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Abstract

Using a case study on the specification of an eleva-
tor controller, this paper presents an approach that can
translate given UML descriptions into a Coloured Petri Net
(CPN) model. The UML descriptions must be specified in
the form of Use Cases and UML 2.0 Sequence Diagrams.
The CPN model constitutes one single, coherent and exe-
cutable representation of all possible behaviours that are
specified by the given UML artefacts. CPNs consitute a
formal modelling language that enables construction and
analysis of scalable, executable models of behaviour. A
combined use of UML and CPN can be useful in several
projects. CPN is well supported by CPN Tools and the work
we present here is aimed at building a CPN Tools front-end
engine that implements the proposed translation.

1 Introduction

The work we present in this paper brings together two
modelling languages. The first one is the UML, which
is the de-facto standard modelling language of the soft-
ware industry. The second language is Coloured Petri Nets
(CPNs) [12, 16], which is a well-proven formal modelling
language, suitable for describing the behaviour of systems
with characteristics like concurrency, resource sharing, and
synchronisation. Our objective is to establish an inte-
grated tool environment in which software engineers can
take advantage of both common UML tools and CPN Tools
(www.daimi.au.dk/CPNTools). CPN Tools, which we are
developing at University of Aarhus, is a well-proven and
well-established tool licensed in more than 4,000 copies,
including several hundreds of companies.
Our work is aimed at improving tool support for the main

modelling language (CPN) that we use for our research and
application on modelling. The results should be seen as
work in progress in the sense that we present the design

of an extension of CPN Tools; the implementation of the
design has not been done yet.

The CPN Tools extension that we are building is, ob-
viously, an instance of the much more general problem of
translating scenarios represented in variousways into differ-
ent kinds of state machines. A number of approaches to this
problem have been developed (but none that targets CPN);
some of these approaches may well be more mature than
ours. Therefore, one of the main reasons why we would
like to present our design ideas to the SCESM community is
to benefit from feedback from subject matter experts, even-
though many of them have preferences for other modelling
languages.

As basis for our translation approach, we assume that de-
velopers specify the functionality of the system under con-
sideration with use cases (UCs), each of which is described
by a set of UML 2.0 sequence diagrams (SDs). For each
UC, there should exist at least one SD that represents and
describes its main scenario. Other SDs for the same UC
are considered to be variations of the main scenario. Our
translation approach allows the development team to inter-
actively play or reproduce any possible run of the given sce-
narios. In particular, the natural characteristics of the CPN
language facilitate the representation of the hierarchy and
concurrency constructs of SDs.

This paper is structured as follows. Sect. 2 introduces
the case study, an elevator controller, and its UCs and SDs.
In sect. 3, we explain how to obtain a CPN model from a
set of UCs and SDs, including how to translate the oper-
ators opt, alt, par, and loop, and the ref interaction frag-
ment. Sect. 4 discusses related work and the conclusions
are drawn in sect. 5, which also points to future work.

This paper assumes that the reader is familiar with the
CPN language and SDs.
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Figure 1. The UC diagram for the Elevator Controller.

2 Case study

This section presents an elevator controller (EC) that is
used as a case study in the paper. We use a slight modifica-
tion of the EC system described in [4]. The elevator system
controlled by the EC has two cars, servicing a building with
six floors.
The main responsibility of the EC is to control the move-

ments of the cars, which are triggered by passengers push-
ing buttons. On each floor, there are hall buttons, which can
be pushed to call the elevator; a push indicates if the pas-
senger wants to travel up or down. Inside each car, there
are floor buttons, which can be pushed to request to be car-
ried to a given floor, and one open door button to force the
car door to open. The controller also updates a floor indica-
tor, inside each car, that displays the current floor of the car.
Similarly, a direction indicator must be updated.
Fig. 1 shows the UC diagram for the EC. To focus the

discussion, only UC2 and its included UCs (UC3, UC4,
UC10, and UC11) are considered. Their (short) descrip-
tions are next given:
UC2 Service Floor moves the elevator car from one origin
floor to a destination floor.
UC3 Open Door opens the elevator door.
UC4 Close Door closes the elevator door. If the door is
blocked or the open door button is pushed, while the door is
being closed, the door is opened and will close again after a
timer expires.
UC10 Stop Elevator At Floor stops an elevator car at a
given floor.
UC11 Notify Floor Passed informs the passengers, inside
an elevator car, that a given floor is about to be passed.
Some of the SDs that describe the UCs of the EC are next
presented. The actors in the SDs are not those included in

the UC diagram, but instead represent the entities (like, sen-
sors and actuators) the EC uses to actually interface with
those actors.

Fig. 2 depicts the main scenario of UC2 Service Floor,
assuming that the car is at floor Fo and that the next re-
quested floor is Fd.

opt

loop

opt

Elevator
Controller

Direction Indicator
Car Door
Sensors Car Motor Floor Indicator

light(c,d)

start(c,d)

Floor Door Location Sensor

[for each f between Fi and Fd ]

Floor Button

Elevator car c is at floor Fo, and 
the next requested floor is the Fd

d=up, if Fd>Fo;
d=down, if Fd<Fo; 

Fi=Fo+1, if d=up;
Fi=Fo-1, if d=down;

ref {UC11} Notify Passenger Floor Passed (c,f)

ref {UC10} Stop Car

ref {UC4} Close Door

[CarDoor.isOpen(c)]

[Fo <> Fd]

Figure 2. SD for main scenario of UC2 Service
Floor.
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This scenario describes the following behaviour:

1. The passenger in the current floor (Fo) is notified about
the direction of the car (specified in the SD by the mes-
sage “light(c)” from EC to Direction Indicator);

2. The car door is closed, if it is open (specified by the
opt operator and the ref interaction fragment to UC4);

3. The car is moved in direction to floor Fd (specified by
the message “start(c,d)” from EC to Car Motor);

4. The passengers inside the car are notified about each
floor passed (specified by the loop operator and the ref
interaction fragments to UC11);

5. The car is stopped, when destination floor Fd is
reached (specified by the last ref interaction fragment
to UC10).

The main scenario of UC2 assumes that no requests to stop
the car in any intermediate floor exist, while it is moving.
Therefore, we need to model this possibility by a new SD
(fig. 3). This scenario considers that hall button requests for
an elevator must be saved for future processing, in parallel,
with the possibility of the car being stopped in an interme-
diate floor, if a request exists.
This second scenario of UC2 is a variation of the main

one. The two SDs for UC2 have a lot in common; they only
differ inside the loop, in the parts with a darker background
in fig. 3. After the loops, there are apparently some differ-
ences, but the existence of a ref to UC11 in the SD for the
variation is due to the fact that the loop executes one less it-
eration. This means the behaviour before and after the loop
is the same for both scenarios. As we will see, this fact is
exploitedwhen obtaining the CPN modules for UCs that are
specified by two or more SDs.

3 Translation approach

In this section, we describe the translation approach. We
explain the basic idea and describe how to handle the fol-
lowing SD’s high-level operators: opt, alt, par, and loop.
The ref interaction fragment is also considered. Some of
these ideas were already discussed in the technical report
[23], but here we significantly extend the work and intro-
duce some modifications. As examples, the explanation
uses the CPN modules that were obtained from the UC dia-
gram (fig. 4) and the two SDs for UC2 (figs. 5 and 6).

3.1 Basic idea

Our 2-step translation generates a CPN model based on
a set of UCs ({UC1, . . . ,UCn}) and, for each UCi, a given
set of SDs ({SDi1, . . . ,SDimi}).

The first step in the translation is to construct a CPN
module from the n UCs. In fact, one only considers the
subset of primary UCs (those connected to actors). For the
EC, this CPN module is outlined in fig. 4. This CPN model
is a crude, overall description of the possible behaviours
specified by the UCs. It includes a so-called substitution
transition for each primary UC. A substitution transition is
a hierarchical structuring mechanism of CPN that is bound
to a separate module of the CPN model. This so-called sub-
module constitutes a more detailed specification of the be-
haviour that is represented by the substitution transition on
the top-level. The CPN top module permits to choose which
primary UC is being executed in a given moment. When
there is a token in SP0, one of its output transitions can
be fired, which determines the substitution transition that is
subsequently entered.

opt

loop

par

opt

opt

opt

Elevator
Controller

Direction Indicator
Car Door
Sensors Car Motor Floor Indicator

[CarDoor.isOpen(c)]

light(c,d)

start(c,d)

Floor Door Location Sensor

[for each f between Fi and Fj ]

Hall Button

notifyCarSelected(Fn,d)

Floor Button

[HallButton.carRequest(Fn,d)]

d=up, if Fd>Fo;
d=down, if Fd<Fo; 

Fi=Fo+1, Fj=Fd-1, if d=up;
Fi=Fo-1, Fj=Fd+1, if d=down;

start(c,d)

AssignsRequest(c)

ref {UC11} Notify Passenger Floor Passed (c,f)

ref {UC10} Stop Car (c,f)

ref {UC3} Open Door

ref {UC4} Close Door

ref {UC10} Stop Car

ref {UC11} Notify Passenger Floor Passed (c,Fd)

ref {UC4} Close Door

[Car c has a request at floor f]

[Fo <> Fd]

Elevator car c is at floor Fo, and 
the next requested floor is the Fd

Figure 3. SD for variation of UC2 Service
Floor.
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In the second step, the sub-modules that represent the
substitution transitions are constructed, which means that
each SD is translated into a CPN module. To explain the
main ideas of the SD-to-CPN translation, we will discuss
how fig. 5 was obtained from fig. 2.

sp

removeChoice
(sp,S UC8)

removeChoice
(sp,S UC5)

sp

removeChoice
(sp,S UC1)

sp

UC8

Alarm Recall

UC8  Alarm Recall

UC5

Announce
Emergency

UC5  Announce Emergency

VP
Choose

UC8

[choicePossible
(sp,S UC8)]

UC1

Service Floor

UC1  Travel To Floor

VP
Choose

UC5

[choicePossible
(sp,S UC5)]

VP
Choose

UC1

[choicePossible
(sp,S UC1)]

SP8

SP_t

SP5

SP_t

SP1

SP_t

SP
Done

SP_t

SP0

[S UC1, S SEQ, S UC2_Variation1, S SEQ, ...]

SP_t

UC1  Travel To Floor UC5  Announce Emergency UC8  Alarm Recall

Figure 4. Top module of the CPN model.

The translation of one SD into one CPN module maps each
message in the SD into a CPN transition. Thus, a SD with
no operators gives origin to a sequence of transitions, which
are interleaved with places, to follow the syntax rules of
CPNs.
The first message of the SD is “light(c,d)”, which trans-

lates into the transition “Light Direction Indicator”. Next
we find an opt operator that represents an optional be-
haviour. Our approach takes into account the alternative
execution paths, that are decided at the so-called variation
points (VPs). They represent execution points, where al-
ternative behaviours can occur. The choice of the path to
follow is typically dependent on values from the environ-
ment (inputs). Our approach ignores the actual values that
are used to accomplish the choice but is able to reflect all
alternatives in the CPN model.
The opt operator of the example gives origin to a VP,

where behaviour can follow one of two alternative paths
represented by the two output transitions of SP2. If the car
door is assumed to be open, the “VP Car Door Is Open”
transition should be fired, which implies that the behaviour
represented by UC4 needs to be executed. In the CPN, this
maps to the “Close Doors” substitution transition that is de-
scribed by a different CPN module. When place SP4 is
reached, the opt operand was either executed or not. The
next message is “start(c,d)”, which translates to the “Start
Motor” transition. This process continues until all messages

and operators are considered.

sp
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removeChoice(sp,
S UC2_CarDoorIsOpen)
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removeChoice(sp, 
S UC2_Variation1)
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removeChoice(sp, 
S UC2_MainScenario)
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removeChoice(sp,
S UC2_CarDoorIsClosed)
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[choicePossible(sp, 
S UC2_Variation1)]
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LOOP

VP 
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S UC2_MainScenario)]
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UC 11_Notify Floor Passed

Notify Floor 
Passed

UC 11_Notify Floor Passed

Stop Elevator At
Destination Floor

UC10_Stop Elevator At Floor

Start Motor

Close Doors

UC4_Close Door
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Direction
Indicator

VP
Car Door
Is Closed

[choicePossible(sp,
S UC2_CarDoorIsClosed)]

VP
Car Door
Is Open

[choicePossible(sp,
S UC2_CarDoorIsOpen)]

SP8

SP_t

Boolean
Expr. true

BOOL

Limit

{min=1,max=6}

LoopLimit_t

SP6

SP_t

SP11

SP_t

SP9

SP_t

SP12

Out SP_t

SP10

SP_t

SP7

SP_t

SP5

SP_t

SP3

SP_t

SP4

SP_t

SP2

SP_t

SP1

In

SP_t

In

Out

UC4_Close Door

UC10_Stop Elevator At Floor

UC 11_Notify Floor Passed

UC 11_Notify Floor Passed

LOOP

UC2 Variation 1

Figure 5. CPN module for UC2’s main sce-
nario.

Place SP7 represents a VP where it is possible to execute
either UC2’s main scenario or its variation, represented by
the two SP7’s output transitions. In case the variation is
selected, by firing the transition on the right, the respective
CPNmodule is entered when the substitution transition “VP
UC2 variation 1” is reached.
The main scenario for UC2 also includes a loop, rep-

resented in the CPN by the “Loop” substitution transition
(output transition of place SP5). If a new loop iteration is to
be executed, the loop body (CPN parts from SP6 to SP9) is
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Figure 6. CPN module for UC2’s variation scenario.
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executed; otherwise the behaviour continues to place SP10.
The loop CPN module (sect. 3.2.3) can be used as many
times as needed, to translate any SD loop operator. This
solution promotes reuse and hides complexity.

3.2 Translating the SD operators

This subsection presents how to translate the SD’s oper-
ators opt, alt, par, and loop, and the interaction fragment ref
into CPN parts.

3.2.1 OPT and ALT

An opt operator is like an if or case statement in program-
ming languages. It represents a behaviour that might or
might not be executed, depending on the evaluation of the
guard condition. If the guard condition is false, the be-
haviour is ignored. The translation of an opt operand into a
CPN part is exemplified in the top part of fig. 5, by the two
output transitions of place SP2. The left transition repre-
sents the situations where the guard of the operand is evalu-
ated as true and consequently the behaviour specified in the
operand in fig. 2 to be executed. The right transition repre-
sents the operand having its guard evaluated as false, which
implies not executing the operand’s behaviour.
An alt operator identifies a set of behaviours from which

the interaction can choose based on specified criteria. Only
one of the alternatives will execute on any one pass through
the interaction. The selected operand in the alt structure ex-
ecutes only if the guard condition tests true. If there is no
guard, the operand always executes when it is selected. The
else clause of the alt combined fragment executes when-
ever none of the other options is selected. Since an alt is a
general case of an opt, the translation into CPNs basically
follows the same rules described for opt, but from the same
point more alternatives exist to be followed.
When translating an alt operator, one must analyse if the

guards in all operands cover all possible combinations of
the involved inputs. If this is not the case, the CPN model
must include an extra branch that represents the situation
where none of the guards is evaluated as true. If a guard is
always false, the respective operand is never executed and
the CPN should not include a branch for it.

3.2.2 PAR

The operator par represents a parallel execution of the be-
haviours of the operands. The occurrences of the different
operands can be interleaved in any way as long as the order-
ing imposed by each operand as such is preserved. This op-
erator has a natural representation with the CPN language,
which supports description of concurrency and parallelism.

The translation of the par operand in fig. 3 (the darker
area) into a CPN part is represented in fig. 6 by the tran-
sitions ‘Begin Parallel Construct’ and ‘End Parallel Con-
struct’. This fork-join construct allows the behaviour to
follow two independent threads, thus modelling true par-
allelism. It is straightforward to apply this translation to
more than two parallel operands by just adding more out-
put places to the fork transition and, similarly, more input
places to the join transition.

3.2.3 LOOP

A loop operator is like a loop in programming languages
and indicates a behaviour that is executed repeatedly. The
number of times the contents of the loop is executed is given
by the minint and maxint parameters of the operator. The
syntax of the loop operator is ‘loop (minint, maxint)’, where
maxint can also be infinity (specified by ‘*’). After the min-
imum number of iterations has been satisfied, a Boolean ex-
pression is tested on each pass. When the Boolean expres-
sion tests false, the loop ends.
A generic loop was modelled as a CPN module (fig. 7).

This module can be instantiated as many times as needed
(by substitution transitions). The “Initialize Loop” transi-
tion starts a counter with value 0, and puts a token in place
SP1. This place may enable its output transitions, that rep-
resent the choice between executing a new iteration of the
loop or leaving it. Every time the loop is entered the counter
is incremented. The counter, the Boolean expression and
the loop’s limits (minimum and maximum number of itera-
tions) are places that hold the values from the CPN module
where the loop is instantiated.
The substitution transitions that represent instances of the
loop module need to identify the loop’s limits, a Boolean
expression, the two places where the loop body starts and
ends, and the two places where the loop initialises and fin-
ishes. Its usage is shown in fig. 5.

3.2.4 REF

SDs can reuse a given SD inside another SD, with the spe-
cial interaction fragment ref. This permits the same advan-
tages as introduced by routines or functions in programming
languages, namely abstraction and reuse.
The usage of a ref in SDs occurs if a UC includes an-

other one to complete its behaviour. The translation of the
ref construct to CPN is achieved by including a substitution
transition to represent the included UC. For example, the ref
to UC10 in fig. 2 is modelled by the substitution transition
between places SP11 and SP12 in fig. 5.
As already mentioned, the ref construct is also used

when representing variations of a UC. This is exemplified
in fig. 5 by the substitution transition “VP UC2 variation
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Figure 7. The CPN module for modelling
loops.

1” that represents UC2 variation scenario. Again, a substi-
tution transition is included to call the corresponding CPN
module. This CPN module should, whenever possible, just
model the parts of the variation that differ from the main
scenario. This implies that the decision to execute a given
variation of a UC is taken inside its execution. Alterna-
tively, we could also consider the choice of the variation at
a higher level (namely at the CPN top module). As a con-
sequence, the variations are to be chosen at the top module,
at the same level as UCs.

3.3 Execution of the CPN model

The modules of a CPN model constitute one single co-
herent description of the behaviour specified by the UC di-
agram. One of the main advantages of a CPN model is that
it can be executed. In this subsection, we discuss different
ways to execute a CPN model created with our approach.
A CPN model generated by our approach can be exe-

cuted in three different ways. Two of them are directly sup-
ported by CPN Tools and are known as interactive and au-
tomatic simulation. During interactive simulation, the user
selects which transitions should be fired, and thereby which
execution path to follow. This selection is performed non-
deterministically by the tool during automatic simulation.
A third possibility is to specify a scenario as a sequence

of choices which are determined in advance. This solution
allows for some choices to be performed by the user or non-
deterministically by the tool, while others are fixed.

3.3.1 Controlled pre-defined execution

In the CPN model, a scenario is specified as a sequence of
choices represented by a token containing a list. In the ini-
tial marking, this token contains a full list of choices that are
considered during the execution of the scenario. While the
scenario is being executed in CPN Tools during the simula-
tion of the CPN model, the list is checked to decide the path
to take at each VP being encountered. As choices are made,
their representations are removed from the list, by the func-
tion “removeChoice”. This way, the first element of the list
is always the next choice to be made (when the relevant VP
is reached somewhere during the execution of the scenario).
VPs derive fromUCs and SDs and they capture three dif-

ferent types of choices depending on the level of abstraction
at which they exist: (1) choice of UC; (2) choice of varia-
tions, and (3) choice related to the detailed semantics of the
operators in the SDs.
An example of this mechanism can be found in the top

module of the CPN model (fig. 4). One transition exists per
primary UC at the top level. At this point, UC1 is the choice
to be taken at the next VP, since the first element in SP0
initial marking’s list is “S UC1”. This choice represents the
highest level of the specification of a scenario.
After having chosen a UC at the first VP, in some cases

it is possible to choose among a collection of variations of
this UC. This is the case for UC2, which has a main scenario
supplemented by a variation representing that a request but-
ton was pushed while the elevator car moves between the
origin and the destination floors. This variation is speci-
fied by the existence of two SDs for UC2 and is reflected in
the CPN model by the VP at place SP7 (fig. 5). The left-
most transition represents the main scenario and the right-
most one represents the variation. If the variation is chosen,
the respective module is entered (’UC2 Variation 1’). This
case shows how the variation consists of adding more de-
tails to the already described main scenario.
Another example is place SP2, which is a VP that can

be found in the CPN module for UC2 (top-most part of
fig. 5). This example shows how a VP represents a low
level choice being made internally in the execution of the
UC. In this case, the door can be modelled as being either
open or closed, when the VP is reached.
In each VP, the possible choices are modelled by transi-

tions (emphasised in black in the figures). The enabling of
these transitions is restricted by guards. In these guards, the
list of choices is checked by the function choicePossible to
determine which transitions are enabled, i.e., which paths
are possible, based on the predetermined choices. The list
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of choices is accessible to the transitions in question, be-
cause it is being carried around in the model by the tokens
that exist in the places forming the main flow of the path.

3.3.2 Use of wildcards

When a scenario is described as a sequence of choices, it
is often beneficial to be able to adjust the level of restric-
tion of these choices, i.e., to make some choices free, while
fixing others. In the approach described so far, all choices
are either free and made by the user during execution of
the model, or predetermined by the sequence specified in
the list of choices. To cover the gap between these two ex-
trema, wildcards have been introduced to the specification
of the scenarios. This is done by including the keywords
ANY and SEQ as accepted elements in the sequences.
These operators have simple semantics as described in-

formally with the next examples. The ANY operator re-
places a single choice. In the sequence [a,ANY,b], a
and b are fixed choices while the choice in-between these
choices is performed freely. After one free choice, the ANY
operator is consumed from the sequence, leaving only the b
choice. The SEQ operator replaces a sequence of choices
until the choice following the SEQ operator. In the se-
quence [a,SEQ,b,c], a and c are fixed choices while
any sequence of choices is allowed to be performed until a
b choice is performed. At that point, the SEQ operator will
be consumed from the sequence leaving a sequence contain-
ing only the c choice.
With the sequence of choices and the wildcard solution,

scenarios can be described with a varied level of restriction.
Thereby it is possible to describe either specific scenarios or
families of scenarios in which some VPs are common and
others are different among the members of a given family.

4 Related Work

We discuss in this section approaches that translate
scenario-based descriptions into Petri nets (PNs). To our
knowledge, this translation has received less attention by
researchers than the one into statecharts; cf. that only one
approach that uses PNs is considered in [18].
Campos and Merseguer discuss the integration of per-

formance modelling within software development process,
based on the translation of almost all UML behavioural
models into Generalised Stochastic PNs (GSPNs) [6]. With
other colleagues, they explain how: (1) to derive an exe-
cutable GSPN model from a description of a system, ex-
pressed as a set of statecharts [21]; (2) to transform UC di-
agram to model the usage of the system for each actor [20];
(3) to obtain a performance model representing a concrete
execution of the system from SDs and statecharts [3]; and
(4) to transform from activity diagrams into GSPNs [19].

Baresi and Pezzè describe how to assign formal seman-
tics to UML by defining translation rules that automatically
map UML specifications to high-level PNs [2]. Bokhari and
Poehlman propose a technique to translate UML state dia-
grams to Object Coloured PNs (OCPN), which can be im-
plemented using, for example, CPN Tools. Amorim et al.
present an approach to translate LSCs to CPNs for analysing
and verifying embedded systems [1].
Shatz and his colleagues propose a translation frame-

work to map UML statecharts and collaboration diagrams
into CPNs [24, 11]. Statechart diagrams are first con-
verted to flat state machines. Next, these state machines are
translated into Object PNs, which are translatable into be-
haviourally equivalent CPNs [17]. Collaboration diagrams
are used to connect these OPN models and to derive a sin-
gle CPN for the system under consideration. The obtained
CPNs can then be analysed by formal techniques or simu-
lated to infer properties of the system’s behaviour.
Pettit and Gomaa describe how to integrate CPNs with

object-oriented architecture designs captured by UML com-
munication diagrams. Their method can systematically
translate a UML software architecture design into an under-
lying CPN model, using pre-defined CPN templates based
on a set of object behavioural roles [22].
An algorithm to transform Message Sequence Charts

(MSCs) into a PN is explained in [15]. The transforma-
tion algorithm is exemplified in a railway control system
and the obtained PN can then be simulated and analysed
using already-known techniques and tools.
Sgroi et al. present how to design communication proto-

cols based onMSCs and PNs in [25]. A protocol is specified
as a set of MSCs, each one modeling a scenario, and their
relations are captured by a PN. To support analysis and de-
rive an optimized implementation, PNs are used to formally
represent the traces of events of the MSCs.
Eichner at al. introduce a formal semantics for the ma-

jority of the concepts of UML 2.0 SDs by means of PNs
as a formal model [9]. Their approach is focused on cap-
turing behaviour, and simulating and visualising it. An
animation environment is being developed, within the P-
UMLaut project (www.p-umlaut.de), to relate objects of the
simulated world and entities in the UML model. This per-
mits the objects to be animated, using the PN as the main
driver. Their work is the one with more similarities with
ours (namely on the usage of UML 2.0 SDs), but uses a dif-
ferent PN language (M-nets) and is oriented towards SDs
that describe the behaviour of a set of objects. We propose
to use the CPN language and the SDs describe parts of the
behaviour of a UC.
The play-in/play-out approach [10] aims at specification

of reactive systems through an ingenious, intuitive way to
automatic generation of executable, formal models from
scenarios. It is based on the use of Live Sequence Charts
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(LSCs) [7]. Our approach described in this paper is much
more mundane, and specifically targeting the CPN mod-
elling language, which is different from LSCs.

5 Conclusions and Future Work

In this paper, we present an approach to translate
UML 2.0 SDs into CPN models and illustrate it on an eleva-
tor controller case study. According to the criteria proposed
in [18], it supports composition by adopting UML 2.0 SDs
as the source notation and follows a “GS→ GSM” synthe-
sis path, i.e., it transforms global scenarios (GS) into global
state machines (GSM), specified in the CPN language.
The work presented in this paper is partly inspired by a

joint research project that one of the authors of this paper
was involved in together with Nokia Research (Helsinki)
in 2003–5. In this project [14], a tool was developed to
estimate the worst-case memory usage of interacting soft-
ware components. The tool applies formal analysis based
on CPN. For a given set of interaction scenarios, the tool
calculates a state space of a CPN model and finds a path,
which corresponds to a worst-case memory usage interleav-
ing of the events in the scenarios. To hide the formal analy-
sis from the users of the tool, IBM Rational Rose is used as
front-end to specify scenarios as annotated UML 1.x SDs,
andMicrosoft Excel is used as back-end to present the anal-
ysis results. Nokia sees a possibility in continued use of
CPN along the lines set out in the previous project, but now
moving from UML 1.x SDs to UML 2.0 SDs. The work
presented here contributes to that effort.
The long-term goal we have in focus in continuation of

the work described in this paper is to use CPN Tools as a
vehicle for requirements engineering. Our main goal is to
build graphical animations on top of CPN models. This has
already been done in a number of projects (e.g., [13]), but it
has turned out that for a broader applicability, it is a prob-
lem that the approach has not been properly integrated with
UML. With the work we present in this paper, we take a
step towards making a tighter connection betweenUML and
CPN models, aimed at the use in requirements engineering.
In general, capturing the right requirements from the end

users and clients of the system is one of the main prob-
lems encountered in software development projects. This
demands ways of effective communication among develop-
ers and users. Creating models, like UML models or CPN
models, can be a help, but models of these kinds are of-
ten uninviting for many stakeholders [8, 26]. In particular,
UML 2.0 SDs are much more complex than UML 1.4 SDs,
due to the usage of high-level operators, which amplifies the
comprehension problem by non-technical users.
One of the solutions that can improve the comprehen-

sion of the system’s dynamic behaviour is, indeed, to use
animation techniques, thereby enabling involvement of non

technically-minded stakeholders. This can, of course, give
important, early feedback about the intended system. Some
authors report that the use of animation greatly boosts the
understandingof the system behaviour when comparedwith
static models (such as SDs) [5].
Among our next steps is the automation of the translation

approach. We expect our tool to be useful in projects that
we are currently working on establishing. An example is a
project with Torrestir, a Portuguese truck company, where
UC diagrams and SDs will be developed by project partic-
ipants and our aim is to use these SDs as basis for further
requirements engineering using our CPN-based approach.
The basis for our approach is a set of UCs and for each

UC, a set of SDs, which constitute a description of a set of
behaviours; for the EC case study, possible ways in which
the elevator system can behave. Thus, in the near future
we plan to study how to handle the simultaneous execution
of more than one use case instance (for example, two in-
stances of UC3 and one instance of UC7 of the EC system).
Although we do not have currently clear answers for this is-
sue, the CPN language seems to be well-suited for that pur-
pose, since it supports naturally true parallelism. This prob-
ably requires some mechanisms to be added to the CPN,
namely for synchronising the execution of the behaviours
and to control the usage of the shared resources.
We do not plan to use CPN models directly to implement

software systems. Our focus is more narrowly on require-
ments elicitation, validation, and specification; not on turn-
ing requirements into implementations. One reason for this
is that we know only a few projects in which PN models
have been used as basis for a running implementation of a
system. There seems to be a larger gap between PN mod-
els, including CPN models, and implementations than there
is between, e.g., statecharts or UML state machines and im-
plementations. This is probably one of the main reasons
that proposals to use PNs is often met with some reluctance
in the software engineering community. PNs, which have
their origins as a theoretical model for concurrency, are suf-
fering from image problems and from lack of demonstration
of usefulness in actual software engineering.
With our narrow focus on early requirements, we hope to

contribute to improve the situation, because this is an area
where we believe in the usefulness of CPN in relation to
software engineering. The rich and elaborated state concept
of CPN models makes it easier to represent requirements
and relevant environment properties.
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