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Masonry compression: a numerical investigation 

at the meso-level 
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Abstract The analysis of masonry assemblages under compression using detailed 

modelling strategies in which units and mortar are modelled separately is a challenging 

task. Sophisticated standard non-linear continuum models, based on plasticity and 

cracking, are widely available to represent the masonry components but such models 

overestimate the experimental strength of masonry prisms under compression. 

Alternative modelling approaches are therefore needed. This paper focuses on the 

discussion and detailed analysis of a particle model consisting in a phenomenological 

discontinuum approach to represent the micro-structure of units and mortar. The 

micro-structure attributed to the masonry components is composed by linear elastic 

particles of polygonal shape separated by non-linear interface elements. All the 

inelastic phenomena occur in the interfaces and the process of fracturing consists of 

progressive bond-breakage. Clear advantages have been shown by the particle model, 

when compared to standard continuum models. 
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INTRODUCTION 

 

The compressive behaviour of masonry is of crucial importance for design and 

safety assessment purposes, since masonry structures are primarily stressed in 

compression. The present approach in codes, e.g. (CEN, 2003) and (ACI, 2004), is to 

make the compressive strength of the masonry composite dependent of the compressive 

strength of the masonry components (units and mortar). This empirical approach is 

obviously conservative and results from the envelope of a large set of experimental 

tests, meaning that the compressive strength of masonry can be severely 

underestimated. The solution today is to carry out a series of tests in expensive wallets 

(CEN, 1998), which is hardly feasible for all possible masonry materials. In addition, 

existing code formulas are clearly not applicable to irregular or rubble masonry, which 

is generally the case of historical masonry structures. 

Continuum and discontinuum approaches to model masonry components can be 

used with the aim of reproducing the experimental behaviour of the masonry composite 

under compression. Micro-modelling strategies are indeed powerful tools for analysing 

the basic phenomena occurring in masonry assemblages upon increasing loading, see 

e.g. (Lourenço and Rots, 1997). For the case of masonry under uniaxial compression, 

some authors indicate that standard continuum finite element micro-models, based on 

plasticity and cracking, are capable of obtaining an adequate response of the masonry 

composite, introducing the behaviour of masonry components, e.g. (Brencich and 

Gambarotta, 2005) and (Roman and Gomes, 2004). But similar simulations carried out 

by (Pina-Henriques and Lourenço, 2003) demonstrated otherwise. In fact, it was shown 

that continuum finite element micro-models largely overestimate the experimental 

strength and peak strain of masonry prisms tested in compression. Values of 



 3

approximately 170% were found for the ratio between the predicted and the 

experimental strengths. As a result, alternative discontinuum modelling approaches that 

consider the micro-structure of quasi-brittle materials are therefore needed to study the 

uniaxial compressive behaviour of masonry. 

Several advanced computational approaches are currently available for structural 

analysis developed in discontinuum frameworks, including the finite element method 

with interface elements, discrete element methods and lattice models. For an exhaustive 

discussion on the numerical methods available the reader is referred to (Jing, 2003). The 

finite element method with interface elements is well established and advanced solution 

procedures are available, (Gens et al., 1988) and (Rots and Schellekens, 1990). For 

simple geometries under symmetric loading or when the crack path is known in advance 

from experiments, interface elements can be embedded in the finite element mesh along 

expected crack paths, (Rots, 1988). If the crack pattern is not known in advance, 

expensive remeshing techniques, (Ingraffea and Saouma, 1985), or approaches where a 

sufficient number of interface elements are included in the mesh to account for potential 

crack paths, (Carol et al., 2001), may be adopted. Typical applications of interface 

elements in the finite element analysis of masonry structures are the modelling of 

cracking, slipping or crushing planes, like unit-mortar interfaces or potential cracks in 

the units, see (Lotfi and Shing, 1994) and (Lourenço and Rots, 1997). 

The last decades have witnessed a growing interest of the scientific community in 

the development of discrete element methods due to the capabilities of such methods to 

deal with discrete media. Within the most popular discrete element methods, the distinct 

element method pioneered by (Cundall, 1971) and the discontinuous deformation 

analysis originally developed by (Shi, 1988) may be distinguished. As can be gathered 

from the literature, discrete element methods have been widely used to analyse the 
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response of blocky assemblages, especially in the field of rock mechanics although 

references can also be found for blocky masonry structures, (Lemos, 2001). Discrete 

element methods have also been used by the research community to model the micro-

structure of granular and brittle disordered materials such as concrete, and examples can 

be found in (Lorig and Cundall, 1987) and (Vonk, 1993). The rigid-body spring 

network model has common features with the referred approaches, subdividing the 

material into a collection of rigid bodies interconnected by zero-size springs, see 

(Bolander et al., 2000). 

Another discontinuum approach that has been receiving vivid attention is lattice 

models. Its main concept is the discretization of the continuum into a framework of 

beam or truss elements. Generally, a regular or random triangular lattice of beam 

elements is adopted, being the size of the beams adjusted so that the elastic stiffness and 

Poisson’s ratio of the complete lattice resemble the values of the continuum. The 

simulation consists in a set of linear elastic analyses, each one corresponding to a load 

step. At the end of each load step, the adopted failure law is evaluated and the elements 

falling in its range are removed from the lattice. Lattice models have been extensively 

utilized in the study of tensile fracture propagation and references can be found in 

(Schlangen, 1993), (Van Mier et al., 1995), (Bazant and Planas, 1998) and (Van 

Vliet, 2000). Recently, a lattice-type model has been proposed by (Cusatis et al., 2003) 

aiming at a correct simulation of both tensile and compressive fracture processes, as 

well as three-dimensional effects. In reality, failure of masonry and other cohesive-

frictional materials typically involves in-plane splitting cracks or spalling, meaning that 

2D models are usually phenomenological and approximate.  

In the present paper, a particle 2D model consisting in a phenomenological 

discontinuum approach based on the finite element method including interface elements 
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is proposed to represent the micro-structure of units and mortar, attempting to reproduce 

adequately the compressive behaviour of masonry. Comparative analyses with 

experimental results and with numerical results using a continuum model are presented. 

 

MODEL CONCEPT 

 

Outline of the model 

 

The proposed particle model is developed on a finite element framework. The 

discontinuous nature of the masonry components is considered by giving a fictitious 

micro-structure to units and mortar, which is composed by linear elastic continuum 

elements of polygonal shape (hereafter named particles) separated by non-linear 

interface elements. All the inelastic phenomena occur in the interfaces and the process 

of fracturing consists of progressive bond-breakage. This is, of course, a 

phenomenological approach able, nevertheless, to capture the typical failure 

mechanisms and global behaviour of quasi-brittle materials. 

Three-noded plane stress triangular elements with a one-point Gauss integration 

scheme were utilized to model the particles. It is noted that the fracture process controls 

failure and the differences between plane stress and plane strain are, therefore, 

negligible. For the interfaces, four-noded line interface elements with zero thickness 

were adopted. A high dummy stiffness was given to the interface elements to avoid 

interpenetration of the particles, as it is clear that the amount of penetration is higher 

with decreasing interface stiffness. Stiffness values ranging from 1 × 104 to 

1 × 105 N/mm3 were chosen so that overlapping of neighbouring particles would be 

negligible. (Rots, 1988) and (Schellekens, 1992) reported that beyond stiffness values of 
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1 × 103 N/mm3, the application of the Gauss integration scheme leads to oscillatory 

results. To overcome such deficiency, a two-point Lobatto integration scheme was used. 

The constitutive model used for the interface elements was formulated by 

(Lourenço and Rots, 1997) and is implemented in the finite element code adopted for 

the analyses (DIANA, 2003). The model includes a tension cut-off for tensile failure 

(mode I), a Coulomb friction envelope for shear failure (mode II) and a cap mode for 

compressive failure. Exponential softening is present in all three modes and is preceded 

by hardening in the case of the cap mode. 

The dilatancy angle measures the uplift upon shearing. Dilatancy tends to zero 

with increasing plastic shear slipping or increasing normal confining pressure. These 

phenomena occur often combined because shear slip with dilatancy necessarily induces 

normal compressive stresses. The analyses here reported were performed in a non-

associated plasticity context, assuming a dilatancy equal to zero. In such way, a particle 

can slide over the other without producing any normal displacement. Non-zero dilatancy 

associated with the symmetry boundary conditions adopted in the simulations could 

induce high normal stresses and locking of the particles, resulting in increasing strength. 

Also for unit-mortar interfaces, (Lourenço and Rots, 1997) recommend a value of zero 

for the dilatancy angle. 

It is noted that the adopted model and the original Hillerborg (Adicionar 

referência) model for tensile fracture are meant for straight cracks at macro-level. The 

proposed particle model uses such approach at the meso-level with random particles, 

which always render tortuous fracture paths. Therefore, the usage of a “macro” fracture 

energy or “macro” dilatancy angle, for example, seem like a conflict. Nevertheless, the 

proposed approach, partly similar to the work of Vonk (ano), is rather different from 
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other authors (van Mier, Bolander, etc…) that try to capture the response mostly by 

disorder. It is a phenomenological approach not rooted in a real microstructure. 

 

Mesh construction 

 

A computer routine has been written to generate the particles, see Figure 1. As 

input data, the boundaries of the surface to mesh, the average size of the particles and a 

distortion factor DF, which controls the irregularity of the particles shape, must be 

given. In addition, the type and average size of the finite elements utilized must be 

specified. The discretization of the continuum into particles is based on the Voronoi 

diagram. The Voronoi diagram is a collection of regions that divide space according to 

a set of given points (nuclei). Each region has a polygonal convex shape and 

corresponds to one nucleus. All the points in one region are closer to the corresponding 

nucleus than to any other nucleus. To obtain the coordinates of the vertices of the 

Voronoi regions, the routine executes a call to an external freeware DOS program 

named (QHULL, 2001) and then processes the output data. 

 

take in Figure 1 

 

Material heterogeneity 

 

In heterogeneous materials the disorder of the material properties at the micro-

level is a key issue in the fracture process. In the present model, material disorder is 

given by attributing to each particle and interface random material properties. For this 

purpose, values for the elastic modulus E of the particles and for the strength parameters 
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of the interfaces (tensile strength ft, cohesion c and friction coefficient tanφ) were 

generated according to a Gaussian distribution. A lower threshold, equal to zero, and an 

upper threshold, equal to two times the average value have been imposed for each 

parameter. It is noted, as an example, that for a Gaussian distribution with a coefficient 

of variation of 50%, the probability to generate a value beyond the referred thresholds is 

5%. 

 

MODEL RESPONSE. ELEMENTARY TESTS 

 

Model utilized 

 

Elementary tests were carried out resorting to 2D simulations of 100 × 100 mm2 

specimens in order to provide insight into the behaviour of the proposed model. Since 

cracks are constrained to follow particle boundaries, the influence of particle size and 

regularity in the mesh configuration must be investigated. For this purpose, three 

different values for the distortion factor DF were considered (0, 0.3 and 0.6) and, for 

each value, three different levels for the mesh refinement MR were assumed (denoted by 

n, 2n and 4n, and associated with an element size one-half and one-fourth of the original 

size n), see Figure 2. Given the random nature of the model, for each combination DF-

MR, three analyses were performed using different randomly generated meshes. 

 

take in Figure 2 

 

In-plane symmetry conditions have been adopted, carrying out the simulations as 

if the specimen was part of a larger portion. Hence, specimen boundaries remain 
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straight during the analysis, aiming at reproducing macro homogeneous boundary 

conditions. In all simulations, the nonlinear system of equations following from the 

finite element discretization was solved with an incremental-iterative globally 

convergent Newton-Raphson method with arc-length control and line-search technique. 

The same material properties were given to all specimens, so that only the 

influence of the micro-structure geometry would be assessed. The elastic properties 

attributed to the particles (elastic modulus E and coefficient of Poisson ν) and to the 

interfaces (normal modulus kn and shear modulus ks) are given in Table I, in terms of 

the average values and corresponding coefficients of variation CV. The inelastic 

properties of the interfaces are shown in Table II. Here, ft is the tensile strength, GfI is 

the mode I fracture energy, c is the cohesion, GfII is the mode II fracture energy and 

tanφ is the friction coefficient. 

 

take in Table I and Table II 

 

A unitary value was assumed for the tensile strength and the cohesion was 

obtained according to c = 1.5 ft. This relation was proposed by (Lourenço, 1996) for 

unit-mortar interfaces. For GfI, a value in agreement with the results obtained by (Van 

der Pluijm, 1999) was adopted and for GfII a value about five times higher the value 

proposed by (Lourenço, 1996) for unit-mortar interfaces (0.1 c) was used. The friction 

coefficient was chosen so that the ratio between the specimen compressive and tensile 

strengths was about ten, which is a ratio often found for masonry units, see 

(Schubert, 1988). Given the fact that the approach here followed is phenomenological 

and not physical, the values adopted for the coefficient of variation of the different 
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material parameters are not related with their experimental variability but were chosen 

so that the overall response of the model resembles the experimental response. 

 

Compressive uniaxial behaviour 

 

The specimens described in the previous Section were numerically simulated in 

uniaxial compression. Typical stress-strain diagrams obtained for each type of geometry 

are given in Figure 3. Full post-peak behaviour was difficult to obtain even with 

advanced solution procedures and it was decided to concentrate in the peak strength, 

which is the most relevant issue of the present contribution. The behaviour observed 

shows that increasing distortion of the particles leads to decreasing brittleness. 

Moreover, a relation between brittleness and mesh refinement seems to be also present. 

In fact, specimens with a refinement level n show a more brittle behaviour, 

characterized by sudden load drops, than specimens with refinement levels 2n and 4n. 

However, it is noted that there is not much difference in the response beyond a level of 

refinement of 2n. 

Table III illustrates the values for the compressive strength of the specimens fc, 

according to the mesh distortion and level of refinement. It is noted that there is 

increasing variability of the strength values with increasing distortion and size of the 

particles. The variation obtained (it is stressed that a different mesh was generated for 

each analysis) fairly reproduces experimental variability of results. It is further noted 

that the strength values show a slight decreasing trend with increasing distortion, 

especially for lower levels of mesh refinement. Nevertheless, the average values for 2n 

and 4n can be considered as mesh size and mesh distortion independent for practical 
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purposes. For this reason, relations between structural and particle sizes lower than 

seven to ten should be avoided. 

 

take in Figure 3 and Table III 

 

Figure 4 illustrates typical compressive crack propagation under increasing load. 

Three loading stages have been considered: 80% of the peak load, peak load and 

ultimate load. Well-known phenomena such as crack bridging and branching can be 

observed. Typical failure patterns obtained for the different specimens are depicted in 

Figure 5. It is clear that under certain combinations of particles distortion and mesh 

refinement, the failure pattern becomes biased by the mesh configuration. For instance, 

for DF = 0 and MR = 4n, the crack pattern denotes a clear diagonal tendency while, for 

example, for DF = 0.6 and MR = 4n, the crack pattern resembles experienced 

compression crack patterns with predominant vertical cracks. Thus, mesh configuration 

has a larger influence in the crack pattern of meshes with low distortion factors and high 

refinement levels. Nevertheless, the value of the failure load is not affected by the mesh 

preferential orientation. 

 

take in Figure 4 and Figure 5 

 

An assessment of the contribution of the interfaces tensile and shear parameters to 

the compressive strength of the specimens was also performed. To achieve this purpose, 

compression simulations assuming different values for the tensile parameters (strength 

and fracture energy) were considered firstly while the model shear parameters were kept 

constant, see Table IV. The same approach was repeated for the shear parameters and 
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the results obtained are given in Table V. As expected, a decreasing trend of the 

compressive strength with decreasing values of the tensile and shear parameters was 

found, even if the simulation reduces the variation in the input significantly. However, 

the influence of the tensile parameters is smaller than the influence of the shear 

parameters. Such results seem to indicate that the compressive failure of the model in 

discussion is mainly governed by the parameters describing the shear behaviour. 

 

take in Table IV and Table V 

 

Tensile uniaxial behaviour 

 

Figure 6 illustrates typical stress-strain diagrams obtained in uniaxial tensile 

simulations. Three types of tensile response can be clearly distinguished regardless of 

the particle size and mesh distortion. Each type of response is associated with a different 

failure pattern and, for each one, the specimen mode I fracture energy can range from a 

value similar to the mode I fracture energy given to the interface elements up to a very 

large value due to a residual plateau. Such residual plateau develops when diagonal 

cracks appear, originating friction between the particles due to the imposed boundary 

(symmetry) conditions. This is clearly a problem of the boundary conditions and not of 

the model approach. 

 

take in Figure 6 

 

The values obtained for the specimens tensile strength, according to the level of 

mesh refinement and the distortion factor, are given in Table VI. It is noted that the 
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values found for the tensile strength found are in the range of ±10% of the unitary value 

used as input for the tensile strength at meso-level. This is not only due the statistical 

simulation of disorder but also to the tortuous crack propagation, confirming the 

discussion addressed previously between macro and meso-properties. Slightly 

decreasing values for the tensile strength were found for increasing values of the 

distortion factor. However, the average values can be considered as mesh size and mesh 

distortion independent for practical purposes. Moreover, it is noted that increasing mesh 

refinement is accompanied by decreasing variability of the strength values and rather 

low values for the coefficient of variation are obtained for MR = 4n. Please note that the 

specimen size is always kept constant and only the size of the particles is reduced. 

 

take in Table VI 

 

Figure 7 illustrates typical tensile crack propagation under increasing loading. 

Again, three loading stages have been considered: 80% of the peak load, peak load and 

ultimate load. Initially, several cracks start developing but at some point localization of 

deformation occur in one crack while, in the others, unloading occurs. Figure 8 depicts 

typical failure patterns obtained for different refinement and distortion levels. Rather 

irregular failure patterns were obtained despite the particle size and mesh distortion, 

influencing the model response as shown above in Figure 6. 

 

take in Figure 7 and Figure 8 

 

Size effect 
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The effect of size is an important issue when estimating the strength or stress-

strain relationship of quasibrittle materials. In the early 1980’s, it became clear that size 

effect of such materials is mainly related with the release of the structure stored energy 

into the front of the propagating fracture or cracking zone and can not be explained 

solely by Weibull-type statistics of random micro-defects, see (Bazant and Planas, 

1998) and (Kim and Yi, 2002) for a comprehensive reviews. In fact, the larger the 

structure, the greater is the volume from which the energy is released and since the 

fracture front dissipates the same amount of energy, regardless of the structure size, in a 

larger structure the failure load must be lower. Although size effect has been widely 

studied for tensile failure, cracking localization is also present under compressive 

loading and, thus, also compressed elements show size effect, e.g. (Van Mier, 1997). It 

is now well known that compressive strength and post-peak ductility tend to increase 

with decreasing size of the structural element. 

In the field of concrete, models where the material structure is represented have 

been proved to be of great interest in understanding size effect phenomenon. In such 

simulations, the model parameters are set to a level below the level of observation 

(macro-level) and do not depend on size. Insight on this type of approach can be found 

in (Vonk, 1993) and (Van Vliet, 2000). 

The ability of the proposed micro-model to describe the influence of the specimen 

size has been assessed by simulations on square specimens with 100 × 100, 50 × 50 and 

10 × 10 mm2. In addition, the influence of the shape of the specimen has been 

investigated by considering rectangular specimens with different height over width 

ratios (10×30 mm2 and 30×10 mm2). A distortion factor DF = 0.3 and a mesh refinement 

MR = 2n have been considered. In the case of square specimens, the mesh configuration 

and the material properties were kept constant, being the specimens only scaled. In this 
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way, the results can be directly compared without the effect of randomness. In the case 

of the rectangular specimens, the same procedure could not be applied and three 

simulations were carried out for each shape considering the same average parameters 

adopted in the square specimens simulations. 

From the stress-strain diagrams illustrated in Figure 9a it can be observed that the 

size of the specimens has a remarkable influence in the response of the model. In fact, 

size dependency is one of the advantages of particle-type models when compared to 

softening continuum models, see e.g. (Cusatis et al., 2003). Moreover, it is noted that 

the shape of the elements has a minor influence on the strength but an increase of 

brittleness was found for higher height over width ratios, see Figure 9b. 

 

take in Figure 9 

The size dependent responses exhibited by the model can be explained based on 

the following energy balance 

 

∫∫ =
S fV

dsGdvE  (1) 

 

where the first term is the volume integral of the maximum specific energy E (by 

volume) stored in the specimen and the second term is the integral of the total energy 

released in the fracture process. Gf is, then, the fracture energy given to the interfaces in 

the model. Moreover, specimens with equal strengths must store the same specific 

energy E. Considering equal shape 2D elements only differing by a scale factor, it is 

reasonable to assume that the crack patterns would resemble and that the number of 

cracks would be similar. In this way, the dissipation zone is increasing proportionally to 

the height of the specimen and, by energy balance, also is the stored energy. However, 
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for the specimens to have the same strength, the maximum stored energy should be 

increasing proportionally to the area of the element. If the fracture energy given to the 

interface elements is modified to account for these aspects, see Equation (2), size 

independent responses are obtained. 

 

2

1
2,1, b

bGG ff =  (2) 

 

In the above, b is the width of the specimens and the subscript stands for the 

different size specimens under consideration. Figure 12 illustrates the stress-strain 

diagrams obtained regarding the 100 × 100 mm2 specimen as reference and by adapting 

the fracture energy (mode I and mode II) of the 50 × 50 mm2 and 10 × 10 mm2 

specimens according to Equation 2. It can be observed that the response becomes totally 

independent from the specimen size. When there is only an increase in the height or 

width of the specimen, it was shown that the strength value predicted by the particle 

model is almost not affected, see Figure 9b. This can be explained by the fact that the 

increase of the stored energy is proportional to the increase of the dissipation zone. In 

fact, in the case of an increase in height, the cracks length can be assumed to increase 

roughly as much as the specimen height while in the case of an increase in width, the 

number of cracks can be considered to increase proportionally 

 

take in Figure 12 

 

MODELLING MASONRY 
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In the previous sections the proposed particle model has been introduced and 

insight on the model behaviour has been provided. In this Section, the ability of the 

model to reproduce the behaviour of running-bond masonry prisms under uniaxial 

compression is assessed by means of a comparison with experimental results and with 

numerical results using a non-linear continuum finite element model. 

 

Brief description of adopted experimental results 

 

(Binda et al., 1988) carried out deformation controlled tests on running bond 

masonry prisms with dimensions of 600 × 500 × 250 mm3, built up with nine courses of 

250×120×55 mm3 solid soft mud bricks and 10 mm thick mortar joints. Three different 

types of mortar, denoted as M1, M2 and M3, have been considered and testing aimed at 

the evaluation of the compressive properties of the prisms. For each type of mortar, a 

total of three prisms were tested. 

The tests were carried out in a uniaxial testing machine MTS® 311.01.00, with 

non-rotating steel plates and a maximum capacity of 2500 kN. The applied load was 

measured by a load cell located between the upper plate and the testing machine, while 

displacements up to the peak load were measured with a removable strain gauge, see 

Figure 10. In addition, the average vertical displacement of each prism was also 

recorded with the machine in-built displacement transducer, permitting to capture the 

complete stress-strain diagram, including the softening regime. In this study, the prisms 

vertical strains and elastic moduli were calculated from the transducer measured 

displacements. Teflon sheets were placed between the prisms and the loading plates in 

order to minimize restraining frictional stresses. 
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The characteristics of the masonry components in terms of compressive strength 

fc, flexural tensile strength ff, elastic modulus E and coefficient of Poisson ν are given in 

Table VII. The results obtained for the prisms are given in Table VIII. Prisms P1, P2 

and P3 were built with mortars M1, M2 and M3 of increasing strength, respectively. The 

experimental failure patterns found were rather similar despite the type of mortar used, 

(Frigerio and Frigerio, 1985). Figure 11 depicts the typical failure pattern. 

 

take in Figure 10 

take in Table VII and Table VIII 

take in Figure 11 

 

Description of the continuum model 

 

The simulations were carried out resorting to a basic cell, i.e., a periodic pattern 

associated to a frame of reference, see Figure 13, in which units and mortar were 

represented by a structured continuum finite element mesh. However, to reduce 

computational effort only a quarter of the basic cell was modelled assuming symmetry 

conditions for the in-plane boundaries, see Figure 14. The dimensions of the 

components are equal to the ones used in the experiments. 

 

take in Figure 13 and Figure 14 

 

Three different plane approaches can be considered taking into account the out-of-

plane boundaries, namely: (a) plane-stress PS, (b) plane-strain PE and (c) an 

intermediate state, here named enhanced-plane-strain EPE. This last approach consists 
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in modelling a thin out-of-plane masonry layer with 3D elements, imposing equal 

displacements in the two faces of the layer. Full 3D analyses with refined meshes and 

softening behaviour are unwieldy, and were not considered. Moreover, recent research 

indicated that enhanced-plane-stress analysis provides very similar results, see (Berto et 

al., 2005). EPE response is always between the extreme responses obtained with PS and 

PE. For this reason, EPE is accepted as the reference solution for the continuum 

simulations and only its results are considered in this paper. A complete description of 

the continuum simulations can be found in (Pina-Henriques and Lourenço, 2003). 

Modelling of the cell in EPE was carried out using approximately 900 20-noded 

brick elements with 6650 nodes, totalling 13300 degrees of freedom (note that the tying 

adopted for the out-of-plane degrees of freedom mean that, basically, a 2D model is 

used). 3 × 3 × 3 Gauss integration was used. The material behaviour was described 

using a composite model including a traditional smeared crack model in tension, 

specified as a combination of tension cut-off (two orthogonal cracks), tension softening 

and shear retention, see (Rots, 1988), and a Drucker-Prager plasticity model in 

compression, see also (DIANA, 2003). The inelastic behaviour exhibits a parabolic 

hardening/softening diagram in compression and an exponential-type softening diagram 

in tension. The material behaves elastically up to one-third of the compressive strength 

and up to the tensile strength. 

 

 

 

 

Description of the particle model 

 

The particle model simulations were carried out employing the same basic cell used for 

the continuum model, see Figure 13. The particle model is composed by approximately 
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13000 linear triangular continuum elements, 6000 linear line interface elements and 

15000 nodes, see Figure 15. Macro homogeneous symmetry conditions and a distortion 

factor equal to 0.3 have been assumed. It is emphasised that the basic cell approach is 

only approximate of the real geometry of the specimens and that the obtained numerical 

response is phenomenological, which means that a comparison in terms of experimental 

and numerical failure patterns is not possible. In particular, splitting cracks usually 

observed in prisms tested under compression, e.g. (Mann and Betzler, 1994), boundary 

effects of the specimen and non-symmetric failure modes are not captured by the 

numerical analysis. Nevertheless, most of these effects control mainly the post-peak 

response, which is not the key issue in the present contribution. 

 

take in Figure 15 

 

The material parameters were defined by comparing the experimental and 

numerical responses of units and mortar considered separately. Each material was 

modelled resorting to specimens with the same average particle size, mesh distortion 

and dimensions of the masonry components used in the composite model (basic cell). 

Given the stochastic nature of the model, five simulations were performed for 

each masonry component assuming equal average values for the model material 

parameters. The parameters were obtained, whenever possible, from the described 

experimental tests but most of the inelastic parameters were unknown and had to be 

estimated. It is noted that the particles average elastic modulus E is larger than the 

experimental value due to the contribution of the interfaces deformability, characterized 

by kn and ks, to the overall deformability of the specimen. This correction is necessary 

despite the high dummy stiffnesses assumed. 
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On the contrary, the values adopted for the interfaces tensile strength ft are slightly 

lower than the specimens experimental tensile strength, given the contribution of the 

interfaces shear strength due to the irregular fracture plane. Again, the cohesion c was 

taken, in general, equal to 1.5 ft (Lourenço, 1996). However, quite low experimental 

ratios between the compressive and tensile strengths were reported for the units and 

mortars considered here, with values ranging between four and eight. Due to this 

reason, cohesion values lower than 1.5 ft had to be adopted for mortars M1 and M2. 

The values for the friction coefficient tanφ were adopted so that the numerical 

compressive strength showed a good agreement with the experimental strength. The 

values assumed for mode I fracture energy GfI have been based in recommendations 

supported in experimental evidence, see (CEB-FIP, 1993) and (Van der Pluijm, 1999). 

For mode II fracture energy GfII, a value equal to 0.5 c was assumed, with the exception 

of the very high strength mortar M3, for which a lower value equal to 0.3 c was 

adopted. 

The complete material parameters adopted are given in Table IX and, for such 

input, the response obtained is given in Table X. In addition, typical numerical stress-

strain diagrams for both units and mortar specimens are illustrated in Figure 16. 

 

take in Table IX, Table X and Figure 16 

 

 

 

Numerical results and comparison with experimental data 
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In order to reproduce correctly the elastic stiffness of the masonry prisms, the 

experimental elastic modulus of the mortar E must be adjusted by inverse fitting. In 

fact, the mortar experimental stiffness leads to a clear overstiff response of the 

numerical specimens. This can be explained by the fact that the mechanical properties 

of mortar inside the composite are different from mortar specimens cast separately. This 

is due to mortar laying and curing and represents a severe drawback of detailed micro-

models. Table XI gives the adjusted mortar stiffness values E* used in the simulations. 

 

take in Table XI 

 

The numerical results obtained for the masonry prisms considering the mortar 

experimental Num_E and adjusted Num_E* stiffnesses are given in Table XII, where fc 

is the compressive strength and εp is the peak strain. In addition, the prisms 

experimental results are shown for a better comparison. It is noted, however, that the 

reference solution for the numerical simulations is the solution provided by Num_E*. 

Figure 17 depicts the experimental and numerical stress-strain diagrams. 

 

take in Table XII and Figure 17 

 

From the given results, it is clear that the experimental collapse load is 

overestimated by the particle and continuum models, and that the predicted strength is 

affected by the mortar stiffness, especially in the case of the particle model. However, a 

much better agreement with the experimental strength and peak strain has been achieved 

with the particle model, when compared to the continuum model. In fact, the numerical 

over experimental strength ratios ranged between 165 to 170% in the case of the 
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continuum model while in the case of the particle model, strength ratios ranging 

between 120 and 140% were found. The results obtained also show that the peak strain 

values are well reproduced by the particle model but large overestimations are obtained 

with the continuum model. In fact, for this last model, experimental over numerical 

peak strain ratios ranging between 190 and 510% were found. 

Failure patterns are an important feature when assessing numerical models. The 

(incremental) deformed meshes near failure are depicted in Figure 18 to Figure 20 for 

the continuum model and in Figure 21 for the particle model. In the case of the 

continuum model, the contour of the minimum principal plastic strains is also given for 

a better interpretation of the mechanisms governing failure. It is noted that despite the 

fact that only a quarter of the basic cell has been modelled, the results are shown in the 

entire basic cell to obtain more legible figures. 

 

take in Figure 18 to Figure 21 

 

The numerical failure patterns obtained are similar for both continuum and 

particle models. Even if the proposed particle model approach is phenomenological, the 

failure patterns resemble well typical compression experimental patterns observed in the 

face of masonry specimens. In the case of prism P1, failure occurs mainly due to the 

development of vertical cracks in the centre of the units and along the head-joints, being 

the mortar in the bed-joints severely damaged. Prism P2 fails due to diffuse damage 

developing in units and mortar in a rather uniform manner. In the case of prism P3, 

diffuse damage is also present but localized crushing of the units can be clearly 

observed at one-half and one-sixth of the units length. 
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CONCLUSIONS 

 

The analysis of masonry assemblages using detailed modelling strategies is a 

challenging task. A particle model consisting in a phenomenological discontinuum 

approach has been proposed to represent the microstructure of masonry components, 

attempting to adequately reproduce the experimental behaviour of masonry under 

compression. The model is discussed in detail, including proposals for selection of 

numerical data, sensitivity studies, fracture processes and failure mechanisms, and size 

effect studies. Finally, the particle model is compared with experimental results on 

masonry wallets under uniaxial compression and with numerical simulations using a 

continuum finite element model. 

It is possible to conclude that: (a) discontinuum models show clear advantages 

when compared to standard continuum models, based on plasticity and cracking, in 

predicting the compressive strength and peak strain of masonry prisms from the 

properties of the constituents; (b) compressive and tensile strength values provided by 

the particle model can be considered as particle size and particle distortion independent 

for practical purposes; (c) relations between structural and particle sizes lower than 

seven to ten should be avoided in simulations; (d) size dependent responses have been 

obtained with the proposed model; and (e) shear parameters rather than tensile 

parameters play a major role at the micro-level and greatly influence the overall 

response of compressed masonry, as also confirmed by Vonk (1993). 

Suggestions for further work include validation of the proposed model for the full 

2D failure envelop under biaxial loading, develop more robust solution strategies to 

allow tracing the softening response of the masonry-composite simulations using the 

proposed model, extension of the proposed particle model to 3D configurations and 
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seek for other models developed in discontinuum frameworks in order to provide 

reliable estimations of masonry compressive strength. Finally, also the ability of non-

standard continuum models, such as the microplane model, Adicionar referência Bazant 

et al, to simulate the compression failure of masonry based on the geometry and 

properties of the constituents should be evaluated. 
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FIGURES 

 

 

              

(a)                                               (b) 

Figure 1 – Finite element mesh: (a) particles mesh and (b) interfaces mesh. 
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Figure 2 – Geometry of the 100×100 mm2 specimens used in the simulations. Three distortion 

factors DF and mesh refinement levels MR were considered. 
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       (c) 

Figure 3 – Typical compressive stress-strain diagrams obtained for three different levels of 

mesh refinement (n, 2n and 4n) and three different distortion factors: 

(a) DF = 0, (b) DF = 0.3 and (c) DF = 0.6. 

 



 

 

 

           

                        (a)                                                  (b)                                                 (c) 

Figure 4 – Typical progressive compressive failure of a specimen. Deformed meshes at: (a) 

80% of the peak load, (b) peak load and (c) ultimate load. 
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Figure 5 – Typical deformed meshes obtained from the compression simulations, using three 

distortion factors DF and mesh refinement levels MR. 

 



 

 

Figure 6 - Tensile stress-strain diagrams and failure patterns obtained 

for specimens with MR = 2n and DF = 0.3. 

 

 

           

                                (a)                                     (b)                                      (c) 

Figure 7 – Typical progressive tensile failure of a specimen. Deformed meshes at: (a) 80% of 

the peak load, (b) peak load and (c) ultimate load. 
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Figure 8 – Typical deformed meshes obtained from the tension simulations. Three distortion 

factors DF and mesh refinement levels MR were considered. 

 



 

   

                               (a)                                                                     (b)  

Figure 9 – Stress-strain diagrams obtained for specimens with: (a) different size and 

(b) different shape. In this last figure, typical diagrams and the average compressive 

strength values fc obtained from three different simulations are given 

for each shape (10×30, 10×10 and 30×10 mm2). 
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Figure 10 - Tested masonry wallets and location of strain gauge measurements, Binda et 

al. (1988). The dimensions are in mm. 

 

 

                                  

Figure 11 - Typical experimental failure patterns, Frigerio and Frigerio (1985). The shaded 

areas indicate spalling of material. 

 

 

 

 



 

 

Figure 12 - Stress-strain diagrams obtained by adapting the fracture energy Gf as a function of 

the initial value Gf
* in order to obtain a size independent response. 
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Figure 13 – Definition of basic cell: (a) running bond masonry and (b) geometry. 

 

 

 

Figure 14 – Continuum model (a quarter of the basic cell, assuming symmetry conditions). 
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Figure 15 – Particle model (a quarter of the basic cell, assuming symmetry conditions). 
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Figure 16 – Typical numerical stress-strain diagrams obtained for the masonry components: 

(a) unit, (b) mortar M1, (c) mortar M2 and (d) mortar M3. 
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         (c) 

Figure 17 – Numerical and experimental stress-strain diagrams, using adjusted mortar 

stiffness values, for prism: (a) P1, (b) P2 and (c) P3. In the diagrams, PM stands for particle 

model, CM for continuum model, and Exp for experimental data. 

 



 

     

                                (a)                                                                   (b) 

Figure 18 – Results obtained at failure for prism P1 using the continuum model: (a) deformed 

(incremental) mesh and (b) minimum principal plastic strains. 

 

 

    

                                (a)                                                                   (b) 

Figure 19 – Results obtained at failure for prism P2 using the continuum model: (a) deformed 

(incremental) mesh and (b) minimum principal plastic strains. 

 

 

     

                                (a)                                                                   (b) 

Figure 20 – Results obtained at failure for prism P3 using the continuum model: (a) deformed 

(incremental) mesh and (b) minimum principal plastic strains. 
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Figure 21 – Deformed (incremental) meshes near failure using the 

particle model for prisms: (a) P1, (b) P2 and (c) P3. 

 



 

TABLES 

 

 

Table I – Elastic properties for the particles and interfaces. 

 Average 
values 

Coef. of 
variation [%] 

E 5000 N/mm2 30 Particles 
ν 0.15 0 
kn 104 N/mm3 0 Interfaces ks 104 N/mm3 0 

 

 

Table II – Inelastic properties for the interfaces. 

 Average 
values 

Coef. of 
variation [%] 

ft 1.0 N/mm2 50 
GfI 0.050 N/mm 50 
c 1.5 N/mm2 50 

GfII 0.75 N/mm 50 
tanφ 0.30 50 

 

 

Table III – Average values from three analyses obtained for the compressive strength 

fc [N/mm2] according to different values of mesh refinement MR and distortion 

factor DF (values in brackets give the coefficient of variation). 

 MR = n MR = 2n MR = 4n 
DF = 0 12.0 (10.4%) 11.6 (0.6%) 12.0 (6.7%) 

DF = 0.3 10.9 (15.4%) 11.1 (10.4%) 11.6 (3.3%) 
DF = 0.6 9.9 (15.3%) 11.0 (13.8%) 11.4 (8.4%) 

 

 



 

Table IV – Average compressive strength fc from three analyses assuming different values for 

the interfaces tensile strength ft. In brackets, the ratio against the reference bold value is given. 

 c = 1.5 N/mm2 
ft [N/mm2] 1.0 0.5 (–50%) 0.25 (–75%) 
fc [N/mm2] 11.1 9.9 (–11%) 9.2 (–17%) 

 

 

Table V – Average compressive strength fc from three analyses assuming different values for 

the interfaces cohesion c. In brackets, the ratio against the reference bold value is given. 

 ft = 1.0 N/mm2 
c [N/mm2] 1.5 0.75 (–50%) 0.37 (–75%) 
fc [N/mm2] 11.1 8.1 (–27%) 6.5 (–41%) 

 

 

Table VI – Average values from three analyses obtained for the tensile strength ft [N/mm2] 

according to different levels of mesh refinement MR and distortion factors DF 

(values in brackets give the coefficient of variation). 

 MR = n MR = 2n MR = 4n 
DF = 0 1.1 (11.8%) 1.1 (9.8%) 1.1 (4.1%) 

DF = 0.3 0.9 (9.8%) 1.0 (7.6%) 1.1 (4.1%) 
DF = 0.6 0.9 (13.3%) 1.0 (1.1%) 1.0 (1.4%) 

 

 

Table VII – Mechanical properties of the masonry components, (Binda et al., 1988). 

E ν fc ff Component 
[N/mm2] [-] [N/mm2] [N/mm2] 

Unit 4865 0.09 26.9 4.9 
Mortar M1  1180 0.06 3.2 0.9 
Mortar M2 5650 0.09 12.7 3.9 
Mortar M3 17760 0.12 95.0 15.7 

 



 

Table VIII – Mechanical properties of the masonry prisms, (Binda et al., 1988). 

E fc Prism type Mortar type [N/mm2] [N/mm2] 
P1  M1 1650 11.0 
P2 M2 3835 14.5 
P3 M3 4565 17.8 

 

 

Table IX – Values assumed for the material parameters (in brackets, 

the coefficient of variation is given). 

  Unit M1 M2 M3 
E [N/mm2] 6000 (30%) 1500 (30%) 7000 (30%) 22000 (30%) Particles 

ν [-] 0.09 (0%) 0.06 (0%) 0.09 (0%) 0.12 (0%) 
kn [N/mm3] 1×104 (0%) 1×104 (0%) 3×104 (0%) 8×104 (0%) 
ks [N/mm3] 1×104 (0%) 1×104 (0%) 3×104 (0%) 8×104 (0%) 
ft [N/mm2] 3.40 (45%) 0.75 (45%) 3.50 (45%) 10.50 (45%) 
GfI [N/mm] 0.170 (45%) 0.038 (45%) 0.175 (45%) 0.525 (45%) 
c [N/mm2] 5.10 (45%) 0.30 (45%) 0.70 (45%) 15.75 (45%) 

GfII [N/mm] 2.55 (45%) 0.15 (45%) 0.35 (45%) 3.15 (45%) 

Interfaces 

tanφ [-] 0.10 (45%) 0.00 (0%) 0.00 (0%) 0.10 (45%) 
 

 

Table X – Numerical response obtained for the masonry components 

(in brackets, the coefficient of variation is given). 

 Unit M1 M2 M3 
fc [N/mm2] 27.2 (2.7%) 3.2 (5.0%) 12.7 (5.4%) 95.8 (4.4%) 
ft [N/mm2] 3.61 (1.4%) 0.64 (4.7%) 2.70 (4.2%) 11.62 (6.6%) 
E [N/mm2] 4786 (1.9%) 1309 (1.4%) 5632 (3.0%) 17176 (3.1%) 

 

 

 

 

 



 

Table XI – Adjusted stiffness values E* for the mortar. 

Particle model Continuum 
model Particles Interfaces Mortar type 

E [N/mm2] E [N/mm2] kn [N/mm3] ks [N/mm3] 
M1 355 355 104 104 
M2 735 750 104 104 
M3 1065 1200 104 104 

 

 

Table XII – Experimental results Exp and numerical results using experimental 

Num_E and adjusted Num_E* mortar stiffness values. 

 Continuum model Particle model 
Prism type P1 P2 P3 P1 P2 P3 

Exp 11.0 14.5 17.8 11.0 14.5 17.8 
Num_E 19.8 24.2 31.0 15.5 19.3 30.8 fc [N/mm2] 
Num_E* 18.2 24.1 30.0 15.4 17.3 24.6 

Exp 10.5 7.9 6.6 10.5 7.9 6.6 
Num_E 10.6 9.7 8.4 5.4 4.6 6.2 εp [10-3] 
Num_E* 19.9 16.0 33.5 11.8 8.1 8.9 

 


