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Abstract

Standard necessary conditions of optimality (NCO) for constrained
optimal control problems – Maximum Principle type conditions – may fail
to provide useful information to select candidates to minimizers among
the overall set of admissible solutions. This phenomenon is known as the
degeneracy phenomenon and there has been continuing interest in the
literature in proposing stronger forms of NCO that can be informative in
such cases: the so-called nondegenerate NCO. The nondegenerate NCO
proposed here are valid under a different set of hypothesis and under
a constraint qualification of an integral-type that, in relation to some
previous literature, can be verified for more problems.

1 Introduction

In this report we are interested in Necessary Conditions of Optimality – Max-
imum Principle type conditions – for optimal control problem with pathwise
state constraints. We consider the following problem

Minimize g(x(1)) (1)
subject to

ẋ(t) = f (t, x(t), u(t)) a.e. t ∈ [0, 1] (2)
(P ) x(0) = x0

x(1) ∈ C

u(t) ∈ Ω(t) a.e. t ∈ [0, 1]
h (t, x(t)) ≤ 0 for all t ∈ [0, 1], (3)
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for which the data comprises functions g : IRn 7→ IR, f : [0, 1]×IRn×IRm 7→ IRn,
h : [0, 1]× IRn 7→ IR, a set C and a multifunction Ω : [0, 1] ⇒ IRm.

The set of control functions for (P ) is

U := {u : [0, 1] 7→ IRm : u is a measurable function, u(t) ∈ Ω(t) a.e. t ∈ [0, 1]} .

The state trajectory is an absolutely continuous function which satisfies (2). The
domain of the above optimization problem is the set of admissible processes,
namely pairs (x, u) comprising a control function u and a corresponding state
trajectory x which satisfy the constraints of (P ). We say that an admissible
process (x̄, ū) is a strong local minimizer if there exists δ > 0 such that

g(x̄(1)) ≤ g(x(1))

for all admissible processes (x, u) satisfying

‖x(t)− x̄(t)‖L∞ ≤ δ.

It is well known that, the necessary conditions for such problems appears in
the form of Maximum Principle (MP). The original formulation of the MP (see
[1]) applied to problems with very regular properties for the involved functions.
However, over the last three decades continuous development allow to reformu-
late the MP for ”nonsmooth” data (data that can be non differentiable), free
endtime constraints, a broad description of endpoint constraints, and other re-
finements. Se for example [2], [3], [4], [5], [6]. We consider here a nonsmooth
version of the MP, as in [6].

We assume that problem (P) satisfies the following set of hypothesis:
There exists a positive scalar δ′ such that:

H1 The function (t, u) 7→ f(t, x, u) is L × B measurable for each x. (L × B
denotes the product σ-algebra generated by the Lebesgue subsets L of
[0, 1] and the Borel subsets of IRm.)

H2 There exists a L×B measurable function k(t, u) such that t 7→ k(t, ū(t)) is
integrable and

‖f(t, x, u)− f(t, x′, u)‖ ≤ k(t, u)‖x− x′‖

for x, x′ ∈ x̄(t) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, 1]. Furthermore there exist
scalars Kf > 0 and ε′ > 0 such that

‖f(t, x, u)− f(t, x′, u)‖ ≤ Kf‖x− x′‖

for x, x′ ∈ x̄(0) + δ′B, u ∈ Ω(t) a.e. t ∈ [0, ε′].

H3 The function g is Lipschitz continuous on x̄(1) + δ′B.

H4 The end-point constraint set C is closed.

H5 The graph of Ω is L × B measurable.

H6 The function h is upper semicontinuous and there exists a scalar Kh > 0
such that the function x 7→ h(t, x) is Lipschitz of rank Kh for all t ∈ [0, 1].
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Define the Hamiltonian

H(t, x, p, u) = p · f(t, x, u).

The Necessary Conditions assert existence of an absolutely continuous func-
tion p, a measurable function γ, a non-negative measure µ representing an
element in C∗([0, 1] : IR) and λ ≥ 0 such that

−ṗ(t) ∈ co ∂xH(t, x̄(t), q(t), ū(t)) a.e. t ∈ [0, 1], (4)

−q(1) ∈ NC(x̄(1)) + λ∂g(x̄(1)), (5)

γ(t) ∈ ∂>
x h(t, x̄(t)) µ a.e. , (6)

supp{µ} ⊂ {t ∈ [0, 1] : h (t, x̄(t)) = 0} , (7)

for almost every t ∈ [0, 1], ū(t) maximizes over Ω(t)

u 7→ H(t, x̄(t), q(t), u) (8)

and,
µ{[0, 1]}+ ‖p‖L∞ + λ > 0, (9)

where

q(t) =


p(t) +

∫
[0,t)

γ(s)µ(ds) t ∈ [0, 1)

p(t) +
∫

[0,1]

γ(s)µ(ds) t = 1.

Here, ∂f denotes the limiting subdifferential of f , NC denotes the limiting
normal cone and ∂>

x h denotes the hybrid partial subdifferential . (The defini-
tions are in Section 2)

Stronger forms of NCO for optimal control problems that guarantee nonde-
generacy and/or normality were discussed in [7]. In this report we are interested,
in the strong form of the MP introduced in [8], which ensures that the MP can
be written with the nontriviality condition

µ{(0, 1]}+ ‖q‖L∞ + λ > 0,

if the problem satisfies the following additional condition - constraint qualifica-
tion:

(CQ) If h(0, x0) = 0, then there exist positive constants ε,ε1, δ, and a control
ũ ∈ Ω(t) such that for a.e. t ∈ [0, ε)

ζ · [f(t, x0, ũ(t))− f(t, x0, ū(t))] < −δ

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, ε), x ∈ {x0}+ ε1B.

In this report, the main result consist of a stronger MP, as above, but re-
quiring a weaker constraint qualification of an integral-type:
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(CQ∗) If h(0, x0) = 0, then there exist positive constants Ku, ε1, δ, τ̄∗ ∈ (0, 1]
and a control ũ ∈ Ω(t) such that for all τ ∈ [0, τ̄∗]∫ τ

0

ζ · [f(t, x0, ũ(t))− f(t, x0, ū(t))]dt < −δτ

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, τ̄∗), x ∈ {x0}+ ε1B

Note that CQ implies CQ∗, so the new constraint qualification CQ∗ is more
interesting as a condition since it can be verified for more problems.

However, the NCO given here (valid under CQ∗) require a convex velocity
set as an additional hypothesis.

2 Preliminaries

Throughout, B will denote the closed unit ball in Euclidean space and coS the
convex hull of a set S.

The limiting normal cone of a closed set C ⊂ IRn at x̄ ∈ C, denoted by
NC(x̄), is the set

NC(x̄) := {η ∈ IRn : ∃ sequences {Mi} ∈ IR+, xi → x̄, ηi → η such that xi ∈ C
and ηi · (y − xi) ≤ Mi|y − xi|2 for all y ∈ IRn, i = 1, 2, ...}.

The limiting subdifferential of a lower semicontinuous function f : IRn →
IR∪{∞} at a point x̄ ∈ IRn such that f(x̄) < +∞, denoted by ∂f(x̄), is defined
to be

∂f(x̄) = {η ∈ Rn : (η,−1) ∈ Nepif (x̄, f(x))};

where epif = {(x, α) ∈ Rn+1 : α ≥ f(x)} denotes the epigraph of a function f .
We define also ∂>

x h(t, x), to be the following the hybrid partial subdifferential
of h in the x-variable

∂>
x h(t, x) := co{ξ : there exist (ti, xi) → (t, x) s.t. h(ti, xi) > 0,

h(ti, xi) → h(t, x), and ∇xh(ti, xi) → ξ}

See [6] for a review of Nonsmooth Analysis and related concepts using a
similar notation.

3 Main Result

In addition to (H1)-(H6), we assume that

H7 There exists positive constants τ̄∗ and ε1 such that f(t, x,Ω(t)) is convex
for all t ∈ [0, τ̄∗) and for all x ∈ {x0}+ ε1B,

and

(CQ∗) (constraint qualification) If h(0, x0) = 0 then there exist positive con-
stants Ku, ε1, δ, τ̄∗ ∈ (0, 1] and a control ũ ∈ Ω(t) such that for all
τ ∈ [0, τ̄∗]

‖f(t, x0, ū(t))‖ ≤ Ku, ‖f(t, x0, ũ(t))‖ ≤ Ku,
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and ∫ τ

0

ζ · [f(t, x0, ũ(t))− f(t, x0, ū(t))]dt < −δτ

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, τ̄∗), x ∈ {x0}+ ε1B.

Proposition 3.1 Assume hypotheses (H1)-(H7) and (CQ∗). Then the nontriv-
iality condition (9) of the Maximum Principle can be replaced by the stronger
condition

µ{(0, 1]}+ ‖q‖L∞ + λ > 0. (10)

As in ([8]), the proof consists of making an appropriate modification of the
data ”near” to the left endpoint and then apply the standard Maximum Prin-
ciple.

4 Proof of the Main Result

We assume that h(0, x0) = 0, since otherwise the Maximum Principle cannot
be satisfied by the trivial multipliers.

Step 1: Consider, for α ∈ (0, 1], the system of equations (S)

(S)


ẋ(t) = f(t, x(t), ū(t)) + y(t) ·∆f(t, x(t)) a.e. t ∈ [0, α]
x(0) = x0,
ẏ(t) = 0 a.e. t ∈ [0, α]
y(0) ∈ [0, 1]

(11)

where we define
∆f(t, x) := f(t, x, ũ(t))− f(t, x, ū(t)). (12)

Here ũ is the control function featuring in the constraint qualification CQ∗.
Since ẏ = 0 and the function y is absolutely continuous, it will be constant.

We will here denote the value of the function simply by y in [0, α] instead of
y(t), when it is not ambiguous.

Step 2: By reducing the size of α, we can ensure that

h(t, x(t)) ≤ 0 for all t ∈ [0, α], (13)

for all trajectories x solving system (S).
For that, we start by introducing the following lemma, which is a simple

consequence of the hypotheses imposed on the data and standard Gronwall-
type estimates. A similar proof can be found in [9].

Lemma 4.1 Consider the functions x, y solving the system of equations (S),
and x̄ solving (P ). There exist positive constants A, and B such that for α small
enough

‖x(t)− x0‖ ≤ At

‖x(t)− x̄(t)‖ ≤ Byt

for all t ∈ [0, α].
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Choose an α satisfying

α < min
{

2δ

KhKf (2A + B)
,
ε1
A

, τ̄∗
}

. (14)

Suppose, in contradiction, that for some fixed t ∈ [0, α]

h(t, x(t)) > 0. (15)

Define for β ∈ [0, 1]

r(β) := h(t, x̄(t) + β(x(t)− x̄(t))).

In view of the properties of h as a function of x, r is continuous. We have
also that

r(0) = h(t, x̄(t)) ≤ 0
r(1) = h(t, x(t)) > 0

It follows that the set

D := {β ∈ [0, 1] : r(β) = 0}

is non-empty, closed and bounded. We can therefore define

βm := max
β∈D

β.

Since r(1) > 0, we have βm < 1.
Take any β ∈ (βm, 1].
Applying the Lebourg Mean-Value Theorem ([2]), we obtain

h(t, x(t))− r(β) = ζt · [x(t)− x̄(t)− β(x(t)− x̄(t))]
= (1− β)ζt · [x(t)− x̄(t)]

for some ζt ∈ co ∂xh(t, x̂), and x̂ in the segment (x(t), x̄(t) + β[x(t)− x̄(t)]).
As r(β) > 0 for all β ∈ (βm, 1], we have that h(t, x̂) > 0, which implies that

co∂xh(t, x̂) ⊂ ∂>
x h(t, x̂). It follows that ζt ∈ ∂>

x h(t, x̂).
Expanding the expression above yields

h(t, x(t))− r(β)

= (1− β) ζt ·
∫ t

0

[f(s, x(s), ū(s)) + y∆f(s, x(s))− f(s, x̄(s), ū(s))] ds

≤ (1− β)
(

ζt ·
∫ t

0

y∆f(s, x(s)) ds +‖ζt‖Kf

∫ t

0

‖x(s)− x̄(s)‖ ds

)
≤ (1− β)

(∫ t

0

ζt · y∆f(s, x0) ds + 2Kf‖ζt‖y
∫ t

0

‖x(s)− x0‖ ds

+KhKf

∫ t

0

‖x(s)− x̄(s)‖ ds

)
≤ (1− β)

∫ t

0
ζt · y∆f(s, x0)ds + 2KfKhy

∫ t

0
‖x(s)− x0‖ds

+KhKf

∫ t

0
‖x(s)− x̄(s)‖ds

≤ (1− β) (−yδt + KhKfy(A + B/2)t2)

≤ 0 for all β ∈ (βm, 1].
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Here we have used the fact that the norm of every element of the subdifferen-
tial is bounded by the Lipschitz rank of the function. In the last two inequalities
we have used CQ∗ and (14).

Since r is continuous and r(βm) = 0, it follows that

h(t, x(t)) ≤ 0.

Step 3: Take a decreasing sequence {αi} on (0, α), converging to zero.
Associate with each αi the following problem (Pi), in which satisfaction of the
state constraint is enforced only on the subinterval [αi, 1].

Minimize g(x(1))
subject to

ẋ(t) = f(t, x(t), ū(t)) + y(t) ·∆f(t, x(t))
a.e. t ∈ [0, αi)

ẋ(t) = f (t, x(t), u(t))
a.e. t ∈ [αi, 1]

ẏ(t) = 0 a.e. t ∈ [0, αi)
(Pi) x(0) = x0

x(1) ∈ C
y(0) ∈ [0, 1]
u(t) ∈ Ω(t) a.e. t ∈ [αi, 1]
h (t, x(t)) ≤ 0for all t ∈ [αi, 1].

By convexity hypotheses (H7) all possible components x trajectories of (Pi)
are contained in the set of possible trajectories of (P ). Moreover the trajectory
for (Pi) y ≡ 0 and x ≡ x̄ will lead to a cost g(x̄(1)) identical to the optimal cost
(P ). We have proved the following Lemma.

Lemma 4.2 The trajectory y ≡ 0 and x ≡ x̄ solves all problems (Pi).

The necessary conditions for problem (Pi) assert the existence of an arc
(pi, ci) : [0, 1] 7→ IRn × IR, a measurable function γi, a nonnegative Radon
measure µi ∈ C∗([αi, 1], IR), and a scalar λi ≥ 0 such that

µi{[αi, 1]}+ ‖(pi, ci)‖+ λi > 0, (16)

−ṗi(t) ∈



pi(t) · co∂xf(t, x̄(t), ū(t)),
a.e. t ∈ [0, αi);(

pi(t) +
∫

[αi,t)

γi(s)µi(ds)

)
· co∂xf(t, x̄(t), ū(t)),

a.e. t ∈ [αi, 1].

(17)

−ċi(t) =
{

pi(t) ·∆f(t, x̄(t)), a.e. t ∈ [0, αi);
0, a.e. t ∈ [αi, 1]. (18)

−

(
pi(1) +

∫
[αi,1]

γi(s)µi(ds) + λiξi

)
∈ NC(x̄(1)) (19)
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where ξi ∈ ∂xg(x̄(1))

−ci(1) = 0{0 = λi∂yg(x̄(1))} (20)

ci(0) ∈ N[0,1](0)

γi(t) ∈ ∂>
x h(t, x̄(t)) µ a.e. ,

supp{µi} ⊂ {t ∈ [αi, 1] : h (t, x̄(t)) = 0} , (21)

and for almost every t ∈ [αi, 1], ū(t) maximizes over Ω(t)

u 7→

(
pi(t) +

∫
[αi,t)

γi(s)µi(ds)

)
· f (t, x̄(t), u) . (22)

It remains to pass to the limit as i → ∞ and thereby to obtain a set of
nondegenerate multipliers for the original problem.

Without changing the notation, we extend µi as a regular Borel measure on
[0, 1]

µi(B) = µi(B ∩ [αi, 1]) for all Borel set B ⊂ [0, 1].

Extend also γi, originally defined on [αi, 1], arbitrarily to the interval [0, 1] as
a Borel measurable function. With theses extensions, noting that µ([0, αi)) = 0,
we can write

−ṗi(t) ∈

(
pi(t) +

∫
[0,t)

γi(s)µi(ds)

)
· co∂xf(t, x̄(t), ū(t))

a.e. t ∈ [0, 1].

It can be easily seen that ci can be omitted from (16), since pi ≡ 0 implies
ci ≡ 0. By scaling the multipliers we can then ensure that

‖µi{[αi, 1]}‖T.V. + ‖pi‖L∞ + λi = 1.

The multifunction ∂>
x is uniformly bounded, compact, convex, and has a

closed graph. As {pi} is uniformly bounded and {ṗi} is uniformly integrally
bounded, we can arrange by means of subsequence extraction [2, Thm 3.1.7,
Prop. 3.1.8] that

pi → p uniformly, γidµi → γdµ weak∗, λi → λ, ξi → ξ,

where µ is the weak∗ limit of µi in the space of nonnegative-valued functions in
C∗([0, 1], IR), γ is a measurable selection of ∂>

x h(t, x̄(t)) µ a.e., and ξ ∈ ∂g(x̄(1)).
To obtain ξ we have used the fact that ∂g(x̄(1)) is a compact set.

It follows that the conditions (7), (9), (4) for problem (P) are satisfied and
as NC(x̄(1)) is closed, (5) also holds.

Consider the set Si = [αi, 1]\Ωi where Ωi is a null Lebesgue measure set in
[αi, 1] containing all times where the maximization of (22) is not achieved at ū.
We can then write(

pi(t) +
∫

[αi,t)

γi(s)µi(ds)

)
· f (t, x̄(t), u) ≤(

pi(t) +
∫

[αi,t)

γi(s)µi(ds)

)
· f (t, x̄(t), ū(t)) ,
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for all t ∈ Si and for all u ∈ Ω(t).
Now consider the full measure set S = (0, 1]\

⋃
i Ωi. Fix some t in S. Then

for all i > N , where N is such that αN ≤ t we have(
pi(t) +

∫
[0,t)

γi(s)µi(ds)

)
· f (t, x̄(t), u) ≤(

pi(t) +
∫

[0,t)

γi(s)µi(ds)

)
· f (t, x̄(t), ū(t)) .

for all u ∈ Ω(t). Applying limits to both sides of this inequality we obtain (8).
At this point we have established that the set of multipliers (p, µ, λ), ob-

tained as limit of (pi, µi, λi) satisfy the necessary conditions of optimality for
the original problem (P ).

Step 4: It remains to verify

µ{(0, 1]}+ ||q||L∞ + λ > 0. (23)

We start by proof the following lemma:

Lemma 4.3 The adjoint vector pi in the necessary conditions of optimality for
problem (Pi) satisfies ∫ αi

0

pi(t) ·∆f(t, x̄(t))dt ≤ 0. (24)

As the cost function g does not depend on y, ci(1) = 0. The set N[0,1](0) is
(−∞, 0], so ci(0) ≤ 0. Now, by integrating the differential equation involving ci

(18) we get

ci(1) = ci(0) +
∫ αi

0

−pi(t) ·∆f(t, x̄(t)) = 0.

The result easily follows.
In view of the constraint qualification, there exists a constant δ > 0 and

τ̄∗ ∈ (0, 1] such that, ∀τ ∈ [0, τ̄∗]∫ τ

0

ζ · [f(t, x0, ũ(t))− f(t, x0, ū(t))]dt < −δτ

for all ζ ∈ ∂>
x h(s, x), s ∈ [0, τ̄∗), x ∈ {x0}+ ε1B

Suppose, in contradiction, that

µ{(0, 1]}+ ||q||L∞ + λ = 0. (25)

Since (λ, µ, p) 6= 0, we must have

λ = 0,
µ = βδ{0},
p(t) = −βζ for some β > 0 and ζ ∈ ∂>

x h(0, x0).
(26)

The constraint qualification (CQ∗) implies∫ τ

0

−p(t) ·∆f(t, x0)dt =
∫ τ

0

βζ ·∆f(t, x0)dt < −δβτ ∀τ ∈ [0, τ̄∗].
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But expanding this last expression we can write∫ αi

0
pi(t) ·∆f(t, x̄(t))dt

=
∫ αi

0
p(t) ·∆f(t, x0) + (pi(t)− p(t))∆f(t, x0) + pi(t)[∆f(t, x̄(t))−∆f(t, x0)]dt

≥ δβαi −
∫ αi

0
2Ku‖pi(t)− p(t)‖+ 2Kf‖x̄(t)− x0‖‖pi(t)‖dt

≥ δβαi −
∫ αi

0
2Ku‖pi(t)− p(t)‖+ 2KfAt‖pi(t)‖dt

By the uniform convergence of pi, we can make ‖pi − p‖ < ε̄ for any ε̄ > 0 of
our choice provided we choose a sufficient large i. Moreover ‖pi‖ ≤ 1.

It follows that∫ αi

0

pi(t) ·∆f(t, x̄(t))dt ≥ δβαi − (2Kuε̄αi + KfAα2
i ) > δβ/2αi > 0

if ε̄ <
δβ

8Ku
and αi <

δβ

4KfA
.

So, we would have
∫ αi

0
pi(t) · ∆f(t, x̄(t))dt > 0 contradicting Lemma (4.3).

We deduce (23).
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