Ausbourg, Guy Durrieu, and Pierre Roché. Deriving a formal model of
an interactive system from its UIL description in order to verify and to test its
behaviour. In F. Bodart and J. Vanderdonckt, editors, Design, Specification and
Verification of Interactive Systems ’96, Springer Computer Science, pages 105–122.
Springer-Verlag/Wien, June 1996.

7. D. J. Duke and M. D. Harrison. Abstract interaction objects. Computer Graphics
Forum 12(3), 25-36, 1993.

8. D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling. Human-
Computer Interaction, 13(4):337–393, 1998.



9. Merlo E., Gagne P. Y., Girard J.F., Kontogiannis K., Hendren L.J., Panangaden
P., and De Mori R. Reverse engineering and reengineering of user interfaces. IEEE
Software, 12(1), 64-73, 1995.

10. B. Lientz e E. Swanson. Software Maintenance Management. Addison-wesley
edition, 1980.

11. Dan Heller and Paula M. Ferguson. Motif Programming Manual, volume 6A of X
Window System Seris. O’Reilly & Associates, Inc., second edition, 1994.

12. E. Hollnagel. Human Reliability Analysis: Context and Control. Academic press
edition, 1993.

13. Simon Peyton Jones, John Hughes, Lennart Augustsson, et al. Report on the
Programming Language Haskell 98. Technical report, February 1999.

14. R. Lammel and J. Visser. A strafunski application letter. Technical report, CWI,
Vrije Universiteit, Software Improvement Group, Kruislaan, Amsterdam, 2003.

15. Nancy Leveson. Safeware: System Safety and Computers. Addison-Wesley Pub-
lishing Company, Inc., 1995.

16. Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rieman. Testing a
walkthrough methodology for theory-based design of walk-up-and-use interfaces.
In CHI ’90 Proceedings, pages 235–242, New York, April 1990. ACM Press.

17. Andrea De Lucia. Program slicing: Methods and applications. IEEE workshop on
Source Code Analysis and Manipulation (SCAM 2001), 2001.

18. Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

19. Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping: Reverse en-
gineering of graphical user interfaces for testing. Technical report, Department of
Computer Science and Fraunhofer Center for Experimental Software Engineering,
Department of Computer Science University of Maryland,USA, 2003.

20. M. M. Moore. Rule-based detection for reverse engineering user interfces. Pro-
ceedings of the Third Working Conference on Reverse Engineering, pages 42-8,
Monterey, CA, november 1996.

21. Jakob Nielsen and Rolf Molich. Heuristic evaluation of user interfaces. In CHI ’90
Proceedings, pages 249–256, New York, April 1990. ACM Press.

22. Fabio Paternò. Model-Based Design and Evaluation of Interactive Applications.
Springer-Verlag, London, 2000.

23. John Rushby. Using model checking to help discover mode confusions and other
automation surprises. Reliability Engineering and System Safety, 75(2):167–177,
February 2002.

24. ISO/TC159 Sub-Commitee SC4. Draft International ISO DIS 9241-11 Standard.
International Organization for Standardization, September 1994.

25. T. Systa. Dynamic reverse engineering of java software. Technical report, Univer-
sity of Tampere, Finland, 2001.

26. Harold Thimbleby. User interface design with matrix algebra. ACM Transactions
on HUman-Computer Interaction, 11(2):181–236, June 2004.

27. Frank Tip. A survey of program slicing techniques. Journal of Programming
Languages, september 1995.

28. Eelco Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In Lengauer et al., editors, Domain-Specific Pro-
gram Generation, Lecture Notes in Computer Science. Spinger-Verlag, November
2003. (Draft; Accepted for publication).

29. Joost Visser. Generic Traversal over Typed Source Code Representations. PhD
thesis, University of Amsterdam, February 2003.


