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Abstract: - In the sequence of the work done with a combined ATV and double exponential model to describe 
the secondary settler concerning the optimal design of a wastewater treatment plant (WWTP), a simple sludge 
treatment based on dewatering followed by deposition in landfills is now included in the system. Power 
consumption, transport and deposition of the sludge are involved in the operation cost of the sludge treatment. 
This work aims to evaluate the contribution of this cost in the WWTP design total cost. The experiments carried 
out with three WWTPs in design show that the considered wasted biosolids treatment does not affect the design 
although is responsible for 10 to 14% of the total costs.  
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1   Introduction 
Due to the high costs associated with the construction 
and operation of a wastewater treatment plant 
(WWTP), it is convenient to conduct a careful 
analysis of the involved models, and perform an 
optimization of the entire system. 

Considering the performance and associated costs, 
the most important treatment in a WWTP is the 
secondary treatment. The activated sludge system 
composed by an aeration tank and a secondary settler 
is the most commonly found secondary treatment.  
     The most commonly found models in literature to 
describe the aeration tank are the ASM kind models 
[6, 7]. To describe the secondary settler, the ATV [2] 
and the double exponential (DE) [9] models have 
been used in the past. The ATV model is usually used 
as a design procedure to new WWTPs. It is based on 
empirical equations that were obtained by 
experiments and does not contain any solid balances, 
although it contemplates peak wet weather flow 
(PWWF) events. The DE model is the most widely 
used in simulations and it produces results very close 
to reality. However, as it does not provide extra 
sedimentation area needed during PWWF events, the 
resulting design has to consider the use of security 
factors, many times inadequate. 
     The optimization procedures found in the 
literature involving secondary settlers are based on 
very simple models [10] or on the ATV model [1, 3]. 
To the best of our knowledge, and until last year, 
there have been no optimization attempts using the 
DE model. However, simulation procedures have 
been made with the DE model aiming to find the best 

combination of the decision variables to achieve the 
minimum cost design, for example [8]. 
      Recent real optimization procedures using the DE 
model were carried out in order to obtain the best 
optimal WWTP design in the sense that a minimum 
cost is attained. Work done in [4] goes on comparing 
the ATV+DE combined model with the two 
traditional models (ATV and DE) separately. Based 
on numerical experiments we were able to conclude 
that the combined model provided the most 
equilibrated WWTP design. Further, the three 
resulting designs were introduced in the GPS-X 
simulator (http://www.hydromantis.com) and some 
stress condition based on a PWWF value of about 5 
times the normal flow was imposed. Only the 
combined model was able to support this adverse 
condition maintaining the quality of the effluent 
under the values imposed by the portuguese laws. 
     However, the above mentioned work that relies on 
the combined model for the secondary settler does 
not contemplate the sludge treatment. In fact, when 
the sludge leaves the secondary settler, part of it is 
recycled to the aeration tank and there is an excess of 
the sludge that has to be purged. This waste also 
needs a treatment. The wasted sludge in small or 
medium scale WWTPs is nowadays simply 
dewatered by highly efficient centrifuges and then 
incinerated or deposited in landfills. 
     In this work, optimization procedures were 
conducted, in the sense that a minimum cost design 
ought to be achieved, using the ASM1 equations to 
model the aeration tank, a combination of the ATV 
and DE models to describe the secondary settler and 
the dewatering and deposition in landfill of the 
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wasted sludge. The running experiments that were 
carried out also considered a primary treatment with 
60% efficiency. 
     This paper is organized as follows. In Section 2 a 
brief description of the mathematical models related 
with the activated sludge system of a WWTP is 
presented. Section 3 describes the cost function used 
in our optimization procedure. Section 4 reports on 
the mathematical programming model and the 
obtained optimal designs as well as on the cost 
contribution of the sludge treatment in the WWTP 
total cost. Finally, Section 5 contains the conclusions 
and the ideas for future work. 
 
 
2   The WWTP 
A WWTP usually comprises three main treatments. 
     The primary treatment is a physical process and is 
used to remove gross solids and grease. Its efficiency 
is measured in terms of the Chemical Oxygen 
Demand (COD) reduction in the wastewater to be 
treated and it is known to vary from 40 to 70%. The 
costs associated with this treatment are considered 
negligible relative to the costs of the remaining units 
in the system. 

Considering the performance and associated costs, 
the most important treatment in a WWTP is the 
secondary treatment. In the activated sludge system, 
composed by an aeration tank and a secondary settler, 
part of the sludge that is settled in the clarifier returns 
to the aeration tank, therefore, these two units can 
never be considered separately. Another part of the 
thickened sludge is wasted. 

The third treatment is concerned with the wasted 
sludge. In the activated sludge system there is a 
continuous production of biosolids that must be 
wasted and treated. 

In what follows, the model equations that describe 
the referred processes are presented. 
 
 
2.1 Aeration tank 
The aeration tank is where the biological reactions 
take place. The activated sludge model n.1, described 
by Henze et al. [6], is used and considers both the 
elimination of the carbonaceous matter and the 
removal of the nitrogen compounds. The tank is 
considered a completely stirred tank reactor (CSTR) 
in steady state. The balances around this unit define 
some of the constraints of our mathematical model. 
The generic equation for a mass balance around a 
certain system considering a CSTR is 

( )
dt
dr

V
Q

in
a

ξξξ ξ =+−  (1) 

where Q is the flow that enters the tank, Va is the 
aeration tank volume, ξ  e inξ  are the concentrations 
of the component around which the mass balances are 
being made inside the reactor and on entry, 
respectively. In a CSTR the concentration of a 
compound is the same at any point inside the reactor 
and at the effluent of that reactor. The reaction term 
for the compound in question, ξr , is obtained by the 
sum of the product of the stoichiometric coefficients, 

jξν , with the expression of the process reaction rate, 

jρ , of the ASM1 Peterson matrix [6], ∑=
j

jjr ρνξξ . 

In steady state, the accumulation term given by 
dtd /ξ  in (1) is zero, because the concentration is 

constant in time. A WWTP in labor for a sufficiently 
long period of time without significant variations can 
be considered at steady state. As our purpose is to 
make cost predictions in a long term basis it is 
reasonable to do so. The ASM1 model involves 8 
processes incorporating 13 different components, 
such as the substrate, the bacteria, dissolved oxygen, 
among others. We refer to [3] for details. 
 
 
2.2 Secondary settler 
Traditionally the secondary settler is underestimated 
when compared with the aeration tank. However, it 
plays a crucial role in the activated sludge system. 
When the wastewater leaves the aeration tank, where 
the biological treatment took place, the treated water 
should be separated from the biological sludge, 
otherwise, the chemical oxygen demand would be 
higher than it is at the entry of the system. The most 
common way of achieving this purpose is by 
sedimentation in tanks. The optimization of the 
sedimentation area and depth must rely on the sludge 
characteristics, which in turn are related with the 
performance of the aeration tank. So, the operation of 
the biological reactor influences directly the 
performance of the settling tank and for that reason, 
one should never be considered without the other. 
     The ATV design procedure (Fig. 1) contemplates 
the peak wet weather flow events, during which there 
is a reduction in the sludge concentration. To turn 
around this problem, a certain depth is allocated to 
support the fluctuation of solids during these events 

s
a A

DVSIVXh
480

 3 Δ= . (2) 
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This way a reduction in the sedimentation area, As, is 
allowed. A compaction zone  

10004
DVSIXh p= , (3) 

where the sludge is thickened in order to  achieve the 
convenient  concentration to  return to  the biological 
reactor, also has to be contemplated and depends only 
on the characteristics of the sludge. DVSI is the 
diluted volumetric sludge index, XΔ  is the variation 
of the sludge concentration inside the aeration tank in 
a PWWF event and Xp is the sludge concentration 
during a PWWF event.  
     A clear water zone ( 1h ) and a separation zone 
( 2h ) should also be considered and are set 
empirically ( 121 =+ hh , say). The depth of the 
settling tank, h, is the sum of h1, h2, h3 in (2) and h4 in 
(3). The sedimentation area is still related to the peak 
flow, pQ , by the expression 

( ) 34.12400 −≤ DVSIX
A
Q

p
s

p .  

 
Fig. 1: Typical solids concentration-depth profile 
adopted by the ATV model (adapted from [2]) 
 
The double exponential model assumes a one 
dimensional settler, in which the tank is divided into 
ten layers of equal thickness (Fig. 2). Some 
simplifications are considered. No biological 
reactions take place in this tank, meaning that the 
dissolved matter concentration is maintained across 
all the layers. Only vertical flux is considered and the 
solids are uniformly distributed across the entire 
cross-sectional area of the feed layer (j=7, in our 
case). This model is based on a traditional solids flux 
analysis but the flux in a particular layer is limited by 
what can be handled by the adjacent layer. The 
settling function, described by Takács et al. in [9], is 
given by 

( ) ( )( )( )( )ansjpansjh TSSfTSSrTSSfTSSr
js ee −−−− −= 00, ,'min,0max ννν  

where js ,ν  is the settling velocity in layer j (m/day), 
TSSj is the total suspended solids concentration in 
each of the ten considered layers of the settler and 

0ν , 0'ν , rh, rp and fns are the settling parameters. Note 
that TSS7=TSSa. 
     The solids flux due to the bulk movement of liquid 
may be up or down, upν  and dnν  respectively, 
depending on its position relative to the feed layer, 
thus 

s

ef
up A

Q
=ν    and   

s

wr
dn A

QQ +
=ν . 

The subscript r is concerned with the recycled sludge, 
w refers to the wasted sludge and ef refers to the 
treated effluent. 
     The sedimentation flux, Js, for the layers under the 
feed layer (j=7,…,10) is given by 

jjsjs TSSJ ,, ν=  
and above the feed layer (j=1,…,6) the clarification 
flux, Jclar, is given by 

( )⎩
⎨
⎧ ≤

=
++

+

otherwise,  ,min
  if  

11,,

1,
,

jjsjjs

tjjjs
jclar TSSTSS

TSSTSSTSS
J

νν
ν  

where TSSt is the threshold concentration of the 
sludge. The resulting solids balances around each 
layer, considering steady state, are the following: 
- for the top layer (j=1) 

   
( )

0
10/

,1 =
−−+

h
JTSSTSS jclarjjupν

, 

- for the intermediate layers above the feed layer 
(j=2,…,6) 

          
( )

0
10/

,1,1 =
−+− −+

h
JJTSSTSS jclarjclarjjupν

, 

- for the feed layer (j=7) 
( ) ( )

0
10/

,min 
1,,1,

=
−+−+ +−

h

JJTSSJ
A
TSSQ

jsjsjdnupjclar
s

a νν
, 

- for the intermediate layers under the feed layer 
(j=8,9) 
( ) ( ) ( )

,0
10/

,min,min 1,,1,,1 =
−+− +−−

h
JJJJTSSTSS jsjsjsjsjjdnν  

- and, for the bottom layer (j=10) 
( ) ( )

.0
10/

,min ,1,1 =
+− −−

h
JJTSSTSS jsjsjjdnν  

The use of the combination of these two models to 
describe the secondary settler is prepared to turn 
around the PWWF events without over dimensioning 
and overcomes the limitations and powers the 
advantages of each one, as confirmed in our previous 
study [4].  
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2.3 Biosolids treatment 
When the sludge leaves the secondary settler, part of 
it is recycled to the aeration tank. However there is an 
excess of the sludge that has to be purged. This waste 
also needs a treatment. In general a digestion, either 
aerobic or anaerobic, in order to achieve biological 
stabilization, followed by sedimentation or flotation 
and, finally dewatering is done. After this process, the 
resulting thickened biosolids are incinerated or 
deposited in landfills. 
     Nowadays, the process of dewatering is very 
efficient and is achieved by high performance 
centrifugation, which allows the release from the 
other adjacent processes. 
     The inclusion of the sludge treatment by 
dewatering and deposition does not imply additional 
constraints to the problem. It will however affect the 
total cost of the WWTP due to power consumption 
and transport and deposition of the sludge. 

2
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Fig. 2: Solids balance around the settler layers 
according to the double exponential model (adapted 
from [9]) 
 
 
2.4 Other constraints 
The system behaviour, in terms of concentration and 
flows, may be predicted by balances. In order to 
achieve a consistent system, these balances must be 

done around the entire system and not only around 
each unitary process. They were done to the 
suspended matter, dissolved matter and flows. The 
equations for particulate compounds, generically 
represented by X?, (organic and inorganic) have the 
following form: 
( ) ( ) ( ) efinfefr

r

a
?inf?infinfentinf X-Q-XX

XSRT
XVXQ+r+X=QXQ+r ???

?
?  

 
   1   1 −

where X  represents the particulate COD.  
     For the solubles (S?) we have: 

( ) ???      1 SQrSQSQr infinfinfentinf +=+  

where r is the recycle rate, SRT is the sludge retention 
time and Q? represents the volumetric flows. As to 
the subscripts, inf concerns the influent wastewater, 
ent the entry of the aeration tank, r the recycled 
sludge and ef the treated effluent. 
     For the flows, the resulting balances are: 

rinf QQQ +=   and  wref QQQQ ++= . 
     An important group of constraints in the 
mathematical model is a set of linear equalities that 
define composite variables. In a real system, some 
state variables are, most of the time, not available for 
evaluation. We refer to [3] for more details. 
     Some system variables definitions should be 
added to the model in order to define the system 
correctly. These definitions include the sludge 
retention time (SRT), the recycle rate (r), the 
hydraulic retention time (HRT), the recycle rate in a 
PWWF event (rp), the recycle flow rate in a PWWF 
event (

prQ ) and the maximum overflow rate (Qp/As). 

The detailed equations concerning these decision 
variables can be found in [3]. 
     All the variables in the model must be 
nonnegative, although more restricted bounds are 
imposed to some of them due to operational 
consistencies. These conditions define a set of simple 
bounds on the variables. For example, the dissolved 
oxygen has to be always greater or equal to 2 mg/L. 
For details, see [3]. 
     Finally, the quality of the effluent has to be 
imposed. The quality constraints are usually derived 
from law restrictions. The most used are related with 
limits in the COD, N and TSS at the effluent. 
 
 
3   The Cost Function 
The cost function is used to describe the installation 
and operation costs of a WWTP, in a way that reflects 
the behaviour of each unitary process. In the present 
study, the aeration tank, the secondary settler as well 
as the unit for the biosolids treatment are considered.  
     The basic structure of the cost function, based on 
the work done by Tyteca et al. [10], is baZC = ,
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 where C represents the cost and Z the variable that 
most influences the design of the unitary process 
under study. 
     The parameters a and b were estimated by a least 
squares technique considering real data collected 
from a portuguese WWTP building company.  
     At the present, the collected data come from a set 
of WWTPs in design, therefore no operation data are 
available. However, from the experience of the 
company, it is known that the maintenance expenses 
for the civil construction are around 1% during the 
first 10 years and around 2% in the next 10. To the 
electromechanical components, the maintenance 
expenses are negligible, but all the material is usually 
replaced after 10 years. The energy cost is directly 
related with the air flow. The power cost (Pc) in 
Portugal is 0.08 €/KW.h. For the sake of simplicity, 
no pumps were considered, which means that all the 
flows in the system move by the effect of gravity. 
Also, all the fixed costs are neglected as they do not 
influence the optimization procedure.  
     The operation cost is usually in annual basis, so it 
has to be updated to a present value with the 
parameter 1 1( ( ) ) /ni i−Γ = + + , where i is the 
discount rate and n is the life span of the WWTP. The 
following values i=0.05 and n=20 years were used. 
For each unit in the system, the total cost is given by 
the sum of the investment (IC) and operation costs 
(OC). 
     For the aeration tank, the influent variables are the 
tank volume (Va) and the air flow (GS). The obtained 
investment cost is  

62.007.1 77376.148 Saa GVIC += , (4) 

and the operation cost is 

( )( )( )
( )

10 1.07

10 0.62

0.01 0.02 1 148.6

 1 7737 115.1 .

a a

S c S

OC i V

i G PG

−

−

= Γ + Γ +

+ + + Γ

 (5) 

    In the secondary settler, the sedimentation area (As) 
and the depth (h) are the influent variables. The 
investment and operation costs are 

97.05.955 ss AIC = , (6) 

and 

( )( ) ( )10 1.070.01 0.02 1 148.6s sOC i A h−= Γ + Γ + × (7) 

respectively.      
     As to the biosolids processing, the investment 
costs were not considered because they do not depend 
on the size of the WWTPs under study.  
     In terms of the operating cost, the power 
consumption by the centrifugation and the transport 

and final deposition of the sludge have to be 
considered. The annual cost obtained for power 
consumption is 63.05.544 aP VC = . 
     The transport and final deposition are directly 
related to the amount of sludge produced, being this 
cost 55€/ton. In a daily basis, a volumetric flow Qw 
m3/day with a mass concentration of TSSw g/m3 is 
wasted. Thus the corresponding cost function in 
annual basis is wwD TSSQC 02.0= . 
Considering the appropriate conversion to present 
value, the resulting operation cost due to the sludge 
treatment is 

wwaBS TSSQVOC Γ+Γ= 02.04.544 63.0 . (8) 

The objective function is then the sum of the cost 
terms (4) – (8). 
 
 
4   Numerical Results 
A mathematical programming problem results from 
the set of equalities and inequalities that relate the 
decision variables of the problem and were 
mentioned in Section 2 together with the objective 
function presented in Section 3. 
     The mathematical model has 64 parameters, 115 
variables and 105 constraints, where 67 are nonlinear 
equalities, 37 are linear equalities and there is only 
one nonlinear inequality. 104 variables are bounded 
below and 11 are bounded below and above. 
     The chosen values for the stoichiometric, kinetic 
and operational parameters that appear in the 
mathematical formulation of the problems are the 
default values presented in the GPS-X simulator, and 
they are usually found in real activated sludge based 
plants for domestic effluents. 
     The problem has been coded in the AMPL 
mathematical programming language [5] and was 
solved with the software package LOQO [11], 
available in the NEOS Server (http://www-
neos.mcs.anl.gov/). 
     Two sets of experiments were done in order to 
evaluate the importance of the inclusion of the 
biosolids treatment in the optimization problem. First,  
the cost term (8) corresponding to the wasted sludge 
was included in the objective function. Then the term 
(8) was discarded. 
     The goal of these numerical tests is to evaluate the 
percentage of the WWTP total cost that is attributed 
to the treatment and disposal of the wasted sludge. 
Three WWTPs at present in design in the North of 
Portugal were analyzed: Murça, Sabrosa and Sanfins. 
The first one of the list is slightly bigger than the 
other two. 
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     Table 1 reports the optimal values of the aeration 
tank volume, sedimentation area, depth of the 
secondary settler, aeration air flow, and the design 
total costs (in millions of euros) for the two 
mentioned situations: with (TC+) and without (TC-) 
the biosolids treatment.  

 
Table 1: Results for the three studied WWTPs 
WWTP Va As h GS TC+ TC- % 
Murça 1903 173 7.1 9271 6.43 5.50 14 
Sabrosa 540 97.5 4.3 5588 3.96 3.56 10 
Sanfins 612 108 4.4 6334 4.33 3.89 10 

 
 
The obtained optimal values for Va, As, h and GS  

were identical in both runs, confirming that the 
design is not affected by the inclusion of the biosolids 
treatment. Only the total cost is affected. Thus, to 
obtain the optimal design of the units in the 
secondary treatment, the wasted sludge process can 
be left out.  

Comparing the total costs, an increase due to the 
sludge treatment of 10 to 14% was observed in the 
three analyzed WWTPs (last column of Table 1). In 
our view, this type of variation looks significant 
especially because only the operation costs were 
considered. So, to be able to estimate the design costs 
the wasted biosolids treatment should be incorporated 
in the model. 
 
 
5   Conclusions 
The main conclusion from this comparative study 
concerning the optimization procedure is that the 
wasted biosolids treatment that processes the sludge 
only by dewatering and landfilling does not affect the 
design of the secondary treatment. However, it has an 
important contribution in the total cost of the WWTP. 
In particular, for large scale WWTPs, the energetic 
costs will become incomportable if this kind of 
treatment is used. To be able to reduce the sludge 
treatment cost, future developments will consider a 
different sludge treatment process, such as the sludge 
digestion.  
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