
JaSkel: A Java Skeleton-Based Framework for
Structured Cluster and Grid Computing*

J. F. Ferreira, J. L. Sobral, and A. J. Proença

Departamento de Informática, Universidade do Minho, Braga, Portugal

Abstract

This paper presents JaSkel, a skeleton-based
framework to develop parallel and grid applications.
The framework provides a set of Java abstract classes
as a skeleton catalogue, which implements recurring
parallel interaction paradigms. This approach aims to
improve code efficiency and portability. It also helps to
structure scalable applications through the refinement
and composition of skeletons. Evaluation results show
that using the provided skeletons do contribute to
improve both application development time and
execution performance.

1. Introduction

Cluster and Grid computing environments require
adequate tools to structure scalable applications, taking
advantage of the underlying multi-layer architecture,
namely a grid of clusters with shared memory multi-
core processing nodes.

Skeleton based tools are especially attractive for
these environments, since they provide a structured
way to develop scalable applications, supporting
composition of base skeletons. This work addresses the
use of skeletons applied to a Java object-oriented
environment.

Skeletons are abstractions modelling common,
reusable parallelism exploitation patterns [2][3]. A
skeleton may also be seen as a high order construct
(i.e. parameterized by other pieces of code) which
implements a particular parallel behaviour.

Our skeleton catalogue is a collection of code
templates implemented as a library of Java abstract
classes. The catalogue aims to help programmers to
create code for grids of parallel computing platforms.

The computing development environment presented
here contains a Java skeleton-based framework,
JaSkel, as a support structure where software projects
can be organised and developed. Programmers select

*This work was supported in part by PPC-VM project
(POSI/CHS/47158/2002) and by project SeARCH (contract
REEQ/443/2001) both funded by Portuguese FCT.

appropriate skeletons and fill in the gaps with pieces of
domain-specific code. The environment provides all
the relevant components for scalable computing
platforms, including a run-time adaptive load
distribution.

This work differs from other research environments
[9][10] in the way it uses different and orthogonal
components for distinct tasks: a skeleton-based
framework to structure scalable applications (which
may use one or more processors), a code generator
which supports distribution of selected object classes
and an adaptive run-time load and data scheduler. The
independence between these components lets
programmers develop, test and run structured
applications in a non-distributed environment, and it
simultaneously supports an efficient use of skeletons
on distributed and shared memory architectures.

JaSkel also exhibits advantages over competitive
skeleton frameworks: JaSkel is an inheritance based
framework and it supports orthogonal and hierarchical
composition of skeletons.

Domain-specific code in skeletons is specified by
refinement, implementing abstract methods. This
structure overcomes the lack of extensibility of other
skeleton frameworks, since the provided skeletons can
be modified by inheritance. The framework itself is
organised as a hierarchy of classes, e.g., a concurrent
farm extends a sequential farm.

Complex parallel applications can be obtained
through composition of skeletons, such as multi-level
farms or farms of pipelines. This feature may take
advantage of current grid computing, where grid nodes
are clusters with SMP nodes.

The description of the code generator and run-time
load distribution tools is out of the scope of this
presentation.

The remainder of this paper is organised as follows.
Section 2 presents related work. Section 3 describes
the skeleton-based Java framework built to help
programmers to structure scalable applications. Section
4 presents qualitative and performance evaluation of
skeletons from the framework. The last section
discusses the obtained results and draws some
conclusions on the work done so far.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55607587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2. Related work

Several skeleton based systems have been proposed
and most support skeleton composition (i.e., nesting)
[11][5][3]. The most relevant Java environments for
parallel programming based on skeletons are Lithium
[10] and CO2P3S [9]. Lithium supports skeletons for
pipeline, farm and divide & conquer, as well as other
low level skeletons (map, composition). CO2P3S is
based on generative patterns, where skeletons are
generated and the programmer must fill the provided
hooks with domain specific functionality.

The main differences between JaSkel and these
approaches are:

- JaSkel explores class hierarchy and inheritance
along with object composition;

- JaSkel provides separate tools to structure parallel
applications and to implement communication
and distribution;

- JaSkel includes sequential and parallel skeletons.
A skeleton hierarchy overcomes the main

limitations of other alternatives, supporting refinement
of provided skeletons, including implementation of
non-pure functional skeletons (e.g., skeletons that
maintain state between invocations).

A separate tool to implement distribution provides
an enhanced fine-grained control over distribution
issues. Distribution is orthogonal to the framework
class hierarchy, which lets the programmer to use
several distribution middleware along with class
hierarchies. This feature is required to address current
grid heterogeneity, both in hardware and in
middleware.

JaSkel also provides sequential versions of all
skeletons; moving from a sequential version to a
parallel one just requires the change of the name of the
extended base class. This approach eases the
development in early coding phases and in debugging
activities.

3. A Java skeleton-based framework

Many parallel algorithms share the same generic
patterns of computation and interaction. Skeletal
programming proposes that such patterns be abstracted
and provided as a programmer's toolkit. We call these
abstractions algorithmical skeletons, parallel skeletons
or simply skeletons.

Skeletons provide simple interfaces to programmers
with an incomplete structure that can be parameterized
by the number of processors, domain-specific code or
data distribution; programmers can focus on the
computational side of their algorithms rather than the
control of the parallelism.

3.1. JaSkel framework

The current JaSkel prototype (JaSkel 1.01) includes
skeletons for farm and pipeline parallel coding. To
write a parallel application in JaSkel, a programmer
must perform the following steps:

1) To structure the parallel program and to express it
using the available skeletons;

2) To refine the supplied abstract classes and write
the domain-specific code;

3) To write the code that starts the skeleton, defining
other relevant parameters (number of processors,
load distribution policy, ...).

The current JaSkel prototype provides several
versions of farm and pipeline skeletons:

- a sequential farm;
- a concurrent farm that creates a new thread for

each worker;
- a dynamic farm, which only sends data to workers

when they require them;
- a sequential pipeline;
- a concurrent pipeline, which creates a new thread

for each data flow.
A JaSkel skeleton is a simple Java class that

implements the Skeleton interface and extends the
Compute class (Figure 1). The Skeleton interface
defines a method eval that must be defined by all the
skeletons. This method starts the skeleton activity.

+compute(in : Object) : Object

Compute

+eval() : void

«interface»
Skeleton

+split(in : Object) : Collection
+join(in : Collection) : Object
+getResult() : Object
+eval() : void
+compute(in : Object) : Object

Farm Skeleton
«uses»

Figure 1. The sequential farm skeleton implements the
Skeleton interface and extends the Compute class to
allow skeleton composition.

To create objects that will perform domain-specific
computations, the programmer must create a subclass
of class Compute (inspired in Lithium). The Compute
abstract class defines an abstract method public
abstract Object compute(Object input) that defines the
domain-specific computations involved in a skeleton.

For instance, to create a Farm (see Figure 1 for a
Farm UML class diagram), a programmer needs to
perform the following steps:

1) To create the worker's class, extending Compute
and implementing the inherited method public
Object compute(Object input);

2) To create the master's class, extending Farm,
defining the methods public Collection

split(Object initialTask) and public Object
join(Collection partialResults);

3) To create a new instance of the master's class and
call the method eval; this method will basically
perform the following steps:
- it creates multiple workers;
- it splits the initial data using the defined split

method;
- it calls compute method from each worker with

the pieces of data returned by method split;
- it merges the partial results using the defined

join method.
The specialisation or the creation of a new skeleton

is done by class refinement. The concurrent farm
skeleton extends the sequential farm skeleton and a
dynamic farm extends a concurrent farm.

JaSkel skeletons are also subclasses of Compute
class to allow composition. The method public Object
compute(Object input) on skeletons calls the eval
method to start the skeleton activity.

3.2. Building JaSkel applications

The best way to show how to build a skeleton-based
application is through an example: to find and count all
prime numbers up to N.

A Java implementation that codes this algorithm
marks the multiples, setting them to 0. This
implementation consists of two entities: a number
generator and a prime filter. The first generates the
input integer array [2..N] and the latter filters the
non-prime integers. In a simple farm parallelisation the
input array is decomposed in smaller pieces, and each
piece is sent to a prime filter; each prime filter will test
the input integers using the filter [2..sqrt(N)].

The examples bellow show how the JaSkel
framework codes this algorithm using different
scalable structures. The code was slightly simplified to
improve readability.

3.2.1. Prime sieve as a farm. The prime filter (the
farm worker) is illustrated in Code 1. Its main method
is filter (line 03), which filters the given integer array.
The compute method (lines 06-08), needed to define
the skeleton's domain-specific code, delegates its job to
the method filter. Note that the class FarmPrimeFilter
is a subclass of Compute (line 01).

Code 2 illustrates the class GeneratorFarm (the
farm master): it extends the skeleton FarmConcurrent
(line 1), it uses private methods to implement methods
split (lines 5-7) and join (lines 8-10).

Code 3 shows the code that connects these entities:
- it creates one prime filter object (line 3);
- it creates a new farm generator object, setting its

parameters: the worker, and input data (line 4);
- it starts the skeleton activity, calling method eval;
- it gets the final result, using method getResult.

3.2.2. Prime sieve as a farm of farms. A two-level
farming can be easily created with farm nesting: only a
few modifications are required in lines 3-4 to create
this hierarchy (Code 4). The line 4 in Code 4 creates
one inner farm in the same way as the previous
example. Line 5 creates the main farm, where each
worker is also a farm. The JaSkel framework will
clone the inner farm and its workers on each node.

4. Performance evaluation

This section aims to show that the benefits of the
skeleton based framework did not impose performance
degradation. We present the performance of a
reference algorithm: a parallel ray tracer, from the Java
Grande Forum [6]. These results were collected on a
cluster with 16 dual Xeon 3.2 GHz 2MB L2 cache
computing nodes, with multi-threading enabled (i.e.,
with four Intel HT virtual processors), connected by
Gigabit Ethernet, running CentOS 4.0. Presented
values are the median value of 5 runs.

Table 1 compares executions times and speed-ups of
two implementations (with an image of size 500x500):

… // same as code 3
03 FarmPrimeFilter pf = new FarmPrimeFilter();
04 GeneratorFarm innerFarm = new GeneratorFarm(pf, null);
05 GeneratorFarm g = new GeneratorFarm(innerFarm, ar);
… // same as code 3

Code 4. A two level farm.

01 int [] ar = new int[…]; // buffer of numbers to filter
02 for(int i=min; i<=max; i+=2) ar[(i-min)/2]=i; // list of numbers to filter
03 FarmPrimeFilter pf = new FarmPrimeFilter(); // create one filter
04 GeneratorFarm g = new GeneratorFarm(pf, ar); // farmer
05 g.eval(); // starts the farming process
06 Object o = g.getResult(); // get results

Code 3. The main farm code.

01 public class GeneratorFarm extends FarmConcurrent {
02 public GeneratorFarm(Computer worker, Object inputTask) {
03 super(worker, inputTask);
04 }
05 public Collection split(Object initialTask) {
06 return(Packs.split((int[])initialTask,blocksize));
07 }
08 public Object join(Collection partialResults) {
09 return(Packs.join((Vector) partialResults));
10 }
11 }

Code 2. The generator farm class.

01 public class FarmPrimeFilter extends Compute {
02 …
03 public int[] filter(final int[] num) {
04 … // removes non-primes from the list
05 }
06 public Object compute(Object input) {
07 return this.filter((int[]) input);
08 }

Code 1.The FarmPrimeFilter class.

a version converted to the MPP package
(www.math.uib.no/~bjornoh/mtj/mpp), which
performs close to the original mpiJava version [1] and
a JaSkel version that also uses MPP. Both
implementations place one worker on a physical CPU.
Speed-ups are relative to the JGF sequential version.
The object distribution in JaSkel follows the technique
presented in [8]. The MPP package is fully written in
Java (using java.nio) which avoids the instability
problems in Java bindings to MPI, with performance
values close to MPI implementations.
Table 1. Farm executions times (s): MPP and JaSkel
version.

The second test (Table 2) compares the execution
times and speed-ups of a single level JaSkel farm
against a two level farm when running the RayTracer
with a lower computation/communication ratio
(obtained with a 75x75 pixels image). In the two level
farm, each second level farm master has two workers,
all placed on the same computing node.
Table 2. Farm executions times (s): JaSkel single level and
two level farm

Workers (CPU) 8 16 24 32
Single level farm 0.249 0.160 0.138 0.138
Two-level farm 0.246 0.157 0.133 0.128
Single level speed-up 6.27 9.76 11.31 11.31
Two-level speed-up 6.35 9.94 11.74 12.20

The single level JaSkel farm suffers from excessive
communication on a high number of nodes, which
reduces the performance gain when the number of
CPU increases. Single level farms in mpiJava and MPP
versions present identical behaviour (results not
shown).

A two level farm has fewer inter-node messages,
leading to lower communication costs, which make
this version attractive in computing clusters with
multi-core and multi-CPU nodes.

These results also suggest that multi-level farms
may more efficiently take advantage of multi-layered
architectures, namely, grids of clusters, where
computing nodes in cluster are moving towards
platforms with multi-core CPUs. Hierarchically
composed skeletons can be an effective way to deal
with different interconnection latencies and
bandwidths, which is one of the main difficulties when
developing parallel application targeted for a grid of
clusters environment.

5. Conclusion

Jaskel framework is a component of a computing
development environment, based on a catalogue of
skeletons. These are provided as abstract classes which
can be further refined, or hierarchically grouped, to
guide the development of structured parallel and grid
applications of medium/large complexity. The skeleton
framework aims to improve programmer’s productivity
and, at the same time, keeping high level of execution
performance. Experimental time measurements on a
ray tracer from JGF confirmed these expectations.

JaSkel framework has proved its usefulness and
capabilities. Current work goes on developing more
high level skeletons and methodologies to
automatically tune some platform dependent
parameters based on run-time information [7]. Full
integration of JaSkel with the remaining components
of the computing environment – the code generator
and the dynamic task/data distribution – still require
further tests to evaluate integrated grid environments.

6. References

[1] B. Carpenter, V. Getov, G. Judd, T. Skjellum, G. Fox,
MPJ: MPI-like Message Passing for Java. Concurrency:
Practice and Experience, vol. 12, n. 11. September 2000.
[2] D. Cole, Algorithmic Skeletons: structured management
of parallel computation, Pitman/MIT press, 1989.
[3] F. Rabhi, S. Gorlatch, S. (ed), Patterns and Skeletons for
Parallel and Distributed Computing, Springer, 2003
[4] G. Andrews, Foundations of Multithreaded, Parallel,
and Distributed Programming, Addison Wesley, 2000.
[5] J. Darlington, Y. Guo, H. To, J. Yang. “Parallel
Skeletons for Structured Composition”, ACM PPoPP’95,
Santa Clara, USA, 1995.
[6] J. Smith, J. Bull, J. Obdrzálek, “A Parallel Java Grande
Benchmark Suite”, SC 2001, Denver, November 2001.
[7] J. Sobral, A. Proença, “A SCOOPP Evaluation on
Packing Parallel Objects in Run-time”, VecPar-2000, Porto,
July 2000, LNCS vol. 1981, Springer 2000.
[8] J. Sobral. “Incrementally Developing Parallel
Applications with AspectJ”, IEEE IPDPS'06, Rhodes,
Greece, April 2006.
[9] K. Tan, D. Szafron, J. Schaeffer, J. Anvik, S.
MacDonald, “Using Generative Design Patterns to Generate
Parallel Code for a Distributed Memory Environment”, ACM
PPoPP'03, San Diego, California, USA, June, 2003.
[10] M. Aldinucci, M. Danelutto, P. Teti, “An advanced
environment supporting structured parallel programming in
Java”, Future Generation Computing Systems, vol. 19, 2003.
[11] P. Trinder, K. Hammond, H. Loidl, S. Jones.
“Algorithm + Strategy = Parallelism”, Journal of Functional
Programming, 8(1), January 1998.

Workers (CPU) 4 8 16 24 32
MPP 17.18 8.71 4.53 3.04 2.33
JaSkel 17.28 8.76 4.45 2.96 2.28
MPP speed-up 4.0 7.8 15.0 22.4 29.3
JaSkel speed-up 3.9 7.8 15.3 23.0 29.9

