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ABSTRACT 

The homogenised failure surfaces obtained through the simple micro-mechanical model developed 

in the first part of the paper are here used for the analysis of in-plane loaded masonry walls. Both 

upper and lower bound homogenised limit analyses are employed for treating meaningful structural 

cases, namely a deep beam and a set of shear walls. Detailed comparisons between the experimental 

data and numerical results obtained using both a heterogeneous and a homogenised approach are 

also presented. The examples show the efficiency of the homogenised technique with respect to: 

1) accuracy of the results; 2) reduced number of finite elements required; 3) independence of the 

mesh, at a structural level, from the actual texture of masonry. A final example on a large scale wall 

is presented with the aim to show an engineering application of the proposed approach. 
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1 INTRODUCTION 
 
The evaluation of the ultimate load bearing capacity of large scale walls under horizontal and 

vertical loads is a fundamental task for the design of masonry structures. Although in the past 

several models for the analysis of the brickwork have been proposed, the approach based on the use 

of averaged constitutive equations for masonry seems to be the only one suitable to be employed in 

a large scale finite element analysis  [1],  [2]. 

From a practical viewpoint, in fact, a heterogeneous approach based on micro-modelling seems to 

be limited to the study of panels of small dimensions, due to the large number of variables involved 

in a non linear finite element analysis. Therefore, alternative strategies based on macro-modelling 

have been recently developed in order to tackle engineering problems. As already discussed in the 

companion paper (part I), a drawback of macro-approaches is the mechanical characterisation of the 

model, which is essentially derived from experimental data fitting  [3]. Obviously, this means that 

the introduction of new materials and/or the application of a well known material in different 

loading conditions might require a different set of experimental programs on masonry specimens. 

On the other hand, the homogenisation technique seems to be a very powerful tool for the analysis 

of large scale masonry structures, because mechanical properties of constituent materials and 

geometry of the elementary cell are taken into account only at a cell level. In this way, large scale 

walls can be analysed through standard finite element codes without direct representation of the 

micro-mechanical properties of the cell, such as texture, thickness, geometry of units and 

mechanical characteristics of components. Furthermore, the application of homogenisation theory 

to the rigid-plastic case  [4]  [5] requires only a reduced number of material parameters and provides, 

from an engineering viewpoint, important information at failure, such as limit multipliers of loads, 

collapse mechanisms and, at least on critical sections, the stress distribution  [6]. For the above 
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reasons, homogenisation combined with limit analysis seems to be an efficient tool for the ultimate 

analysis of large scale masonry structures. 

Nevertheless, a typical drawback of this approach is its inability to predict displacements at the 

collapse. Moreover, an infinite plastic deformation capacity of the material at hand is assumed: this 

hypothesis should be checked case by case, depending on the geometry of the masonry wall and on 

the distribution of loads applied. In particular, masonry walls exhibiting rocking failure modes or 

shear failure modes present usually a significantly ductile behaviour.  

In this paper, a homogenised finite element limit analysis is discussed in detail and applied to 

several examples of technical relevance. Both upper and lower bound approaches are developed, 

with the aim to provide a complete set of numerical data for the design and/or the structural 

assessment of complex structures. The finite element lower bound analysis is based on the 

equilibrated triangular element by Sloan  [7], while the upper bound is based on a modified version 

of the triangular element with discontinuities of the velocity field in the interfaces by Sloan and 

Kleeman  [8]. The modification takes into account the actual shape of the yield surface for the 

homogenised material in the interfaces. 

The paper is organised as follows: in Section 2, a concise review of the finite element lower bound 

approach is reported, whereas in Section 3 the upper bound modified triangular element with jump 

of velocities in interfaces is discussed. Some meaningful structural examples are treated in detail in 

Section 4, concerning a deep beam  [9] and a set of shear walls  [10]. The reliability of the 

homogenised approach is assessed through a comparison with experimental results and a 

heterogeneous approach recently presented in the literature  [11]. Finally, in Section 5, the analysis 

of an existing structure  [12] is discussed in detail, with the aim of showing the possibilities and the 

reliability of the proposed model in comparison with other approaches. In the Appendix, the mesh 
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dependence of the results, both for the upper and the lower bound elements, is discussed, using one 

of the examples reported in the text. 

 
 
2 THE LOWER BOUND APPROACH 
 

For the lower bound approach, a complete 2D finite element limit analysis program based on the 

equilibrated triangular element by Sloan  [7] has been implemented using Matlab™. The triangular 

element, used to model the stress field under plane stress, is shown in Figure 1. The variation of 

stresses throughout each element is linear. Differently from the elements used in displacement finite 

element analysis, in a limit analysis program several nodes may share the same coordinate, being 

each node associated with only one element. In this way, statically admissible stress discontinuities 

can occur at shared edges between adjacent triangles. Denoting by NE the number of triangles in the 

mesh, the number of nodes is 3NE and 9NE are the total unknown stresses (three stresses per node, 

namely xxΣ , yyΣ and xyΣ ). The nine unknown stress parameters of the element have to fulfil 

internal equilibrium conditions, which lead to two equations per element (formulated in the x and y 

directions). Furthermore, additional constraints on the nodal stresses at the edges of adjacent 

triangles are imposed in order to secure interfacial equilibrium. With this aim, the continuity of the 

shear and normal components of the stress tensor between adjacent elements is imposed, i.e. the 

stress vector on the edges of the triangle is preserved passing from a goven element to the 

neighbouring element. 

Following  [13], the previous conditions of equilibrium and admissible discontinuities for an 

element can be given, in compact notation, as follows:  

 ΣHq ~=  (1)
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Eq. (1) represents the equilibrium equation for the homogenised material and corresponds to Eq. 

(7a) and (9a) of the companion paper (Part I), which have been written for the microscopic 

quantities. Eq. (1) collects both equilibrium inside an element and the shear and normal stresses 

(expressed in terms of the 9 unknown stresses of the element) on the three edges of the triangle 

(Figure 1). The terms involved more are given more as follows: 

1) H is a 14×9 equilibrium matrix and reads: 
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where rh  and M
rh  (r =1,…,3) are defined in item 4 below). 

2) q takes the role of vector of nodal forces and reads: 

 [ ]TM
3

M
2

M
1321 qqqqqqq ++=  (3)

The involved qi vectors are: 

- the 4×1 interface stress vectors 321 qqq , one for each node of the element. In particular 

[ ]Tkkjj
r qqqqq τστσ 1122= , with 3,2,1=r  2,1,3=j  and 1,3,2=k  (see also Figure 1) represents 

the shear and normal stresses of edges kj,  of the triangle calculated on node r; 

- the 2×1 vectors M
rq , which represent the contribution of the 3 stress parameters of node r to the 

internal equilibrium of the element ( 0b0bΣ ==+ with,div , see Figure 1). Obviously, being the 

stress shape functions linear, the internal equilibrium of each element is satisfied imposing the 

equilibrium, for instance in the barycentre M (or in any other point) of the element. 

3) the 9×1 vector Σ~ , which represents the vector of element unknowns: 
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 [ ]T)3()2()1(~ ΣΣΣΣ =  (4)

and collects the 3x1 vectors of nodal stress parameters )(rΣ  ( [ ]Tr
xy

r
yy

r
xx

r )()()()( ΣΣΣ=Σ , 32,1,=r ). 

4) matrices rh  and M
rh , which depend only on the geometry of the element. Assuming r with 

values ( 32,1,=r ), with A the area of the triangular element and with x, y the coordinates of the 

nodes, rh  and M
rh  are given by the following expressions: 

 

( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )

( ) ( ) ( )( )

( )( ) ( )( ) ( ) ( )
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−
−

−−

−−
−

−−

−−−−−
−

−−

−−
−

−−

=

2

22

22

22

2

2

2

2

22

22

22

2

2

2

2

2

rj

jrjr

rj

jrjr

rj

jrjr

rj

jrjr

rj

jr

rj

jr

kr

rkrk

kr

rkrk

kr

rkrk

kr

rkrk

kr

rk

kr

rk

r

l
xxyy

l
yyxx

l
yyxx

l
yyxx

l
xx

l
yy

l
xxyy

l
yyxx

l
yyxx

l
yyxx

l
xx

l
yy

h

 

 

)(

1

1

2

2

r
r

k

k

j

j

r

q
q
q
q

Σhq =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

τ

σ

τ

σ

  

(5a) 

 

( ) ( )

( ) ( )
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−
−

−

=

A
yy

A
xx

A
xx

A
yy

jkjk

jkjk

r

22
0

2
0

2Mh

 
)(MM r

rr Σhq =

 

(5b) 

where lkr and lrj are the length of the edges connecting nodes kr and rj, respectively 

)2,1,3;1,3,2( == jk . 

Additional constraints on nodal stresses are further imposed in order to enforce prescribed boundary 

conditions. It is worth underlining that, if boundary conditions are prescribed on two sides of an 

element, equation (1) provides four constraints on the three internal stress parameters at the corner 

node that connects these two sides. Therefore, this condition should be avoided in the discretisation 
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process, otherwise a rank deficiency has to be considered in the factorisation of the equilibrium 

equation. 

The objective of the lower bound approach is to determine the optimal stress distribution that 

maximizes the external load for a given structure. Inequality constraints are added to the problem, 

representing the linearised failure surface. The final optimisation problem results in the following 

linear programming (LP): 
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(5c) 

 

Where λ̂  is the load multiplier, Σ  is the vector of (assembled) unknown stress parameters, 

QRHΣ =+ λ  collects equilibrium of elements, equilibrium on interfaces and boundary conditions, 

whereas inin bΣA ≤  represents the assembled linearised failure surface. 

 
3 THE UPPER BOUND APPROACH 
 
The upper bound approach developed in this paper is based on the formulation presented in  [8] by 

Sloan and Kleeman. Such formulation is based on a triangular discretization of 2D domains and on 

the introduction of discontinuities of the velocity field along the edges of adjacent triangles. 

For each element E , two velocity unknowns per node i , say i
xxu and i

yyu  (one horizontal and one 

vertical, see Figure 2-a) are introduced, so that the velocity field is linear inside an element, 

whereas the strain rate field is constant. 

Jumps of velocities on interfaces are supposed to vary linearly. Hence, for each interface, four 

unknowns are introduced ( [ ]TI uvuv 2211 ∆∆∆∆=∆u ), representing the normal ( iv∆ ) and tangential 
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( iu∆ ) jumps of velocities (with respect to the discontinuity direction) evaluated on nodes 1=i  and 

2=i  of the interface (see Figure 2-b). For any pair of nodes on the interface between two adjacent 

triangles ( ) ( )nm − , the tangential and normal velocity jumps can be written in terms of the 

Cartesian nodal velocities of elements ( ) ( )nm −  (see  [8] for details), so that four linear equations in 

the form 0uAuAuA =∆++ IeqEneqEmeq
131211  can be written for each interface, where Emu  and Enu  are 

the 16x  vectorsthat collect velocities of elements ( )m  and ( )n  respectively. 

It has been shown  [8] that the definition of kinematically admissible velocity fields with 

discontinuities on interfaces is adequate for purely cohesive or cohesive-frictional materials, which 

is the case of masonry. From a mathematical point of view, it is worth mentioning that the velocity 

field in the rigid plastic case has to be considered in a functional space larger than the one for the 

elastic case. Sloan and Kleeman  [8] developed an approach for an isotropic material with a Mohr-

Coulomb failure surface. Here, a generalisation is developed, with the aim of taking into account 

the actual shape of the homogenised failure surfaces for interfaces. 

For continuum, no modifications are required. Namely, three equality constrains representing the 

plastic flow in continuum (obeying an associated flow rule) are introduced for each element: 
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pl λ&& , where E
plε&  is the plastic strain rate vector of element 

E , 0≥λ&  is the plastic multiplier and homS  is the (non) linear failure surface. Since in the 

companion paper (Part I), a statically admissible linear approximation (with m  planes) of the 

failure surface has been proposed ( inS bΣAin ≤≡hom ), three linear equality constraints per element 

can be written in the form 0λAuA =+ EeqEeq &
1211 , where Eu  is the vector of element velocities and Eλ&  

is a 1mx  vector of plastic multiplier rates (one for each plane of the linearised failure surface). 
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For the interfaces, a 2D projection of the 3D failure surfaces is required, which depends on the 

orientation ϑ  of the interface with respect to the horizontal direction. 

If a linear approximation of the failure surface is considered (as usually done in the framework of 

limit analysis, see Part I), for the problem at hand the resulting failure surfaces for interfaces are 

piecewise linear and generally constituted by Im  segments. They can be easily found once the 

linearised homogenised failure surface for continuum is provided, for instance through the 

following optimisation: 
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where: 

- { }T
n τσ=σ  is the vector of stress components in the interface; 

- T  is the rotation matrix; 

- homS is the (linearised) homogenised failure surface, already introduced in Part I. 

- [ ]πψ 2;0∈  represents the direction of optimisation in the τσ −n  plane. 

Once the linearised domains for interfaces are provided by means of (6), the power dissipated on 

the discontinuities is computed introducing plastic multipliers for every interface I as follows: 
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where:  

- ξ is the abscissa of I. 
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- )(if σ∇ are constant gradients for the failure surface (being )(if , the ith segment of the multi-linear 

failure surface); 

- )(i
Iλ&  are the interface plastic multiplier rates, evaluated in correspondence of ξ , integrated along 

the infinitesimal thickness of interfaces and associated with the ith segment of the multi-linear 

failure surface; 

- Iv∆  and Iu∆  have been already introduced and are respectively the normal and tangential jump 

of velocities on the discontinuities. 

After some elementary assemblage operations, a simple linear programming problem is obtained 

(analogous to that reported in  [8]), where the objective function consists in the minimization of the 

total internal power dissipated:  
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where:  

- T
EC  and T

IC  are the (assembled) right-hand sides of the inequalities which determine the linearised 

failure surface of the homogenised material respectively in continuum and in the interfaces. 

- [ ]assIassIassE ,,, λuλuU && ∆=  is the vector of global unknowns, which collects the vector of 

assembled nodal velocities (u ), the vector of assembled element plastic multiplier rates ( assE ,λ& ), 

the vector of assembled jump of velocities on interfaces ( assI ,u∆ ) and the vector of assembled 

interface plastic multiplier rates ( assI ,λ& ). 
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- eqA  is the overall constraints matrix and collects velocity boundary conditions, relations between 

velocity jumps on interfaces and elements velocities, constraints for plastic flow in velocity 

discontinuities and constraints for plastic flow in continuum. 

It is worth noting that assET
E

,λC &  and assIT
I

,λC &  in the objective function represent respectively the 

total power dissipated in continuum and in interfaces. Within each triangle E of area A, supposing 

(as already pointed out) the homogenised (linearised) failure surface constituted by m  planes (of 

equation mqCAAA q
Exy

q
xyyy

q
yyxx

q
xx ≤≤=Σ+Σ+Σ 1 ), it can be easily shown that the power 

dissipated is expressed by the linear equation: 
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where )(q
Eλ&  is the plastic multiplier rate of the triangle E associated to the qth plane of the linearised 

failure surface, Figure 2. 

In a similar way, within each interface I of length Γ , supposing the homogenised (linearised) 

strength domain constituted by Im  straight lines (of equation IIq
I

q
n

q
n mqCAA

III

≤≤=+ 1τσ τ ), the 

power dissipated is: 
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Where )(q
Iiλ& and )(q

Ifλ&  represent respectively the qth plastic multiplier rate of the initial (i) and final (f) 

point of the interface I, being the variation of plastic multiplier rates on interfaces linear. 

From a numerical viewpoint, it is worth noting that the overall constraint matrix of the optimisation 

problem given by equation (8a), reduced in standard form, always has fewer rows than columns. 

For refined meshes, the ratio of columns to rows in the overall constraint matrix is essentially 

dependent on the number of planes used in the linearisation of the yield surface (in continuum and 
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on interfaces). Furthermore, for refined meshes, the density of the overall constraint matrix is very 

low, i.e. its sparsity becomes larger when the number of elements increases. As suggested by Sloan 

 [7], problems with many elements and refined linearisations of the yield surfaces can be handled 

using the steepest edge active set algorithm  [14] to solve the dual of equation (8). This algorithm 

provides a very efficient solution strategy and is suited for sparse linear programming problems, 

with more rows than columns in the constraint matrix. 

 

4 EXAMPLES AND COMPARISONS WITH EXPERIMENTAL DATA 
 

In this Section the accuracy of the results obtained through a homogenised approach is validated 

through relevant examples from the literature. For a deep beam test and a set of shear walls, both 

upper and lower bound analyses are dealt with in detail. As it is shown later in the Appendix, 

convergence of the solutions upon mesh refinement is observed in the analysis and the results do 

not essentially depend on mesh orientation. 

 

4.1 DEEP BEAM TEST 
 

The first structural example analysed consists in the limit analysis of a masonry panel acting as a 

deep beam, tested by Page  [9]. The wall has a length L equal to 754 mm and a height H equal to 

457 mm, being supported at each side over a support length Ls equal to 188 mm, see Figure 3. The 

top load p, uniformly distributed, is applied through a stiff steel beam. The deep beam was made of 

half scale pressed solid clay bricks of dimensions 122x37x54 mm3 and 5 mm thick mortar joints. 

The same test has been previously analysed numerically both by Lourenço  [15] through an 

incremental elasto-plastic procedure and by Sutcliffe et al.  [11] through a limit analysis approach. 

In the numerical model proposed by Page  [9] the thickness of the mortar is neglected, so reducing 
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the joints to interfaces. The same simplification is adopted here. Figure 3-b shows the boundary 

conditions imposed in the lower bound analysis, which include, in free edges, zero normal and zero 

shear stress, and, in the loading surface, only zero shear stress. No stress boundary conditions are 

applied at the supports. 

In the framework of limit analysis, a linearised frictional-type failure surface is chosen for joints, 

according to Lourenço and Rots  [16] and Sutcliffe et al.  [11]. The mechanical characteristics of the 

joints at failure are shown in Table I. The linearised homogenised failure surface, obtained using 

the procedure presented in Part I of the paper is shown in Figure 4-a. Furthermore, in Figure 4-b 

some sections of the 3D surfaces for different orientations of ϑ  angle are shown. As it is possible to 

notice the failure surface is typically orthotropic with low tensile strength, as it usually occurs in 

masonry. 

The structural simulations on the deep beam are handled with a refined linearisation (56 planes) of 

the homogenised strength domain. 

 

4.1.1 LOWER BOUND APPROACH 
 
The lower bound on the collapse load found is P= 93.5 kN, very close to the experimental collapse 

load registered by Page (P=109.5 kN) with a percentage error of 14%. In  [11], where a micro-

mechanical model is adopted (i.e. mortar and units are considered separately taking into account 

their different failure surfaces), a very satisfactory agreement with the experimental collapse load 

was found. Nevertheless, as previously discussed, this procedure requires a great computational 

effort in the optimisation due to the number of variables involved. A complete comparison between 

experimental data, previously obtained heterogeneous numerical results  [11] and results obtained in 

the present Paper is reported in Table II. Finally, the principal stress distribution provided by the 

equilibrium model at collapse is shown in Figure 5-a. On the other hand, Figure 5-b shows a 
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comparison between the vertical stress distribution at 75% of the collapse load provided by the 

present model in comparison to that by Page  [9] (i.e. stresses obtained via limit analysis and LP are 

reduced in order to compare them with data from literature). Obviously the homogenised approach 

gives a limit load less than the heterogeneous one. This is mainly a consequence to the fact that 

both the failure surface is a lower bound approximation of the real one and the brick staggering is 

taken into account only at a cell level. The two-strut model appearing in the structure that allows 

the flow of forces from the application edge to the supports is clearly visible, both experimentally 

and numerically. Finally, it should be underlined that the deviation of the stresses (in comparison 

both with experimental and incremental numerical procedures, Figure 5-b), provided by the lower 

bound approach is essentially due to the fact that limit analysis gives meaningful values of stresses 

only where the material strength is fully utilised (i.e. in the plastic regions). 

 
4.1.2 UPPER BOUND APPROACH 
 
Two different finite element models with discontinuities of velocities on interfaces are here 

discussed. In the first one (homogeneous approach), the micro-mechanical model presented in Part 

I of this paper has been employed. In the second one (heterogeneous approach), specifically 

developed in this paper, joints and units have been meshed separately, taking into account their 

different failure surfaces at a structural level. For units, a linearisation with 48 planes of a Mohr-

Coulomb failure criterion in plane stress is adopted (cohesion 2N/mm2c =  and friction angle 

°= 45ϕ ). It is worth noting that in the upper bound homogeneous approach the failure surface is 

derived from the equilibrated approach presented in Part I of the paper which obviously represents a 

non-rigorous lower bound (since failure surfaces of the constituent materials do not fully comply 

with the requirements for the static admissibility, see Figure 6 Part I). Two different heterogeneous 

models are tested, the first, with velocity discontinuities only on joints, and the second, where 
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velocity discontinuities are allowed also on units (i.e. velocity discontinuities also on the interfaces 

not belonging to a mortar joint are permitted). The introduction of discontinuities on bricks permits 

to simulate a behaviour more in agreement with the homogenised model, which takes into account 

the vertical brick staggering only at a cell level. Figure 6 from –a to –c represent the deformed 

shapes at collapse for the three different models analysed. Figure 6-a and -c are similar and indicate 

an indentation type of failure, associated mostly to a straight shear crack to the supports and 

compressive failure at the supports. Figure 6-b exhibits visible locking in the masonry units, which 

is responsible for additional strength of the deep beam. 

The numerical results obtained in terms of collapse load using the discrete and the homogenised 

models are reported in Table III. As stated above, the heterogeneous model with discontinuities also 

inside the bricks is kinematically richer and provides better results (rather similar to the 

homogeneous model). 
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4.2 SHEAR WALLS 
 

A set of experimental tests on masonry shear walls was carried out by Raijmakers and Vermeltfoort 

 [10]. The width/height ratio (L/H) of the shear walls is 990 /1000 ([mm]/[mm]); the walls were built 

up with 18 courses of bricks, from which 16 courses were active and 2 were clamped in stiff steel 

beams, Figure 7. The brick dimensions are 210x52x100 mm3 and the mortar joints are 10 mm thick. 

Three different vertical loads (p1=0.30 N/mm2; p2=1.21 N/mm2; p3=2.12 N/mm2) were applied on 

the top and their resultant was kept constant during the complete loading procedure. The stiff steel 

beam did not allow rotations of the top and was subsequently pushed with an increasing horizontal 

force. 

Let us underline that the limit load analysis of the present experimental test represents a very 

difficult task. In the technical literature numerical simulations have been presented under simplified 

assumptions  [11] of the actual experimental set-up and relevant differences between the 

experimental and limit analysis ultimate load have been obtained for low values of vertical 

pressure. 

In the following, a comparison between the model here proposed and results by Sutcliffe et al.  [11] 

is reported with the sole aim of evaluating the accuracy and the capability of the homogenised 

method. 

 

4.2.1 LOWER BOUND APPROACH 
 
For the problem at hand, different mechanical properties for joints have been measured 

experimentally  [10] for the different shear walls. Mechanical properties for the joints are reported in 

Table IV (from  [11]). Homogenised failure surfaces for the second and third set of experiments 

(p2=1.21 and p3=2.12 N/mm2, identical mechanical characteristics for bricks and mortar) have been 
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already presented in Part I of the paper, while in Figure 8 the homogenised failure surface for the 

first (p1 = 0.30 N/mm2, with slightly changed material parameters) is reported. The structural 

simulations on the shear walls are handled with a refined linearisation (78 planes) of the 

homogenised failure surface. 

The lower bound approach allows to impose only boundary conditions on stresses. If vertical loads 

on the top are assumed to be uniform, a significant error could be present on the collapse multiplier, 

especially for low compressive dead loads. This happens because at very low vertical loads the 

shear wall may overturn and this failure mechanism, involving mainly horizontal joints with their 

strength in tension branch, lowers considerably the collapse multiplier and can only be accepted in 

the simplified analysis carried out here. True experimental boundary conditions preclude rocking 

failure mechanisms. 

In Table V the collapse loads obtained both using the homogenised model here proposed and 

imposing a uniform vertical pressure on the top (according to  [11]) are compared with experimental 

data and Sutcliffe et al. numerical results  [11]. Figure 9 and Figure 10 show respectively the 

principal stresses distribution and the vertical stress contour, obtained by the optimisation procedure 

for the three load cases examined. The single strut action to the support, typical of shear walls, is 

clearly identified in the results. For a higher initially applied vertical load, a plastic region with a 

significant dimension is found at the compressed toe. 

It is worth noting that the overturning of the shear walls can be checked in the framework of the 

lower bound limit analysis considering the dual optimisation problem, which furnishes the 

velocities of the barycentre of the elements at collapse. Following Poulsen and Damkilde  [13], and 

Olsen  [17] the dual problem can be derived from the primal as follows: 
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where vector u  contains the velocities of the barycentre of the elements and vector φ  contains 

slack variables, with non zero components that identify the active part of the yield surface (see, for 

instance, Krenk et al.  [18]). Furthermore, as recently shown by Olsen in  [19], the corresponding 

dual counterpart is more efficient in terms of time required in the optimisation formulating than the 

primal problem of equation (9). 

For practical applications, a sufficiently correct solution could be found through an iterative 

procedure applying a distribution of vertical loads with resultant equal to the total external forces, 

deriving a field of velocities at collapse and finally evaluating an averaged overturning of the top. If 

overturning is present, a different distribution of loads should be attempted. 

In a similar way, an application of a load (for which the resultant is known) on different nodes 

could be handled within a LP scheme introducing a master node connected to all the nodes on the 

loading line. In this manner, one equilibrium equation (between the external total load and the nodal 

stresses integrated) can be written for the loading line. 

Finally, it is interesting to note from Figure 11 (where the simplified assumption on boundary 

conditions here adopted is reported) that the field of velocities at collapse, derived from the dual 

problem (9) for the case p = 0.30 N/mm2, shows the failure mainly concentrated on horizontal 

joints. For the problem at hand, this mechanism requires significantly lower loads than those needed 

to cause diagonal cracking of the panel. 
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4.2.2 UPPER BOUND APPROACH 
 
The same simplified assumptions on boundary conditions are here accepted for an upper bound 

limit analysis. In the upper bound formulation, the external power from the variable load is 

“scaled”, fixing it to e.g. 1, whereas a constant load enters in the optimisation when the total 

external power is evaluated. This means that no constraints are imposed on vertical velocities on the 

top (Figure 12-a), with the aim to allow overturning and reproduce lower bound numerical 

simulations by Sutcliffe et al.  [11]. 

In Table VI a comparison between the homogeneous and the heterogeneous model on the collapse 

load for the three load cases examined is reported. The difference between models in terms of 

collapse load is very low and the field of velocities, reported for the sake of conciseness only for the 

first set of shear walls in Figure 12-b (homogeneous upper bound approach) and Figure 12-c 

(heterogeneous upper bound approach), clearly shows the failure mechanism, fully concentrated on 

a single horizontal joint, which clearly indicates the rocking type of failure obtained with the lower 

bound analysis. 

 
5 APPLICATION TO AN OLD MASONRY BUILDING 
 
An inner wall of a five storey building located in Via Martoglio (Catania, Italy), is here analysed. 

The full geometrical characterisation of the panel with the mesh utilised in the present analysis is 

reported in Figure 13. 1000 triangular elements are used for the numerical simulation. 

The building stands at the corner of Via Martoglio and Via Casoli streets presenting an L shape. 

The walls at the building perimeter are made of irregular stone masonry while the inner walls, as 

the one analysed, are made of regular units of dimensions 250x120x55 mm3 (brick UNI5628/65). 

The floors are small vaults made of clay brick masonry supported by reinforced concrete girders. 

The roof is supported by a timber structure. The last storey has a thickness of 120 mm, while the 
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other storeys have a thickness of 240 mm. The analysed wall is geometrically regular except for the 

large opening at the centre of the first floor and for a recess at the fifth storey. 

The contribution of the RC beams is neglected, supposing the wall constituted only by masonry. 

The thickness of mortar is neglected in the model, reducing the joints to interfaces. A frictional-type 

yield surface with cap in compression is chosen (see Part I) for joints, while for units a linear cut-

off failure criterion in compression is adopted. Numerical values adopted for joints and bricks, 

Table VII, are taken according to Brencich et al.  [12]. The homogenised failure surface obtained 

using the micro-mechanical model presented in Part I is shown in Figure 14.  

It is interesting to note, for instance from a comparison between Figure 14 and Figure 4, the 

dependence of the homogenised surface from the mechanical properties of the components and the 

capability of the model to take into account this dependence. The analysis is performed making use 

of a linearisation of the homogenised surface with 42 planes. The complete 2D geometrical model 

of the wall has been meshed by means of an automatic mesh generator (Strand 7™ V.1.05.6) and 

the discretised geometry has been exported in Matlab-like format to provide a lower and an upper 

bound limit analysis. 

For the lower bound analysis, the seismic load is applied in correspondence of floors by means of 

an horizontal distributed load of intensity ( )constantii kk λ , where λ  is the limit multiplier and ik , 

defined in Figure 13, is taken according to the suggestions of the Italian Code ( [12]). 

Vertical loads, which are independent from the load multiplier, are applied in a similar way in 

correspondence of the floors, i.e. by means of distributed vertical actions inside the elements. For 

the sake of simplicity, self weight of masonry is supposed concentrated in correspondence of the 

floors and added to the remaining dead loads, which are taken according to  [12] and  [20]. 



 21

The lower bound analysis gives a total shear at the base of the building of 691 kN, in good 

agreement with the results obtained in  [12] with an incremental procedure (≅ 750 kN). Finally in 

Figure 15 the distribution at collapse of principal membrane actions is reported, with the typical 

flow of forces in diagonal struts in the piers, associated with combined vertical and horizontal 

loads. The lower intensity of membrane actions in correspondence of the last storey is due to the 

reduction of the thickness (one-half with respect to the thickness of the other storeys) and the low 

loads at the roof level. 

In the upper bound analysis, Figure 16, a triangular field of velocities is imposed at every storey, 

decreasing from the top (where a horizontal velocity 1u =  is imposed) to the base (clamped). This 

choice is in agreement with simulations reported in  [20], where a seismic mode I is assumed for the 

wall. The total shear at the base provided by the upper bound analysis is 787 kN, in good agreement 

with the results reported in literature. The field of velocity at collapse, Figure 16, clearly shows the 

cantilever columns mechanism and the failure mainly concentrated on lintels (shear) due to the 

flexural deformation of the piers. 

 

6 CONCLUSIONS 
 
In the present Paper, the micro-mechanical model presented in Part I by the authors has been 

applied to the homogenised limit analysis of actual masonry walls. 

Meaningful structural examples have been dealt with in detail using both lower and upper bound 

methods. The reliability of the approach has been shown, for the lower bound case through a 

comparison with a heterogeneous limit analysis already presented in literature  [11] and, for the 

upper bound case, with a heterogeneous analysis specifically developed by authors. 

Finally, an example of an existing masonry building is presented with the aim to show an 

engineering application of the proposed approach. The approach appears advantageous if compared 
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with classical incremental procedures, due both to the well known stability of linear programming 

schemes and to the very limited computational time required for the simulations. 
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APPENDIX: MESH INDEPENDENCE STUDY 
 

A mesh dependence study is here reported in the case both of the lower and the upper bound 

approach. The study is referred to the collapse load of the deep beam test evaluated using different 

mesh-patterns. Three different mesh-patterns have been considered, namely one crossed triangle 

mesh and two preferentially oriented triangular meshes, and four mesh sizes have been considered 

for each mesh-pattern, as shown in Figure 17. The results obtained using respectively a lower and 

an upper bound analysis, with and without discontinuities, are also reported in Figure 17. Two 

aspects are particularly worth noting, the first is referred to the convergence to a unique value for 

sufficiently refined meshes, the second is related to the higher accuracy of the upper bound 

approach with discontinuities on interfaces in comparison with a continuous one. 
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Figure 17: Mesh dependence plot for the deep beam test. 
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ft [N/mm2] 

 

fc [N/mm2] 

 

1Φ  2Φ  c [N/mm2] 

0.29 8.6 37° 30° 1.4 ft 

Table I 
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Collapse Load [kN] Number of elements 

Homogenous approach 
 

93.5 288 (mesh 24x6) 

Heterogeneous approach 
 [11] 

 

105.2 708(*) 

Experimental 
 

109.2 - 

(*)interfaces included 
Table II 
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Collapse Load [kN] Number of elements 

Homogeneous approach 
 

115.9 400 (mesh 20x10) 

Heterogeneous approach 
with discontinuities on units 

and joints 
 

117 1056(*) 

Heterogeneous approach 
without discontinuities on 

units 
 

148 528 (*) 

(*)interfaces excluded 
Table III 
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Vertical load p 
[N/mm2] 

 

ft [N/mm2] 

 

fc [N/mm2] 1Φ  2Φ  

 

c [N/mm2] 

0.30 0.25 10.5  37° 30° 1.4 ft 

1.21 & 2.12 0.16 11.5 37° 30° 1.4 ft 

Table IV 
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Collapse Load [kN] 

Vertical load p [N/mm2] 
 

Homogeneous 
approach 

Heterogenous 
approach  [11] 

 

Experimental 

0.30 24.22 26.5 50 
1.21 54.63 57.5 72 
2.12 80.81 82.9 97 

Table V 
 



 49

 

 
 

Collapse Load [kN] 
 

Vertical load p [N/mm2] 
 

 

Homogeneous 
approach 

Heterogeneous 
approach 

 
0.30 30.71 27.75 
1.21 65.12 61.20 
2.12 90.66 88.68 

 
Table VI 
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Joint Unit 

c [N/mm2] 

 

ft [N/mm2] 

 

fc [N/mm2] 1Φ  2Φ  fc [N/mm2] 

0.15 0.1 6 27° 90° 3 

Table VII 

 
 
 


