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Abstract: Emerging interaction paradigms, such as service-oriented computing, and
new technological challenges, such as exogenous component coordination, suggest new
roles and application areas for process algebras. This, however, entails the need for
more generic and adaptable approaches to their design. For example, some applica-
tions may require similar programming constructs coexisting with different interaction
disciplines. In such a context, this paper pursues a research programme on a coinduct-
ive rephrasal of classic process algebra, proposing a clear separation between structural
aspects and interaction disciplines. A particular emphasis is put on the study of in-
terruption combinators defined by natural co-recursion. The paper also illustrates the
verification of their properties in an equational and pointfree reasoning style as well as
their direct encoding in Haskell.
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1 Introduction

In [Barbosa, 2001] a coinductive approach to the design of process algebras was
outlined and compared, wrt expressive and calculational power, with the clas-
sical frameworks based on the operational semantics. The goal was to apply to
this area of computing the same reasoning principles and calculational style one
gets used to in the dual world of functional programming with algebraic data-
types. Actually, the role of universals constructions, such as initial algebras and
final coalgebras, is fundamental to a whole discipline of algorithm derivation
and transformation, which can be traced back to the so-called Bird-Meertens
formalism [Bird and Meertens, 1987]. Dually, our research programme regards
processes as inhabitants of coinductive types, i.e., final coalgebras for the power-
set functor P(Act× Id), where Act denotes a set of action identifiers. Finally,
process combinators are defined as anamorphisms [Meijer et al., 1991], i.e., by
coinductive extension. Note that, if coalgebras for a functor T can be regarded
as generalisations of transition systems of shape T, their behavioural patterns
are revealed by the successive observations allowed by the signature of observers
recorded in T. Then, just as initial algebras are canonnically defined over the
terms generated by successive application of constructors, such ‘pure’ observed
behaviours form the state spaces of final coalgebras. It comes with no surprise
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that bisimulation coincides with equality in such coalgebras. Therefore our ap-
proach has the attraction of replacing proofs by bisimulation, which as in e.g.,
[Milner, 1989], involves the explicit construction of such a relation, by equational
reasoning.

Technically, our approach amounts to the systematic use of the universal
property which characterizes anamorphisms. Recall that, for a functor T and
an arbitrary coalgebra 〈U, p : TU ←− U〉 , an anamorphism is the unique
morphism to the final coalgebra outT : T νT ←− νT. Written, in the tradition
of [Meijer et al., 1991], as [(p)]T or, simply, [(p)], an anamorphism satisfies the
following universal property:

k = [(p)]T ⇔ outT · k = T k · p (1)

from which the following cancellation, reflection and fusion laws are easily de-
rived:

outT · [(p)] = T [(p)] · p (2)

[(outT)] = idνT
(3)

[(p)] · h = [(q)] if p · h = T h · q (4)

The existence assertion underlying (1) (corresponding to the left to right
implicants) provides a definition principle for (circular) functions to the final
coalgebra which amounts to equip their source with a coalgebraic structure spe-
cifying the next-step dynamics. We call such a coalgebra the gene of the defini-
tion: it carries the ’genetic inheritance’ of the function. Then the anamorphism
gives the rest. The uniqueness part, underlying right to left implication in (1),
on the other hand, offers coinduction as a proof principle.

Definition and proof by coinduction forms the base of the approach to process
calculi design to which this paper aims to contribute. More specifically it reports
on two topics:

– The definition of interruption combinators resorting to natural co-
recursion encoded as apomorphisms [Vene and Uustalu, 1997]. This coin-
ductive scheme generalises anamorphisms in the sense that the gene coal-
gebra can choose on returning the next-step value or else a complete be-
haviour. In particular we prove, in section 4, a conditional fusion law for
apomorphisms.

– The development of a Haskell library for prototyping process algebras
directly based on the coinductive definitions. As a basic design decision,
which may justify the qualificative generic in our title, structural aspects of
process’ combinators and interaction disciplines are specified separately.



The paper is organised as follows. Section 2 recalls the basic principles of our
approach as reported elsewhere. The definitional and proof style are, however,
illustrated with the study of a new combinator whose role is similar to that of
hiding in Csp [Hoare, 1985]. Then, section 3 reports on functional prototyping
of process algebra in Haskell. Section 4 studies the interruption combinators
mentioned above. Finally, section 5 concludes and points out a few issues for
future research. Basic functional notation and laws is collected in the Appendix.
The reader is referred to [Bird and Moor, 1997] for details.

2 Process Calculi Design

2.1 Combinators

In [Barbosa, 2001] processes are regarded as inhabitants of the final coalgebra
ω : P(Act× ν) ←− ν, where P is the finite powerset functor. The carrier of
ω is the set of possibly infinite labelled trees, finitely branched and quotiented
by the greatest bisimulation [Aczel, 1993], on top of which process combinators
are defined. For example, dynamic combinators, which are ‘consumed’ on action
occurrence, are directly defined as in

inaction ω · nil = ∅
prefix ω · a. = sing · labela

choice ω · + = ∪ · (ω × ω)

where sing = λx . {x} and labela = λx . 〈a, x〉. Recursive combinators, on
the other hand, are defined as anamorphisms. A typical example is interleaving
9 : ν ←− ν × ν which represents an interaction-free form of parallel composi-
tion. The following definition captures the intuition that the observations over
the interleaving of two processes correspond to all possible interleavings of ob-
servations of their arguments. Thus, 9 = [(α9)], where 1

α9 = ν × ν
M // (ν × ν)× (ν × ν)

(ω×id)×(id×ω) // (P(Act× ν)× ν)× (ν × P(Act× ν))

τr×τl // P(Act× (ν × ν))× P(Act× (ν × ν))
∪ // P(Act× (ν × ν))

2.2 Interaction

The synchronous product models the simultaneous execution of two processes,
which, in each step, interact through the actions they realize. Let us, for the
1 Morphisms τr : P(Act× (X × C)) ←− P(Act×X) × C and τl :
P(Act× (C ×X)) ←− C × P(Act×X) stand for, respectively, the right and left
strength associated to functor P(Act× Id).



moment, represent such interaction by a function θ : Act×Act←− Act. Formally,
⊗ = [(α⊗)] where

α⊗ = ν × ν
(ω×ω) // P(Act× ν)× P(Act× ν) sel·δr // P(Act× (ν × ν))

where sel filters out all synchronisation failures. and δr is given by

δr 〈c1, c2〉 = {〈a′ θ a, 〈p, p′〉〉| 〈a, p〉 ∈ c1 ∧ 〈a′, p′〉 ∈ c2}

But what is θ? This operation defined over Act what we call an interaction
structure: i.e., an Abelian positive monoid 〈Act; θ, 1〉 with a zero element 0. It
is assumed that neither 0 nor 1 belong to the set of elementary actions. The
intuition is that θ determines the interaction discipline whereas 0 represents the
absence of interaction: for all a ∈ Act,aθ0 = 0. On the other hand, a positive
monoid entails aθa′ = 1 iff a = a′ = 1. The role of 1, often regarded as an idle
action, is essentially technical.

As a matter of fact by parameterizing a basic calculus by an interaction
structure, one becomes able to design quite a number of different, application-
oriented, process combinators. For example, Ccs assumes a set L of labels with
an involutive operation, represented by an horizontal bar as in a. Any two ac-
tions a and a are called complementary and a special action τ /∈ L is introduced
to represent the result of a synchronisation between a pair of complementary ac-
tions. Therefore, the result of θ is τ whenever applied to a pair of complementary
actions and 0 in all other cases, except, obviously, if one of the arguments is 1.
In Csp, on the other hand, aθa = a for all action a ∈ Act. Yet other examples
emerge from recent uses of process algebra, namely in the area of component or-
chestration. For example, the second author has pointed out, in his forthcoming
PhD thesis, situations in which the same process expression has to be read with
different underlying interaction structures. Typically a glass-box view of a par-
ticular architectural configuration (i.e., a ’glued’ set of components and software
connectors) will call for a co-occurrence interaction: θ is defined as aθb = 〈a, b〉,
for all a, b ∈ Act different from 0 and 1. For the black-box view, however, actions
are taken as sets of labels, and θ defined as set intersection.

Synchronous product depends in a crucial way on the interaction structure
adopted. For example its commutativity depends only on the commutativity of
the underlying θ. Such is also the case of the standard parallel composition which
combines the effects of both 9 and ⊗. Note, however, that such a combination
is performed at the genes level: | = [(α|)], where

α| = ν × ν M // (ν × ν)× (ν × ν)
(α9×α⊗)

//

P(Act× (ν × ν))× P(Act× (ν × ν)) ∪ // P(Act× (ν × ν))



2.3 Hiding

We shall now illustrate the rationale underlying our approach by considering the
definition of a new combinator \k whose aim is to make internal all occurrences
of a specific action k. Then, \k = [(αk)], where αk = P(subk × id) ·ω and subk ,
(=k) → τ, id, τ standing for a representation of an internal action. Let us now
discuss how this combinator interacts with interleaving. This provides a first
example of a coinductive proof by calculation, to be opposed to the more classic
proof by bisimulation.

Lemma 1

\k · 9 = 9 · (\k × \k) (5)

Proof. Note that equation (5) does not allow a direct application of the fusion
law. Since ω is an isomorphism, however, we may rewrite it as

ω · \k · 9 = ω · 9 · (\k × \k) (6)

which can be further simplified in terms of the corresponding genes, because
both 9 and \k were defined by coinduction. Consider first the left hand side of
(6).

ω · \k · 9
= { definition of ω · \k, cancellation}

P(id× \k) · αk · 9
= { definition of αk}

P(id× \k) · P(subk × id) · ω · 9
= { 9 is a morphism }

P(id× \k) · P(subk × id) · P(id× 9) · α9

= { functors and definition of α9 }

P(id× \k) · P(id× 9) · P(subk × (id× id)) · ∪ · (τr × τl) · (ω × id)× (id× ω) · ∆

= { ∪, τr and τl are natural i.e.τr · (Bf × g) = B(f × g) · τr e τl · (f × Bg) = B(f × g) · τl for B = P(Act × Id)}

P(id× \k) · ∪ · (τl × τr) · (P(subk × id) · ω × id)× (id× P(subk × id) · ω) · ∆

= { definition of αk}

P(id× \k) · ∪ · (τl × τr) · ((αk × id)× (id× αk)) · ∆

Consider, now, the right hand side of the same equation:

ω · 9 · (\k × \k)

= { 9 is morphism }

P(id× 9) · α9 · (\k × \k)

= { defintion of α9}

P(id× 9) · ∪ · (τr × τl) · ((ω × id)× (id× ω)) · ∆ · (\k × \k)

= { ∆ is natural, functors }



P(id× 9) · ∪ · (τr × τl) · ((ω · \k × \k)× (\k × ω · \k)) · ∆

= { \k is morphism }

P(id× 9) · ∪ · (τr × τl) · ((P(id× \k) · αk × \k)× (\k × P(id× \k) · αk)) · ∆

= { functors, τr and τl are natural }

P(id× 9) · ∪ · P(id× (\k × \k))× P(id× (\k × \k)) · (τr × τl)

·((αk × id)× (id× αk)) · ∆

= { ∪ is natural }

P(id× (9 · (\k × \k))) · ∪ · (τr × τl) · ((αk × id)× (id× αk)) · ∆

The simplification of both sides of equation (6) did not lead to the same expres-
sion. Actually, what we have concluded is that

ω · 9 · (\k × \k) = P(id× (9 · (\k × \k))) · γ

and

ω · \k · 9 = P(id× (\k · 9)) · γ

for coalgebra

γ = ∪ · (τr × τl) · ((αk × id)× (id× αk)) ·∆

This means that both 9 · (\k ×\k) and \k · 9 are morphisms between γ and the
final coalgebra ω. As there can only be one such morphisms we conclude they
are equal.

2

We have chosen this example because this sort of proof is quite common in
the calculus. The strategy is as follows: once a direct application of fusion is not
possible, the aim becomes to show that both forms of composition of the two
combinators can be defined as an anamorphism for a common gene coalgebra
γ. Clearly, by the universal property, they must coincide. An important issue
is the fact that γ was not postulated from the outset, but inferred from the
calculations process.

3 Functional Prototyping

One advantage of this approach to process algebra design is the fact that it
allows an almost direct translation for a functional programming language like
Haskell. This section highlights a few issues in the construction of a Haskell

library for process algebra prototyping. Our starting point is the definition of
the powerset functor Pr (assuming an implementation of sets as lists) and the
definition of the semantic universe of processes as the coinductive type Proc a,
as follows,



type Proc a = Nu (Pr a)
data Pr a x = C [(a, x)] deriving Show
instance Functor (Pr a)

where fmap f (C s) = C (map (id >< f) s)

obsProc :: Pr a x -> [(a, x)]
obsProc p = f where (C f) = p

newtype Nu f = Fin (f (Nu f))
unFin :: Nu f -> f (Nu f)
unFin (Fin x) = x

The second step is the definition of the interaction structure as an inductive
type, parametric on an arbitrary set of actions, over which one defines operator
θ, denoted here as prodAct. To compare actions one must include in the class
requirements a notion of action equality eqAct, expressed as the closure of an
order relation leAct. For example, the Ccs interaction structure requires the
following definition of actions:

data Act l = A l | AC l | Nop | Tau | Id deriving Show

Dynamic combinators have a direct translation as functions over the final uni-
verse, as exemplified in the encoding of prefix and choice:

preP :: Act a -> Proc (Act a) -> Proc (Act a)
preP act p = Fin (C [(act,p)])

sumP :: Proc (Act a) -> Proc (Act a) -> Proc (Act a)
sumP p q = Fin (C (pp ++ qq)) where

(C pp) = (unFin p)
(C qq) = (unFin q)

On the other hand the definitons of static combinators are directly trans-
lated to Haskell, provided that first one defines anamorphisms as a (generic)
combinator. The following definition is standard:

ana :: Functor f => (c -> f c) -> c -> Nu f
ana phi = Fin . fmap (ana phi) . phi

Note, for example, how parallel composition | is defined in terms of the genes of
9 (alphai) and ⊗ (alphap):

par :: (Eq a) => (Proc (Act a), Proc (Act a)) -> Proc (Act a)
par (p, q) = ana alpha (p, q)

where alpha (p, q) =
C ((obsProc (alphai (p,q))) ++ (obsProc (alphap (p,q))))

4 Interruption and Recovery

4.1 Apomorphisms

This section introduces two interruption combinators, defined by natural co-
recursion, and encoded as apomorphisms [Vene and Uustalu, 1997]. In this pat-
tern the final result can be either generated in successive steps or ‘all at once’



without recursion. Therefore, the codomain of the source ‘coalgebra’ becomes
the sum of its carrier with the coinductive type itself. The universal property is

h = apo p ⇐⇒ outT · h = T [h, id] · p (7)

from which one can easily deduce the following cancellation, reflection and fusion
laws.

outT · apoϕ = T[apoϕ, id] · ϕ (8)

id = apo T(ι1) · outT (9)

ψ · f = T(f + id) · ϕ⇒ apoψ · f = apoϕ (10)

4.2 Parallel Composition with Interruption

Our first combinator is a form of parallel composition which may terminate if
some undesirable situation results from the interaction of the two processes. Such
undesirable situation is abstractly represented by a particular form of interaction
denoted by ∗. Therefore, combinator ‡ terminates execution as a result of an ∗-
valued interaction. Formally, it is defined by an apomorphism ‡ = apoα‡,
according to the following diagram

ν × ν
α‡ //

‡

��

P(Act× ((ν × ν) + ν))

P(id×[‡,id])
��

ν
ω // P(Act× ν)

where

α‡ = ν × ν ω×ω // P(Act× ν)× P(Act× ν)

Pτl·τr // PP((Act× ν)× (Act× ν))

Pm·∪ // P((Act×Act)× (ν × ν))

P(θ×id) // P(Act× (ν × ν))

Ptest // P(Act× ((ν × ν) + ν))

where test = 〈π1,=∗ · π1 → ι2 · nil, ι1 · π2〉. and m : (A × C) × (B ×D) ←−
(A×B)×(C×D) is a natural isomorphism which exchanges the relative positions
of factors in a product. Let us now illustrate how to compute with apomorph-
isms, by discussing the comutativity of this combinator, i.e., the validity of the
following equation, where s is the comutativity isomorphism:

‡ · s = ‡ (11)



As a first step we derive
‡ · s = ‡

≡ { ‡ definition}
apo α‡ · s = apo α‡

⇐ { apomorphism fusion law }

α‡ · s = P(id× (s + id)) · α‡

Now, let us unfold the left hand side of this last equality.
α‡ · s

= { α‡ definition }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · τr · ω × ω · s

= { s natural }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · τr · s · ω × ω

= { τr · s = Ps · τl }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl · Ps · τl · ω × ω

= { τl · s = Ps · τr , functors }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · PPs · Pτr · τl · ω × ω

= { ∪ and m natural: m · s = (s × s) · m }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · P(s× s) · Pm · ∪ · Pτr · τl · ω × ω

= { Pτr · τl = Pτl · τr , because P is a commutative monad [Kock, 1972]; functors }

P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P((θ · s)× s) · Pm · ∪ · Pτl · τr · ω × ω

= { ×-fusion }

P(〈π1 · ((θ · s)× s) , (=∗ · π1 → ι2 · nil, ι1 · π2) · ((θ · s)× s)〉) · Pm · ∪ · Pτl

· τr · ω × ω

= { conditional fusion, ×-cancellation, constant function }

P(〈θ · s · π1 , (=∗ · θ · s · π1 → ι2 · nil, ι1 · s · π2)〉) · Pm · ∪ · Pτl · τr · ω × ω

Unfolding the right hand side we arrive at
P(id× (s + id)) · α‡

= { α‡ definition }

P(id× (s + id)) · P(〈π1, =∗ · π1 → ι2 · nil, ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl

· τr · ω × ω

= { functors, ×-absorption }

P(〈π1, (s + id) · (=∗ · π1 → ι2 · nil, ι1 · π2)〉) · P(θ × id) · Pm · ∪ · Pτl · τr · ω × ω

= { conditional fusion }

P(〈π1, =∗ · π1 → (s + id) · ι2 · nil, (s + id) · ι1 · π2〉) · P(θ × id) · Pm · ∪ · Pτl

· τr · ω × ω

= { +-cancellation, conditional fusion law, functors, ×-fusion }

P(〈θ · π1 , =∗ · θ · π1 → ι2 · nil, ι1 · s · π2〉) · Pm · ∪ · Pτl · τr · ω × ω

These two unfolding processes did not lead to the same expression; equation
(11) is, therefore, in general false. Note, however, that the difference between the



two expressions is only in the order in which the same arguments are supplied
to θ. We may thus suppose the existence of a result weaker than (11), but still
relevant and useful, may result from this calculation. This requires a more general
discussion which follows.

4.3 Conditional Fusion

The aim of the previous calculation was to prove equation (11) which, by fusion,
reduced to

α‡ · s = P(id× (s + id)) · α‡ (12)

Note the advantage of using a fusion law is to get rid of direct manipulation of
recursion: all computation is done in terms of the recursion genes. In this way
we succeeded in reducing (12) to

P(〈θ · s · π1 , (=∗ · θ · s · π1 → ι2 · nil, ι1 · s · π2)〉) · γ
=

P(〈θ · π1 , (=∗ · θ · π1 → ι2 · nil, ι1 · s · π2)〉) · γ

where γ = Pm ·∪ ·Pτl · τr · ω× ω. Now note that this equation is only valid if
one postulates an additional condition expressing the commutativity of θ, i.e.,

θ · s = θ (13)

The interesting question is then: what does such a conditional validity at the
genes level imply with respect to the validity of the original equation (11)? In
general, suppose that in a proof, one concludes that the validity of the antecedent
of the fusion law

α · f = T(f + id) · β ⇒ apoα · f = apoβ (14)

depends on an additional condition Φ, i.e.,

Φ ⇒ α · f = T(f + id) · β (15)

What happens is that Φ is stated as a local condition on the genes of the apo-
morphisms, i.e., on the imediate derivatives of the proocesses involved. Such
a condition needs to be made stronger enforcing validity over all derivatives.
Technically, Φ should be transformed into an invariant : i.e., a predicate which is
preserved by the coalgebra dynamics, ω, in the present case. To state such a res-
ult we need a modal language interpreted over coalgebras. The following notions
are relatively standard in the literature (see, e.g., [Moss, 1999] or [Jacobs, 1999]).



A predicate φ : B ←− U over the carrier of a T-coalgebra 〈U, γ : T U ←−
U〉 is called a γ-invariant if closed under γ. Formally, one defines a predicate
combinator d

γ
2:

( d
γ φ) u ≡ ∀u′∈Tγ u . φ u

′

whose meaning reads: d
γ φ is valid in all states whose immediate γ-derivatives

verify φ. Then, φ is an invariant iif φ ⇒ d
γ φ, that is φ ⊆ d

γ φ

The closure of d
γ defines the coalgebraic equivalent to the always in the

future modal operator (just as d
γ corresponds to the next operator in modal

logic). Thus, �γ φ is introduced in [Jacobs, 1999] as the greatest fixpoint of
function λx . φ ∩ d

γ x. Intuitively, �γ φ reads ‘φ holds in the current state and
all the other states under γ. In such a definition contains the key to answer our
previous question, as stated in the following lemma.

Lemma 2 Let α and β stand for two T-coalgebras and Φ a predicate over the
carrier of β. Then,

(Φ⇒ α · h = T(h+ id) · β) ⇒ (�β Φ ⇒ (apoα · h = apoβT)) (16)

Proof. Let X be the carrier of β and iΦ the inclusion in X of the subset classified
by predicate Φ, i.e., Φ · iΦ = true·!. Any β-invariant induces a subcoalgebra β′

which makes i�β Φ a coalgebra morphism from β′ to β. Then,

Φ⇒ α · h = T(h + id) · β

≡ { definition of inclusion iΦ}

α · h · iΦ = T(h + id) · β · iΦ

⇒ { 2βΦ ⊆ Φ}

α · h · i2βΦ = T(h + id) · β · i2βΦ

≡ { i2βΦ is a morphism from β′ to β}

α · h · i2βΦ = T(h + id) · T(i2βΦ) · β′

≡ { functors, apomorfism fusion law }

apo α · h · i2βΦ = apo β′

≡ { i2βΦ is a coalgebra morphism }
apo α · h · i2βΦ = apo β · i2βΦ

≡ { inclusion i�β Φ}

2βΦ⇒ (apo α · h = apo β)

2

2 Notation ∈T refers to the extension of the membership relation to regular functors
[Meng and Barbosa, 2004].



We call formula (16) the conditional fusion law for apomorphisms. A similar
result, but restricted to anamorphisms was proved in [Barbosa, 2001]. Let’s come
back to our example. Note that in this case the relevant predicate, given by
equation (13), does not involve states, but just actions. Therefore

�ω (θ · s = θ) = (θ · s = θ)

which, according to lemma 2, is the predicate to be used as the antecedent
of (12). We may now conclude this example stating the following general law
concerning the interruption operator:

(θ · s = θ) ⇒ ‡ · s = ‡ (17)

4.4 A Recovery Operator

We now discuss a combinator which models fault recovery3. Intuitively, the com-
binator allows the execution of its first argument until an error state is reached.
By convention, an error occurrence is signalled by the execution of a special ac-
tion x. When this is detected, execution control is passed to the second process.
This process, which is the combinator second argument, is an abstraction for the
system’s recovery code. The combinator is defined as � = apoα�, where

α� = ν × ν ω×id // P(Act× ν)× ν
tx·π1→ι1,ι2·π2 // P(Act× ν)× ν + ν

τr+ω // P(Act× (ν × ν)) + P(Act× ν)

[P(id×ι1),P(id×ι2)] // P(Act× (ν × ν + ν))

where tx : B←− P(Act× ν) is given by tx = /∈x ·Pπ1.
We shall go on exploring the calculational power of this approach to process

algebra through the discussion of a new conditional property. The intuition says
that should no faults be detected in the first process, the recovery process will
not be initiated. In other words, in the absence of faults, a process running in a
fault tolerant environment behaves just as it would do if executed autonomously.
Formally,

Lemma 3

�ω (/∈x ·Pπ1) ⇒ � = π1 (18)

3 Although the very abstract level in which it is approached here, it should be under-
lined that fault tolerance is a fundamental issue in software engineering.



Proof. Note that predicate /∈x ·Pπ1 only states fault absence in the immediate
successors of each state. It is, therefore, sufficient to establish the antecedent of
the fusion law, as shown below.

P(id× (π1 + id)) · α�

= { definition of tx, assuming hypothesis /∈x ·Pπ1 }

P(id× (π1 + id)) · [P(id× ι1),P(id× ι2)] · (τr + ω) · ι1 · ω × id

= { τr + ω = [ι1 · τr, ι2 · ω]}

P(id× (π1 + id)) · [P(id× ι1),P(id× ι2)] · [ι1 · τr, ι2 · ω] · ι1 · ω × id

= { +-cancellation }

P(id× (π1 + id)) · P(id× ι1) · τr · ω × id

= { P is a functor, +-cancellation, functors }

P(id× ι1) · P(id× π1) · τr · ω × id

= { P(id × π1) · τr = π1 }

P(id× ι1) · π1 · ω × id

= { f × g = 〈f, g〉, ×-cancellation }

P(id× ι1) · ω · π1

Note that what we would expect to have proven was

P(id× (π1 + id)) · α� = ω · π1

but, actually, all that was shown was that

P(id× (π1 + id)) · α� = P(id× ι1) · ω · π1

This comes to no surprise: the role of the additional factor P(id× ι1) in the right
hand side is to ensure type compatibility between both sides of the equation.
The important point, however, is the fact that the whole proof was carried under
the assumption, recorded in the very first step, that /∈x ·Pπ1. Thus, by lema 2,
we conclude as expected.

2

5 Conclusions and Future Work

Final semantics for processes is an active research area, namely after Aczel’s
landmark paper [Aczel, 1993]. Related work on coalgebraic modelling of process
algebras can be found in e.g., [Schamschurko, 1998, Wolter, 1999]. Our emphasis,
however, is placed on the design side: we intend to show how process calculi can
be developed and their laws proved along the lines one gets used to in (data-
oriented) program calculi.



The most interesting laws in process algebras are formulated in terms
of some form of weak bisimulation, which abstracts away from, e.g., in-
ternal computation. Dealing with such weak process equivalences in a coalge-
baric setting is not trivial (but see, for example, [Rothe and Masulovic, 2002,
Sokolova et al., 2005]). A concrete approach, based on transposition to a
category of binary relations, is proposed in the first author MSc thesis
[Ribeiro, 2005], still in accordance with the calculational style favoured in this
paper. On the other hand, whether this work scales up to process algebras with
mobility remains an open question.

From a software engineering point of view, our interest in generic process
algebras arise from on-going work on the semantics of component orchestration
languages [Barbosa and Barbosa, 2004]. As briefly discussed in section 2, in such
a context one often needs to tailor process algebras to quite specific interaction
disciplines, later giving rise to programming constructs for component glueing.
The generic framework outlined in this paper, and the associated Haskell pro-
totyper, proves to be quite effective in that task. This is why we consider the
design of generic process algebras a programming challenge.
Acknowledgements. This research was carried on in the context of the PURe

Project supported by Fct under contract POSI/ICHS/44304/2002.
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A Product and Sum Laws

Functions with a common domain can be glued through a split 〈f, g〉 defined by
the following universal property:

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (19)

from which the following properties can be derived:

〈π1, π2〉 = idA×B (20)

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (21)

〈g, h〉 · f = 〈g · f, h · f〉 (22)

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (23)

known respectively as × reflection, cancelation, fusion and absorption laws.
Similarly arises structural equality :

〈f, g〉 = 〈k, h〉 ≡ f = k ∧ g = h (24)

Finally note that the product construction is functorial : f × g =
λ 〈a, b〉 . 〈f a, g b〉.

Dually, functions sharing the same codomain may be glued together through
an either combinator, expressing alternative behaviours, and introduced as the
universal arrow in a datatype sum construction. A+ B is defined as the target
of two arrows ι1 : A + B ←− A and ι2 : A + B ←− B, called the injections,
which satisfy the following universal property:

k = [f, g] ≡ k · ι1 = f ∧ k · ι2 = g (25)



from which one infers correspondent cancelation, reflection and fusion results:

[f, g] · ι1 = f , [f, g] · ι2 = g (26)

[ι1, ι2] = idX+Y (27)

f · [g, h] = [f · g, f · h] (28)

Products and sums interact through the following exchange law

[〈f, g〉, 〈f ′, g′〉] = 〈[f, f ′], [g, g′]〉 (29)

provable by either product (19) or sum (25) universality. The sum combinator
also applies to functions yielding f+g : A′+B′ ←− A+B defined as [ι1 ·f, ι2 ·g].

Conditional expressions are modelled by coproducts. In this paper we adopt
the McCarthy conditional constructor written as (p → f, g), where p : B←− A
is a predicate. Intuitively, (p → f, g) reduces to f if p evaluates to true and to
g otherwise. The conditional construct is defined as

(p → f, g) = [f, g] · p?

where p? : A+A←− A is determined by predicate p as follows

p? = A
〈id,p〉 // A× (1 + 1)

dl // A× 1 + A× 1
π1+π1 // A + A

where dl is the distributivity isomorphism. The following laws are usefull to
calculate with conditionals [Gibbons, 1997].

h · (p → f, g) = (p → h · f, h · g) (30)

(p → f, g) · h = (p · h → f · h, g · h) (31)

(p → f, g) = (p → (p → f, g), (p → f, g)) (32)


