
FOCLASA 2006

Configurations of Web Services

Marco Antonio Barbosa 1

DI-CCTC – Universidade do Minho
Braga, Portugal

Lúıs Soares Barbosa 2

DI-CCTC – Universidade do Minho
Braga, Portugal

Abstract

The quest for sound foundations for the orchestration of web services is still open.
To a great extent its relevance comes from the possibility of defining formal se-
mantics for new language standards (like BPEL4WS or WS-CDL) in this emerging and
challenging technology. As a step in that direction, this paper resorts to a notion of
configuration, developed by the authors in the context of a Reo-like exogenous coor-
dination model for software components, to formally express service orchestration.
The latter is regarded as involving both the architectural assembly of independent
services and the description of their interactions.

Key words: Web services, configuration, coordination.

1 Introduction

As the most popular technology in the emerging paradigm of service-oriented
computation, web services are re-shaping the Web from a document-centered
to a service-centered environment. The impact of such a move, both in the
world’s economy and in our everyday life, is just beginning to loom.

Technically the definition of what a web service is offers no special diffi-
culty. According to the World Wide Web Consortium, it is just a software
application identified by a uniform resource identifier (URI), whose interfaces
and binding can be defined, described, and discovered by XML artifacts, and
that supports direct interactions with other software application using XML

based messages via Internet-based protocols. A sightly more refined speci-
fication would abstract from concrete representations of data and messages,

1 Email: marco.antonio@di.uminho.pt
2 Email: lsb@di.uminho.pt

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55607456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Barbosa and Barbosa

defining the underlying notion of a service as a state-distributed and platform-
independent computational entity which can be defined, published, classified,
discovered and dynamically assembled for developing massively distributed,
interoperable, evolvable systems and applications. Services, typically running
in different platforms and owned by different organizations, interact and co-
operate to achieve some complex goals. Therefore, suitable formal models for
interaction and cooperation become essential to represent and reason about
web service composition. Such is the theme of this paper.

In practice, web service composition is described in terms of either choreog-
raphy or orchestration languages. The former specifies the conversation rules
which govern interactions between all the services involved in a particular
application, whereas the latter provides means to program a specific service,
called the orchestrator, responsible for some form of external coordination of
the services. These two approaches have been separately developed by in-
dustrial consortia and international organizations such as W3C and OASIS.
In particular, WS-CDL and BPEL4WS specifications represent the most credited
languages for the Web Services technology which deal with choreography and
orchestration respectively.

In such a context, the starting point of this paper is the striking similarity
between the orchestration service, mentioned above, and what is called the
glue code in classical coordination approaches [24,23]. The corresponding re-
search question is:

• Taking, as an underlying assumption, that web services do not
interact directly, can a ’general-purpose’ coordination model be
used to specify their orchestration in typical applications?

In particular, the paper tackles this question in the context of a variant to Reo
exogenous coordination model [5], developed by the authors and documented
in [10,9].

This model is based on a notion of software connector which regulates
the flow of data by relating data items present to its input and output ports.
Typically the coordinated entities are regarded as black-boxes, characterized
by a set of ports through which data values are sent or received. Ports have a
polarity (either input or output) and, maybe, a type to classify the admissible
values.

This is however clearly insufficient to count as an interface for a web ser-
vice. The latter should also include a description of what is commonly called
the service workflow patterns. I.e., a specification of which, when and under
what conditions ports become activated (i.e., ready to deliver or consume a
datum). This raises a second question to be addressed in this paper:

2

Barbosa and Barbosa

• How can the model be extended with service interfaces exhibiting
some form of behavioural specification to model the intended
workflow, or use, pattern?

Clearly, to be useful such descriptions have to be compositional, in the sense
that the overall behaviour of a web service application should be computed
from the behaviour of individual services and that of the connectors forming
the orchestration layer.

The paper resorts to process algebra to build such specifications. There-
fore, both service interfaces and software connectors become equipped with a
use pattern given as an expression in a process algebra. The idea is, in itself,
not new. For example, reference [28] uses a process language to describe the
message exchange between web services, and to reason about them. A similar
work, but now in the choreography side, is reported in [13].

The challenging issue is composition. Actually it comes with no surprise
that the interaction discipline which governs web services integration is distinct
from the one underlying the global composition of web services and the glue
code. Typical process algebras, however, have a specific interaction discipline
which is fixed once and for all (e.g., the action/coaction synchronization which
characterizes CCS [20]).

This leads us to another piece of previous work (documented in [7,8]) on the
development of generic process algebra. I.e., process algebras in which parallel
composition is parametric on an interaction discipline suitably encoded. One
may then have different interaction models governing different aspects of a
specification.

Such is the genesis of the orchestration model proposed in this paper.
Expressive power and the possibility of computing the overall behaviour of a
particular web service based application are, in our opinion, its merits.

The paper results are presented in two main sections: section 2 which
introduces behavioural interfaces for web services and section 3 which discusses
their exogenous orchestration through external glueing code. Finally, section
4 presents some conclusions and directions for future work.

2 Behavioural Interfaces

2.1 Defining Interfaces

As mentioned before, in exogenous coordination models, like [5] or [9], com-
ponents are black box entities accessed by purely syntactic interfaces. The
role of an interface is restricted to keeping track of port names and, possibly,
of admissible types for data items flowing through them 3 . For a web-service,

3 In the sequel, however, we assume a unique, general data domain, denoted by D, as the
type of all data values flowing in a web service based application.

3

Barbosa and Barbosa

however, the specification of the corresponding workflow pattern is as impor-
tant as the description of the available actions or of the orchestration structure.
This leads to the following definition:

Definition 2.1 A web-service S interface is specified by a port signature,
sig(S) over D, given by a port name and a polarity annotation (either in(put)
or out(put)), and a use pattern, use(S), given by a process term, as detailed
below, over port names.

The relevant question concerns what sort of formalism should be used
for the specification of use patterns? Transition systems [19,29], regular-
expressions [25,26,31] or process algebras [18,3] are part of the huge diver-
sity of formal structures typically used to represent behaviour, which has also
been explored in the formalization of web services. Process algebra, in par-
ticular, provides an expressive setting for representing behavioural patterns
and establish/verify their properties in a compositional way. Some flexibil-
ity, however, is required with respect to the underlying interaction discipline.
Actually, different such disciplines have to be used, at the same time, to cap-
ture different aspects of web services orchestration. For example the discipline
governing to composition of software connectors between them (to build the
overall glue code) differs from the one used to capture the interaction between
the latter and the relevant web services’ interfaces. In any case, one needs a
way of specifying the relevant interaction discipline while guaranteeing that
behaviour combinators used are parametric on it. Meeting this goal entails
the need for a generic way to design process algebras. Our previous work on
a coalgebraic reconstruction of classical process calculi, documented in [7,8],
provides the necessary ingredients. This work is briefly reviewed in the fol-
lowing sub-section, which paves the way to the discussion of its application in
the context of web service orchestration.

2.2 Generic Process Algebra

References [7,8] introduced a denotational approach to the design of process
algebras in which processes are identified with inhabitants of a final coalge-
bra [17] and their combinators defined by coinductive extension (of ’one-step’
behaviour generator functions). The universality of such constructions entails
both definitional and proof principles on top of which the development of the
whole calculus is based 4 .

4 Combined with the pointfree ‘calculational’ style entailed by category theory, this leads to
a generic way of reasoning about processes in which, in particular, proofs by bisimulation,
which classically involve the explicit construction of such a relation [20], are replaced by
equational reasoning. In the dual world of functional programming the role of such ’univer-
sals’ is the basis of a whole discipline of algorithm derivation and transformation, which can
be traced back to the so-called Bird-Meertens formalism [12] and the foundational work of
T. Hagino [15].

4

Barbosa and Barbosa

Technically, this amounts to the systematic use of the universal property of
coinductive extension. I.e., the existence, for each arbitrary coalgebra 〈U, p :
U −→ P(Act× U)〉, of a unique morphism [(p)] to the final coalgebra ω :
ν −→ P(Act× ν) satisfying

k = [(p)] ⇔ ω · k = P(id× k) · p (1)

where P is the finite powerset functor 5 . Therefore, processes being the in-
habitants of the final coalgebra, expression P(Act× ν) stands for a set of pairs
each one representing a transition and a corresponding continuation process.
Such [(p)] represents the behaviour generated by p and comes equipped with a
bunch of laws useful in calculation.

Process combinators are defined either in a direct way (if they are con-
sumed by transitions) or by coinductive extension (if permanent). Examples
in the first group are the inactive process 0, whose set of observations is empty,
and non deterministic choice +, whose observations are the union of the possi-
ble observation upon its arguments 6 Clearly, prefix (α ·p) is another example.
The second group contains all combinators recursively defined. Although this
is not the place for a detailed account, we shall briefly review the specification
of both parallel composition and synchronous product, not only because these
combinators are used in the paper to join independent web services, but also
because they make concrete the notion of parametrization by an interaction
discipline discussed above. However, to do this, we need first to introduce the
interleaving combinator.

Interleaving 9 : ν × ν −→ ν represents an interaction-free form of parallel
composition. Observations over the interleaving of two processes correspond to
all possible interleavings of observations of their arguments. Thus, 9 = [(α9)],
where 7

α9 = ν × ν M // (ν × ν)× (ν × ν)
(ω×id)×(id×ω)// (P(Act× ν)× ν)× (ν ×P(Act× ν))

τr×τl //P(Act× (ν × ν))× P(Act× (ν × ν)) ∪ //P(Act× (ν × ν))

Synchronous product models the simultaneous execution of its two argu-
ments. In each step, processes interact through the actions they realize. Let
us, for the moment, represent such interaction by a function θ : Act −→
Act× Act. Formally, ⊗ = [(α⊗)] where

α⊗ = ν × ν
(ω×ω)//P(Act× ν)×P(Act× ν) sel·δr //P(Act× (ν × ν))

5 The definition generalizes, of course, to an arbitrary coalgebra.
6 Formally, recalling that final coalgebra ω gives, for each process denotation, the set of its
observations, one would write ω · 0 = ∅ and ω · + = ∪ · (ω×ω), respectively. In a pointwise
notation the latter equation becomes ω(p + q) = ω(p) ∪ ω(q).
7 Morphisms τr : P(Act×X) × C −→ P(Act× (X × C)) and τl : C × P(Act×X) −→
P(Act× (C ×X)) stand for, respectively, the right and left strength associated to functor
P(Act× Id).

5

Barbosa and Barbosa

where sel filters out all synchronisation failures (i.e., cases in which aθb = 0,
see below) and δr is given by

δr 〈c1, c2〉 = {〈a′ θ a, 〈p, p′〉〉| 〈a, p〉 ∈ c1 ∧ 〈a′, p′〉 ∈ c2}

The fundamental point to note is that the definition is parametric on θ, which
encodes an interaction discipline. Technically, an interaction discipline is
modeled as an Abelian positive monoid 〈Act; θ, 1〉 with a zero element 0. The
intuition is that θ determines the interaction discipline whereas 0 represents
the absence of interaction: for all a ∈ Act, aθ0 = 0. On the other hand,
being a positive monoid entails aθa′ = 1 iff a = a′ = 1. A typical example
of an interaction structure captures action co-occurrence, in which case θ is
defined as aθb = 〈a, b〉, for all a, b ∈ Act. Another example is provided by the
action complement match used in CCS [21]. In the sequel we shall introduce
a number of specifications for θ suitable to express web service orchestration.

Parallel composition combines the effects of both interleaving 9 and syn-
chronous product ⊗. Such a combination is performed at the genes level:
| = [(α|)], where

α| = ν × ν M // (ν × ν)× (ν × ν)
(α9×α⊗) //

P(Act× (ν × ν))× P(Act× (ν × ν)) ∪ //P(Act× (ν × ν))

2.3 Use Patterns and Interaction

Once defined a parametric semantics for parallel composition, we may return
to the definition of use patterns for web services.

Definition 2.2 Let P be the set of port identifiers and S stand for (the
specification of) a web service. Its use pattern, denoted by use(S) is given by
a process expression over Act , PP , given by the following grammar:

P ::= 0 | α.P | P + P | P ⊗ P | P 9 P | P ; P | P | P |
σ P | fix (x = P)

where α is an element of Act (i.e., a set of port identifiers) and σ is a substi-
tution.

Notice that choosing Act as a set of port identifiers allows for the synchro-
nous activation of several ports in a single computational step. The semantics
of such expressions is fairly standard, but for the parametrization of all forms
of parallel composition (i.e., ⊗ and |) by an interaction discipline as discussed
above. The reader is referred to [27] for the full details. Combinators 0, ., +,
|, ⊗ and 9, were already introduced in the previous sub-section. Renaming
is given by term substitution. The fix (X = P) is a fixed point construction,
which, as usual, can abbreviated in an explicit recursive definition.

6

Barbosa and Barbosa

Sequential composition, as in Csp [16], is given by ‘;’ and requires its first
argument to be a terminating process. Symbol § represents a successfully
terminating process, i.e., a process that engages in the success event, X, and

then stops. Formally, § abv
= X.0.

The approach proposed in this paper precludes direct interaction between
web services — all interaction being mediated by a specific connector. There-
fore, if two web services are active in a particular application, their joint
behaviour will allow the realization of both use patterns either simultaneously
or in an independent way. Formally,

Definition 2.3 The joint behaviour of a collection {Si| i ∈ n} of web services
is given by

use(S1) | . . . | use(Sn)

where the interaction discipline is fixed by θ = ∪ , i.e., the synchronisation of
actions in α and β corresponds to the simultaneous realization of all of them.

This joint behaviour is computed by the application of Milner’s expansion
law 8 , while obeying to the interaction discipline given by θ. The following
example illustrates this construction.

Example 2.4 Consider a service S1 with two ports a and b whose use pattern
is restricted to the activation of either a or b, forbidding their simultaneous
occurrence. The expected behaviour is captured by

use(S1) = fix (x = a.x + b.x)

Now consider another service, S2, with ports c and d whose behaviour is given
by the co-occurrence of actions in both ports. Therefore,

use(S2) = fix (x′ = cd.x′), where, cd
abv
= {c, d}

According to definition 2.3, the joint behaviour of S1 and S2 is

use(S1) | use(S2) = fix (x = acd.x + bcd.x + a.x + b.x + cd.x)

As a final example, consider still another service S3, with ports e and f acti-
vated in strict order, i.e.,

use(S3) = fix (y = e.f.y)

Clearly, expansion leads to

use(S2) | use(S3)

= fix (x = cd.x + e.f.x + cde.f.x + cde.cdf.x + e.cdf · · · cdf.x)

8 This law, which states that a process is always equivalent to the non deterministic choice
of its derivatives, is a fundamental result in interleaving models for concurrency.

7

Barbosa and Barbosa

3 Configurations

The fundamental notion proposed in this paper as a basis for the orchestration
of web services is that of a configuration. As explained in the Introduction, this
captures the intuition that web services cooperate through specific connectors
which abstracts the idea of an intermediate glue code to handle interaction.
Having already defined a notion of web service interface, which records all
what may be assumed to be known by the web service user, we shall now
complete the picture by defining

• what connectors are and how they compose;

• the way web services’ interfaces and connectors interact in a configuration.

These points are tackled in the following sub-sections. As one would expect,
the two forms of composition (of connectors with themselves and with web
services’ interfaces) follow different interaction disciplines, captured by specific
definitions of θ.

3.1 Connectors

Connectors are glueing devices between services which ensure the flow of data
and the meet of synchronization constraints. Their specification builds on top
of our previous work on component interconnection [9], which is extended here
with an explicit annotation of activation, or use, patterns for their ports.

Ports are interface points through which messages flow. Each port has
an interaction polarity (either input or output), but, in general, connectors
are blind with respect to the data values flowing through them. Another
particular characteristic is the ability to construct complex connectors out of
simpler ones using a set of combinators.

Let C be a connector with m input and n output ports. Assume, again,
D as a generic type of data values and P as a set of (unique) port identifiers
Formally, the behaviour of a connector may be given by

Definition 3.1 The specification of a connector C is given by a relation
data.[[C]] : Dn ←− Dm which records the flow of data, and a process expression
port.[[C]] which gives the pattern of port activation.

Let us illustrate this definition with a number of examples.

3.1.1 Synchronous channel.

The synchronous channel has two ports of opposite polarity. This connector
forces input and output to become mutually blocking, in the sense that any
of them must wait for the other to be completed.

data.[[• Â // •]] = IdD and port.[[• Â // •]] = fix (x = ab.x)

8

Barbosa and Barbosa

Its semantics is simply the identity relation on data domain D and its behav-
iour is captured by the simultaneous activation of its two ports.

3.1.2 Unreliable channel.

Any coreflexive relation, that is any subset of the identity, provides chan-
nels which can loose information, thus modelling unreliable communications.
Therefore, we define, an unreliable channel as

data.[[• Â 3 // •]] ⊆ IdD and port.[[• Â 3 // •]] = fix (x = ab.x + a.x)

The behaviour is given by a choice between a successful communication, repre-
sented by the simultaneous activation of the ports or, by a failure, represented
by the single activation of the input port.

3.1.3 Filter channel.

This is a channel in which some messages are discarded in a controlled way,
according to a given predicate φ : 2 ←− D. Noting that any predicate φ can
be seen as a relation Rφ : D←− D such that dRφd

′ iff d = d′ ∧ (φ d), define

data.[[• Â φ // •]] = Rφ and port.[[• Â φ // •]] = fix (x = ab.x)

3.1.4 Drain.

A drain has two input, but no output, ports. Therefore, it looses any data
item crossing its boundaries. A drain is synchronous if both write operations
are requested to succeed at the same time (which implies that each write
attempt remains pending until another write occurs in the other end-point).
It is asynchronous if, on the other hand, write operations in the two ports do
not coincide. The formal definitions are, respectively,

data.[[• Â H Â •]] = D× D and port.[[• Â H Â •]] = fix (x = ab.x)

and,

data.[[• Â O Â •]] = D× D and port.[[• Â O Â •]] = fix (x = a.x + b.x)

3.1.5 Fifo1.

This is a channel with a buffer of a single position.

data.[[• Â // •]] = IdD and port.[[• Â // •]] = fix (x = a.b.x)

3.2 Combining Software Connectors

Connectors can be combined to build more complex glueing code. The follow-
ing are the required combinators.

9

Barbosa and Barbosa

3.2.1 Aggregation.

This combinator places its arguments side-by-side, with no direct interaction
between them.

port.[[C1 £ C2]] = port.[[C1]] | port.[[C2]] (2)

with θ = ∪.

3.2.2 Hook.

This combinator encodes a feedback mechanism, drawing a direct connection
between an output and an input port. Formally, port.[[C Áj

i]] is obtained from
port.[[C]], by deleting references to ports i and j. To be well-formed it is
required that i and j appear in different factors of some form of parallel
composition (9, ⊗, or |).

Its effect on data is modelled by the following relation:

R : Dm ←− Dn

R Áj
i : Dm−1 ←− Dn−1

t = tm, . . . , ti+i, ti−i, . . . , t0, and t′ = t′n, . . . , t′j+i, t
′
j−i, t

′
0

t(R Áj
i)t

′ iff ∃x.(tn, . . . , ti+i, x, ti−i, . . . , t0)R(tm, . . . , tj+i, x, tj−i, . . . , t0)

3.2.3 Join.

Its effect is to plug ports with same polarity. The aggregation of input ports
is done by a right join (C i

j > z), where C is a connector, and i and j are
ports and z is a fresh name used to identify the new port. Port z receives
asynchronously messages sent by either i or j. When messages are sent at
same time the combinator chooses one of them in a nondeterministic way. On
the other hand, aggregation of output ports resorts to a left join (z <i

j C).
This behaves like a broadcaster sending synchronously messages from z to
both i and j. Formally, at a behavioural level, both operators effect is that of
a renaming operation

port.[[(C i
j > n)]] = port.[[(n <i

j C)]] = {n ← i, n ← j}port.[[C]]

The differences just mentioned are specified at the data level by,
Left join:

R : Dm ←− Dn

(R i
j > z) : Dm−1 ←− Dn

t = tm, . . . , ti+i, ti−i, . . . , tj+i, tj−i, . . . , t0, and

t′ = t′n, . . . , ti+i, ti−i, t
′
j+i, t

′
j−i, . . . , t

′
0

t(R i
j > z)t′ iff

∃x.(tz, tn, . . . , ti+i, tz, ti−i, . . . , tj+i, x, tj−i, . . . , t0)Rt′

10

Barbosa and Barbosa

Right join:

R : Dm ←− Dn

(z <i
j R) : Dm ←− Dn−1

t = tm, . . . , ti+i, ti−i, . . . , tj+i, tj−i, . . . , t0, and

t′ = t′n, . . . , ti+i, ti−i, t
′
j+i, t

′
j−i, . . . , t

′
0

t(z <i
j R)t′ iff

∃x.tR(tz, tm, . . . , tj+i, tj−i, . . . , ti+i, ti−i, . . . , t0)

3.3 Configurations

A configuration is simply a collection of web services, characterized by their
interfaces, interconnected through an orchestrator, i.e., a connector network
built from elementary connectors using the combinators mentioned above.
Formally,

Definition 3.2 A configuration involving a collection S = {Si| i ∈ n} of web
services is a tuple

〈U,C, σ〉 (3)

where U = use(S1) | use(S2) | · · · | use(Sn) is the (joint) use pattern for S, C
is a connector and σ a mapping of ports in S to ports in C.

The relevant point concerning configurations is the semantics of the inter-
action between the connector’s port behaviour and the joint use patterns of
the involved web services. This is captured by a synchronous product ⊗ for a
quite peculiar θ, which is expected to capture the following requirements:

• Interaction is achieved by the simultaneous activation of identically named
ports 9 .

• There is no interaction if the connector intends to activate ports which are
not linked to the ones offered by the web services’ side. For example if a
port a of a service S is connected to the input end of a synchronous channel
whose output end is disconnected, no information can flow and port a will
never be activated.

• The dual situation is allowed, i.e., if the web services’ side offer activa-
tion of all ports plugged to the ones offered by the connectors’ side, their
intersection is the resulting interaction.

• Moreover, and finally, activation of unplugged web services’ ports is always
possible.

Formally, this is captured in the following definition.

9 Often this will force the introduction of suitable port renamings.

11

Barbosa and Barbosa

Definition 3.3 The behaviour bh(Γ) of a configuration Γ = 〈U,C, σ〉 is given
by

bh(Γ) = σ U ⊗ port.[[C]] (4)

where θ underlying the ⊗ connective is given by

c θ c′ =

c ∩ (c′ ∪ free) ⇐ c′ ⊆ c

∅ ⇐ otherwise
(5)

and free denotes the set of unplugged ports in U , i.e., not in the domain of
mapping σ.

In the sequel the use of configurations, and the computation of their be-
haviours, is illustrated by two examples.

3.4 Examples

Example 3.4 Our first example is taken from [14]. Suppose an organiza-
tion offers a “Holiday Reservation Service” (HRS) that allows customers to
organize holiday travels. A possible configuration HR is given by

HR = 〈WHR, SB, σHS〉

where

WHR = use(HRS) | use(HORS) | use(FRS) | use(CRS)

σHS = {a ← A, b ← B, c ← C, d ← D, e ← E, f ← F, g ← G}

It is depicted in Fig 1.

Fig. 1. Holiday Reservation

It is assumed that organizing holiday requires making reservations for a
hotel, for a flight and for a car. Some other organizations offer services to deal

12

Barbosa and Barbosa

with each part of the job: hence the HORS, FRS and CRS services. Before
asking the customer to pay, the HRS services needs to commit a transaction
containing each of the reservations. A holiday reservation should only succeed
when all other three reservations succeed.

The commit requirement is modeled by a particular external glue code: a
barrier synchronization connector consisting of six synchronous channels and
two synchronous drain channels, organized together as in Fig. 1.

Let us now compute the overall behaviour of configuration HR. After port
renaming, the usage pattern of each web service is as follows:

use(HRS) = fix (x = a.x + b.x + c.x + abc.x)

use(HORS) = fix (x = e.x)

use(FRS) = fix (x = f.x)

use(CRS) = fix (x = g.x)

Its joint behaviour is given their |-composition, with θ = ∪.

On the other hand, the behaviour of connector SB is obtained by the
composition of the behaviours of the six elementary connectors aggregated
through the combinators:

port.[[SB]] = fix x = abcefg .x (6)

This is computed starting from the behaviours of the elementary connectors

port.[[c1]] = fix (x = aa′.x), port.[[c2]] = fix (x = e′e.x),

port.[[c3]] = fix (x = bb′.x), port.[[c4]] = fix (x = f ′f.x),

port.[[c5]] = fix (x = cc′.x), port.[[c6]] = fix (x = g′g.x),

port.[[c7]] = fix (x = dd′.x), port.[[c8]] = fix (x = hh′.x)

as follows

Cn1 = port.[[(n <e′
d (c2 £ c7))]] = fix (x = {n ← e′, n ← d} ee′dd′.x)

Cn2 = port.[[((c1 £ Cn1) Án
a′)]] = fix (x = aed′.x)

Cn3 = port.[[(m <g′
h′ (c6 £ c8))]] = fix (x = {m ← g′,m ← h′} hh′gg′.x)

Cn4 = port.[[((Cn3 £ c5) Ám
c′)]] = fix (x = cgh.x)

Cn5 = port.[[(z <d′
f ′ (Cn2 £ c4))]] = fix (x = {z ← d′, z ← f ′} add′ff ′.x)

Cn6 = port.[[((Cn5 £ c3) Áz
b′)]] = fix (x = abef.x)

port.[[SB]] = port.[[((Cn6 £ Cn4) Áz
h)]] = fix (x = abcefg.x)

The result of the ⊗ composition of WHR and (6) is the behaviour of config-
uration HR. There is no need, however, to compute the complete expansion

13

Barbosa and Barbosa

of the parallel composition in WHR expression, which is

fix (x = a.x + · · ·+ e.x + f.x + g.x+

ae.x + · · ·+ be.x + · · ·+ ce.x + · · ·+ abce.x + · · ·+
aef.x + · · ·+ bef.x + · · ·+ cef.x + · · ·+ abcef.x + · · ·+
aefg.x + · · ·+ befg.x + · · ·+ cefg.x + · · ·+ abcefg.x + · · ·+
ef.x + eg.x + fg.x + efg.x)

because, according to interaction discipline (5), the only successful case of
composition with port.[[SB]] corresponds to the underlined alternative in the
expression above. Clearly, the θ-composition of abcefg with abcefg (from the
connector side) is abcefg, while for all other cases it results in the empty set
∅. Therefore, and finally,

bh(HR) = fix (x = abcefg.x) (7)

Example 3.5 As a second example consider an elementary banking system
composed by an ATM machine, a Bank, and a DBRep service whose purpose
is to backup all the messages flowing through the connector. Therefore, all
messages are replicated before being stored. Configuration BS, depicted in
Fig. 2, is specified as

BS = 〈WBS, DBC, σBS〉
where

WBS = use(ATM) | use(Bank) | use(DBRep)

σHS = {a ← Arq, e ← Ars, c ← DBr, f ← DBp, d ← Brs, b ← Brq}

Fig. 2. Bank System

14

Barbosa and Barbosa

The use patterns of each web service are as follows

use(ATM) = fix (x = a.e.x)

use(Bank) = fix (y = b.d.y)

use(DBRep) = fix (z = c.z + f.z)

Connector DBC behaves like a double broadcaster (hence its name). Its
behaviour allows for the both simultaneous or independent activation of each
broadcast (co1 or co2) as shown by the following computation:

port.[[ch1]] = fix (x = b′b.x), port.[[ch2]] = fix (x = c′c.x)

port.[[co1]] = port.[[(a <b′
c′ (ch1 £ ch2))]] = fix (x = abc.x)

port.[[ch3]] = fix (x = e′e.x), port.[[ch4]] = fix (x = f ′f.x)

port.[[co2]] = port.[[(d <e′
f ′ (ch3 £ ch4))]] = fix (x = def.x)

port.[[DBC]] = port.[[(co1 £ co2))]] = fix (x = abc.x + def.x + abcdef.x)

Again, to determine bh(BS) one needs to expand WBS, eventually re-
sorting to some tool support 10 , as the number of alternatives is rather high.
According to (5), we shall only look at sets of ports in prefix expressions
which contain port set prefix in port.[[DBC]] expression. For the first level
of expansion alternative abc.(e.x | d.y | z) is the only one to θ-compose with
abc in port.[[DBC]], resulting in abc again. Then, consider the expansion of
term (e.x | d.y | z): the only alternative to worth consider (i.e., which does not
lead to ∅ on θ-composition) is edf.(x | y | z), the resulting interaction being
edf . From this point on the same expansion pattern repeats. This means that
bh(BS) becomes:

bh(BS) = fix (x = abc.edf.x) (8)

Notice how the particular use patterns in the web services act as a constraint
over the admissible behaviour of connector DBC.

This example may be also used to check how definition (5) deals with the
presence of unplugged ports, such us port Bo in service Bank. Consider, then,
the following two alternatives for the use pattern of service Bank:

use(Bank) = fix (y = bBo.d.y) (9)

use(Bank) = fix (y = b.d.y + Bo.y) (10)

In the expansion of WBS, case (9), which captures the simultaneous activation
of ports b and Bo, leads to term abBoc.(e.x |d.y |z) which, as free = {Bo} leads
to

bh(BS) = fix (x = abcBo.edf.x) (11)

10 A handy alternative is the Cwb tool [22].

15

Barbosa and Barbosa

Case (10) specifies that ports b and Bo are activated in alternative: no term
with both b and Bo will appear in the expansion and, therefore, bh(BS) re-
mains as given by equation (8).

4 Conclusions and Future Work

Service-oriented computing is an emerging paradigm for distributed comput-
ing with increasing impact on the way modern software systems are designed
and developed. Services are autonomous and heterogeneous computational en-
tities which cooperate, following a loose coupling discipline, to achieve some
complex goals. Web services are one of the most prominent technologies in this
paradigm. As an emerging technology, however, it still lacks not only sound
semantical models but also suitable calculi to reason about and transform
service-oriented designs.

Having proposed formal models for both behavioural interfaces and con-
figurations, as a base for representing web services’ orchestration, this paper
may be a step in that direction. The approach combines two ingredients in
which the authors have been working for some time now: exogenous coordina-
tion and a methodology for the design of process algebras parametric on the
interaction discipline.

Lots of questions, however, remain open. Let us enumerate the ones in
which we are currently involved.

Negative Information. In a number of practical situations service orches-
tration also depends on what may be called negative information. One of the
basic channels considered in Reo [5] is the lossy channel which acts as a syn-
chronous one if both an input and an output request are pending on its two
ports, but will loose the data item on the input on the absence of an output
request on the other port. Notice this behaviour is distinct from that of the
unreliable channel discussed above, which looses data non deterministically.

To handle these cases we enrich the specification of Act in definition 2.2
to include negative port activations, or more rigorously stated, absence of port
requests, denoted, for each port p, by p̃. Therefore, the specification of Reo’s
lossy channel becomes possible as

data.[[• Â ··· // •]] ⊆ IdD and port.[[• Â ··· // •]] = fix (x = ab.x + ab̃.x)

The following step is to modify θ in (5), definition 3.3, so that

c θ c′ = 0 ⇐ ∃p∈P . p ∈ c ∧ p̃ ∈ c′ (12)

Then the joint behaviour of a configuration orchestrated by a lossy channel
and involving use pattern U = fix (x = ab.x) is computed as follows

U ⊗ port.[[• Â ··· // •]] = fix (x = (abθab).x + (abθab̃).x) = fix (x = ab.x)

16

Barbosa and Barbosa

whereas

U ⊗ port.[[• Â ··· // •]] = fix (x = (aθab).x + (aθab̃).x) = fix (x = a.x + a.x)

= fix (x = a.x)

for Ufix (x = a.x), i.e., in the absence of an output request from one of the
services.

Workflow Patterns. The notion of behavioural interface discussed in sec-
tion 2 is close to that of workflow patterns [1] whose role in the design of
service-oriented systems is well recognized. Their formalization is still an
’hot’ research topic (see, e.g., [2,30,4], among many others). We believe all
such patterns can be encoded in our notion of behavioural interface, provided
the latter is enriched with two port attributes to keep track of the number
of port requests and activations. Fig. 3 illustrates the specification of two
common patterns, part of a systematic classification effort currently under
development.

Pattern 2 (Parallel split)
Description. A point in the workflow process where a single thread
of control splits into multiple threads of control which can be executed
in parallel, thus allowing activities to be executed simultaneously or
in any order.
Specification.

use(WS2) = P1 | . . . | Pn

Pattern 3 (Synchronization)
Description. A point in the workflow process where multiple parallel
activities converge into one single thread of control, thus synchronizing
multiple threads.
Specification.

use(WS3) = (a1.a2.an.§ ⊗ b1.b2.bn.§) ; P

Fig. 3. Two workflow patterns and their encoding as use patterns

For the general case, however, this requires not only the inclusion in the
just mentioned interface of port attributes, but also a conditional constructor
(c → P, P ′), where c is a boolean condition on those attributes.

Mobility. It is not clear how the model discussed in this paper can be ex-
tended to cope with mobility issues, and, in particular, with dynamic recon-
figuration of web services networks. The question is, in fact, more general:

17

Barbosa and Barbosa

we still know very little about the semantics of mobility in the context of
exogenous coordination. Tentative solutions in e.g., Reo [6] or our own con-
tribution documented in [11], are still of an operational nature.

Language Semantics. Whether formal models, like the one discussed in this
paper, can be of use in providing precise semantic foundations of emerging lan-
guages for web services composition (e.g., BPEL4WS, XLANG or WS-CDL, among
others) remains a challenge we intend to face in future work. Its relevance,
from the point of view of software engineering, cannot be underestimated.

Acknowledgement

This research was carried on in the context of the PURe Project supported by
Fct, the Portuguese Foundation for Science and Technology, under contract
POSI/ICHS/44304/2002.

References

[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P. Barros.
Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[2] N. R. Adam, V. Atluri, and W.-K. Huang. Modeling and analysis of workflows
using petri nets. J. Intell. Inf. Syst., 10(2):131–158, 1998.

[3] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
TOSEM, 6(3):213–249, 1997.

[4] R. Amici, F. Corradini, and E. Merelli. A process algebra view of coordination
models with a case study in computational system biology. In L. Bocchi
and P. Ciancarini, editors, Proceedings of the First International Workshop on
Petri Nets and Coordination (PNC04), Satellite Event of the 25th International
Conference on Application and Theory of Petri Nets, Bologna, Italy, June 21,
2004, pages 33–47, 2004.

[5] F. Arbab. Reo: a channel–based coordination model for component
composition. Mathematical Structures in Comp. Sci., 14(3):329–366, 2004.

[6] F. Arbab and F. Mavadatt. Coordination through channel composition. In
Proc. Coordination Languages and Models. Springer Lect. Notes Comp. Sci.
(2315), 2002.

[7] L. S. Barbosa. Process calculi à la Bird-Meertens. In M. L. Andrea Corradini
and U. Montanari, editors, CMCS’01, volume 44.4, pages 47–66, Genova, April
2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[8] L. S. Barbosa and J. N. Oliveira. Coinductive interpreters for process calculi.
In Proc. of FLOPS’02, pages 183–197, Aizu, Japan, September 2002. Springer
Lect. Notes Comp. Sci. (2441).

18

Barbosa and Barbosa

[9] M. Barbosa and L. Barbosa. Specifying software connectors. In K. Araki and
Z. Liu, editors, Proc. First International Colloquim on Theoretical Aspects of
Computing (ICTAC’04), Guiyang, China, pages 53–68. Springer Lect. Notes
Comp. Sci. (3407), 2004.

[10] M. A. Barbosa and L. S. Barbosa. A relational model for component
interconnection. In Journal of Universal Computer Science, volume 10, pages
808–823, 2004.

[11] M. A. Barbosa and L. S. Barbosa. An orchestrator for dynamic interconnection
of software components. In Proc. 2nd International Workshop on Methods
and Tools for Coordinating Concurrent, Distributed and Mobile Systems
(MTCoord’06), Bologna, Italy, June 2006. Elsevier.

[12] R. Bird and O. Moor. The Algebra of Programming. Series in Computer
Science. Prentice-Hall International, 1997.

[13] A. Brogi, C. Canal, E. Pimentel, and A. Vallecillo. Formalizing web service
choreographies. Electr. Notes Theor. Comput. Sci., 105:73–94, 2004.

[14] N. K. Diakov and F. Arbab. Compositional construction of web services using
reo. In WSMAI, pages 49–58, 2004.

[15] T. Hagino. A typed lambda calculus with categorical type constructors. In
D. H. Pitt, A. Poigné, and D. E. Rydeheard, editors, Category Theory and
Computer Science, pages 140–157. Springer Lect. Notes Comp. Sci. (283), 1987.

[16] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer
Science. Prentice-Hall International, 1985.

[17] B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS
Bulletin, 62:222–159, 1997.

[18] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed
software architectures. In Proceedings of the 5th European Software Engineering
Conference, pages 137–153, London, UK, 1995. Springer-Verlag.

[19] J. Magee, J. Kramer, and D. Giannakopoulou. Behaviour analysis of software
architectures. In WICSA1: Proc. of the TC2 First Working IFIP Conf. on
Software Architecture (WICSA1), pages 35–50. Kluwer, B.V., 1999.

[20] R. Milner. Communication and Concurrency. Series in Computer Science.
Prentice-Hall International, 1989.

[21] R. Milner. Communicating and Mobile Processes: the π-Calculus. Cambridge
University Press, 1999.

[22] F. Moller and P. Stevens. The edinburgh concurrency workbench (version 7).
User’s manual, LFCS, Edinburgh University, 1996.

[23] O. Nierstrasz and F. Achermann. A calculus for modeling software components.
In F. S. de Boer, M. Bonsangue, S. Graf, and W.-P. de Roever, editors, Proc.
First International Symposium on Formal Methods for Components and Objects
(FMCO’02), pages 339–360. Springer Lect. Notes Comp. Sci. (2852), 2003.

19

Barbosa and Barbosa

[24] G. Papadopoulos and F. Arbab. Coordination models and languages. In
Advances in Computers — The Engineering of Large Systems, volume 46, pages
329–400. 1998.

[25] F. Plasil and D. Mikusik. Inheriting synchronization protocols via sound
enrichment rules. In JMLC ’97: Proc. of the Joint Modular Languages
Conference on Modular Programming Languages, pages 267–281, London, UK,
1997. Springer-Verlag.

[26] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Trans. Softw. Eng., 28(11):1056–1076, 2002.

[27] P. R. Ribeiro, M. A. Barbosa, and L. S. Barbosa. Generic process algebra: A
programming challenge. In Proc. 10th Brazilian Symposium on Programming
Languages, Itatiaia, Brasil, 2006.

[28] G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web
services using process algebra. In ICWS ’04: Proc. of IEEE Inter. Conf. on Web
Services (ICWS’04), page 43, Washington, DC, USA, 2004. IEEE Computer
Society.

[29] P. Selinger. Categorical structure of asynchrony. In MFPS’98 (invited talk),
New Orleans. ENTCS, volume 20, Elsevier, March 1999.

[30] H. Smith and P. Fingar. Workflow is just a pi process, 2003.

[31] S. Visnovsky. Modeling Software Components Using Behavior Protocols.
Doctoral thesis, Charles University, Czech Replubic, 2003.

20

