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Abstract. This paper addresses the numerical modeling of masonry wallsas rigid blocks.
Models based on rigid block assemblies provide a suitable frame work for understanding their
dynamic behavior under seismic actions. In this context, the problem is primarily concerned
with Rocking Motion dynamics. The numerical tool is based on the Discrete Element Method
(DEM) specially effective for the numerical modeling of rigid blocks. Some authors have been
used successfully the DEM in the study of block structures. However, they have used experimen-
tal test to calibrate their models and to obtain the parameters used in the DEM; because these
parameters cannot be obtained directly form the characteristics of the stones. In this context,
a new methodology is proposed to find the parameters of the DEMby using the parameters of
the classical theory. Special attention regards about the damping factor, since in the DEM a
viscous damping is considered, but in reality the damping isdue to impulsive forces that they
can be considered as a type of Dirac-δ forces. An extensive comparison between numerical
and experimental data has been carried out to verified the proposed methodology. Very good
agreement between the numerical model and experimental datais achieved.
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1 INTRODUCTION

Historical constructions formed by large stone blocks (i.e. columns, sculptures, arches,
Greek temples, etc.) have no tensile strength and stabilityis ensured if the line of pressure
due to their own weight falls inside the structure. These structures are particularly vulnerable
objects under lateral seismic loading. However, this behavior is typical of most masonry con-
structions, which often fail forming large macro-blocks under seismic loading. In this way, the
study based upon the assumption of continuum structures would not be realistic for many cases.
On the other hand, models based on rigid block assemblies provide a suitable framework for
understanding their dynamic behavior under seismic actions. So that the problem is primarily
concerned with Rocking Motion (RM) dynamics [2].

Rocking motion is defined as the oscillation of the rigid bodies (RB) present in a structure
when center of rotation instantly change from one point to another one; this instantaneous
change produces a loss of energy due to an impulsive force.

In this context, the study of the out-of-plane behavior of unreinforced masonry (URM) walls
can be studied as an assemblage of rigid blocks. Figures 1 and2 show two simply models of a
URM wall. The first one presents the case in which the URM wall is detached from the rest of
the structure. The collapse mechanism is due to overturningof the wall. This behavior can be
study by a single rigid block under RM (Figure 1). The second model is made by an ensemble
of two rigid blocks. Particularly, this model is useful if the wall has different width along its
height or if the upper part of the wall is restrained (Figure 2).

a) b) c)

Figure 1: Modeling URM walls as single rigid block; a) real behavior, b) collapse mechanism, c) rigid block
model.

The reference analytical frame for the study of RM dynamics remains based on the formu-
lation introduced by Housner [6] (which will be referred asclassical theory in this study).
Housner obtained the equation for the period of the system, which depends on the amplitude of
rocking, and the equation for the restitution coefficient.

Several authors [3, 5, 9, 16] have used theDiscrete Element Method (DEM) to study the
rocking motion of RB. Those works show that DEM is a useful tool in the study of RB in free
rocking motion or subjected to base motion. However, in the referred contributions, the para-
meters that define the characteristics of the model (mainly stiffness and damping) are found by
means of fitting numerical results to experimental test, being a major limitation of this method
for engineering applications. For this reason, a methodology to find the parameters of DE model
based on the parameters of the classical formulation is proposed here. An extensive comparison
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a) b) c)

Figure 2: Modeling URM walls as ensemble of two rigid blocks;a) real behavior, b) collapse mechanism, c) rigid
blocks model.

between numerical and experimental data [10] has been carried out to verified the proposed
model. Very good agreement between the numerical model and experiment is achieved.

2 PARAMETERS OF THE CLASSICAL FORMULATION

It has been observed in experimental test [10, 1, 15] that there are three main parameters
for the planar Rocking Motion problem. These quantities depends solely on the geometry of
the specimens, as follows:α is defined as the angle at which the stone overturns due to static
forces, it is called thecritical angle; p is the frequency associated to the system due to the
interaction between the block and its base andµ is the so-calledcoefficient of restitution
and it is defined as the angular velocity reduction ratio, between two consecutive impacts.

These three parameters will be referenced in this work astheoretical parameters since they
govern the differential equation of RM of a RB. For a rectangularblock, with a base2b and a
height2h the differential equation is:

θ′′ ± p2 sin(α ∓ θ) = p2 cos(α ∓ θ)
a(t)

g
(1)

where (′ ) means differentiation with respect to timet, g is the acceleration of gravity, the±
sign refers to the domains of the rocking angleθ > 0 andθ < 0 respectively, whileα is a
geometrical parameter defined as:

α = tan−1

(

b

h

)

(2)

andp is a parameter with dimensions of frequency defined as:

p =

√

3g

4R
(3)

where R is defines as:R =
√

b2 + h2 (Figure 1c).
In order to take into account the impact mechanism, it is necessary to assume a coefficient

of restitutionµ [6] that multiplies the angular velocityθ′ when the block passes through the
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equilibrium position atθ = 0. By considering that angular moment conservation exist before
and after impact, the coefficient of restitution can be obtained by means of:

µ =
θ′a

θ′b
= 1 −

3

2
sin2(α) (4)

whereθ′a andθ′b are the angular velocities just after and before the impact,respectively.

3 EXPERIMENTAL TESTS

The numerical model proposed here has been verified by comparing its response with results
obtained from an extensive experimental tests on the rocking response of RB. The tests were
performed at the shaking table of the National Laboratory ofCivil Engineering (LNEC) of
Portugal on four single RB (blue granite stones) and one ensemble of two blocks (referred as
bi− block structure), submitted to different types of base motion. In this section a brief review
of the experimental tests is made. The complete descriptionof the experimental tests can be
found in [10, 11].

3.1 Characteristics of the specimens

The experimental tests were carried out on four single blue granite stones (Figure 3a) and an
ensemble of two blue granite stones (Figure 3b). Each stone has different geometrical dimen-
sion (Tables 1 and 2). The dimensions of the single specimens1, 2 and 3 were fixed to achieve a
Height-Width ratio (h/b) of 4, 6 and 8, respectively. In addition, single specimen number 4 was
specifically designed with a different geometry than the others specimens, in order to compare
its performance with the rest of the stones. It has a large 45 degree cut (40 mm) at the base.
Moreover, a foundation of the same material was used as the base where the blocks are free to
rock. This foundation was fixed to the shaking table by means of four steel bolts.

a) b)

Figure 3: Test specimens, a) single blocks, b) bi-block structure.

3.2 Test set-up

The data acquisition system was designed to describe the position of the specimens at each
instant of the test and, simultaneously, to avoid the possibility that the system influences the
response of the specimens. In this context, the data acquisition is based upon monitoring Light
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Specimen Width Height Thickness Mass Inertia
2b (m) 2h (m) 2t (m) M (kg) I0 (kg-m2)

1 0.25 1.000 0.754 503 179
2 0.17 1.000 0.502 228 78
3 0.12 1.000 0.375 120 42
4 0.16 0.457 0.750 245 26

Base 1.00 0.250 0.750 500 –

Table 1: Test specimens dimensions.

Block Width Height Thickness Mass Inertia
2b (m) 2h (m) 2t (m) M (kg) I0 (kg-m2)

Upper 0.15 0.60 0.40 91 5
Lower 0.20 0.60 0.55 204 15
Base 1.00 0.25 0.75 500 –

Table 2: Dimensions of the blocks used in the bi-block structure.

Emission diode Systems (LEDS) by means of high resolution cameras. This eliminates noise
errors and enables accurate position measurement.

The main data obtained were: rotations aroundY andZ axes, and linear displacementsX
andY (see Figure 4 for the system coordinate). RotationsY andZ were directly measured
by means of a mirror linked to the blocks surface on the West face of the specimens. Two
accelerometers were placed at the top of each block. One triaxial accelerometer was located in
the North face and one biaxial accelerometer was located in the South face. The displacements
and accelerations of the shaking table were also measured.

Figure 4: Reference system of the data acquisition system and typical location of LEDs in the RB.

3.3 Types of base motion

In order to study the dynamic behavior of the RB, three different test were made: a) Free
rocking motion, b) Harmonic motion, and c) Random motion. Thefirst type of test allows
to identify the parameters used in the classical theory and at the same time to calibrate the
analytical models. On one hand, the harmonic tests allow to study, in a simple way, the dynamic
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behavior of single blocks undergoing RM regime; while on the other hand, the behavior of the
RB under earthquake conditions was studied with the random test.

Thirty synthetic earthquakes compatibles with the design spectrum proposed by the Eu-
rocode 8 [4] were generated. In order to identify them, they were named consecutively with
the number of generating. Figure 5 shows a typical syntheticrecord and the response spectrum
of four different records. The constant branch of the spectrum is located between 0.1 and 0.3
seconds, with a spectral acceleration of 7 m/s2 while the maximum ground acceleration is 2.8
m/s2. The main aim of the study is to address stability of RM under random motion.
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Figure 5: Generation of synthetic earthquakes; a) typical accelerogram, b) response spectra of four different
records.

3.4 Theoretical and experimental parameters

The theoretical parameters give useful information about the characteristics of the RM. They
can be obtained by Equations 2 to 4 or by means of free rocking motion tests. It is well known
that the experimental values of these parameters are not equal to the theoretical values, because
the hypotheses assumed by the classical theory are not fullyfulfilled. So that, the experimental
parameters are adjusted by means of a minimized error surface [10]. In general, the experimen-
tal value ofα is lower than theoretical while the restitution coefficient(µ) is larger. Parameter
p does not have a defined pattern.

Tables 3 and 4 show the theoretical and experimental values of these parameters. Experi-
mental parameters for specimens 1 and 2 are similar to the theoretical values, with differences
smaller than 3%. On the ohter hand, specimens 3 and 4, as well as the blocks of the bi-block
structure, present significant differences in their parameters, see [10, 11] for a detail discussion.

It most be highlighted that the calibration of the numericalmodels (see section 6) were made
by using the experimental parameters. The theoretical values were discarded because they do
not represent the real parameters of the specimens.

4 NUMERICAL MODEL

The Discrete Element Method (DEM) can be considered as a method for modeling dis-
continuous media. This analysis technique allows relativemotion between elements, which is
especially suitable for problems in which the relative motion between blocks is a significant part
of the deformation, as in the RM. A brief review of the formulation of the DEM is presented
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Specimen α (rad) µ p (1/s)
T E % T E % T E %

1 0.242 0.235 -2.9 0.914 0.936 2.4 3.78 3.84 1.6
2 0.168 0.163 -3.0 0.958 0.973 1.6 3.81 4.05 6.3
3 0.119 0.154 29.4 0.978 0.978 0.0 3.82 3.61 -5.5
4 0.310 0.268 -13.5 0.860 0.927 7.8 5.16 5.02 -2.7

T = Theoretical, E = Experimental, % = Error (in percentage)

Table 3: Theoretical and experimental classic parameters of single blocks.

Block α (rad) µ p (1/s)
T E % T E % T E %

Upper 0.245 0.229 -6.5 0.912 0.955 4.7 4.88 5.00 2.5
Lower 0.322 0.366 13.7 0.850 0.948 11.5 4.82 4.50 -6.6
T = Theoretical, E = Experimental, % = Error (in percentage)

Table 4: Theoretical and experimental classic parameters of bi–block structure.

and was taken from [7, 13]. The commercial UDEC code, based onthe DEM, has been used to
perform the numerical analyses.

The following two main characteristics of the DEM make it suitable for the analysis of RM
[13]: a) it allows large displacements and rotations between blocks, including complete detach-
ment of the blocks and, b) it automatically detects new contacts as the calculation progresses.

It is possible to represent the material as rigid or deformable. The first option is used here
because in the rocking motion, most of displacements are dueto the relative motion between
elements and not due to the deformation of the materials. However, the contact between ele-
ments (joint) has not been considered as completely rigid because the energy dissipation at each
impact depends on the material of the block and its base [17].

The contact between elements is defined as sets of contact points located at the corner of the
elements. No special joint element or interface element needs to be defined [13]. The contact
point is defined by two linear springs, one axial and one shear, and a viscous damper (Figure
6). The axial spring is linear–elastic in compression, while zero tensile strength is assumed
for tension. The shear spring is defined as linear–elastic–perfectly plastic and a Coulomb–type
behavior is assumed (Figure 7). Therefore, four parametersare needed to define the mechanical
behavior of the contact: axial stiffnessK, shear stiffnessKs, friction angleφ and cohesionc.
The viscous dampingC is regarded as a massM and stiffnessK dependent quantity by means
of the Rayleigh formulation:

C = aM + bK (5)

wherea is the mass proportional damping constant andb is the stiffness proportional damping
constant. These quantities are defined as:

a = ξminωmin; b =
ξmin

ωmin

; ωmin = 2πfmin (6)

beingξmin the fraction of the critical damping associated to the frequencyfmin.
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Figure 6: Discrete Element Model.

Figure 7: Joint constitutive laws, shear (left) and axial (right).

The stability of the solution algorithm used in the DEM (central difference algorithm) is
related to the time step∆t. The stability criteria for inter–block relative displacement must be
satisfied and it can be calculated as:

∆t = (frac)2

√

Mmin

Kmax

(7)

whereMmin is the mass of the smallest block in the system,Kmax is the maximum contact
stiffness and the factorfrac takes into account the fact that a single block may be in contact with
several blocks at the same time. The default value is 0.1 thatis usually sufficient to guarantee a
numerical stability [7].

5 DERIVATION OF THE JOINT CONTACT PARAMETERS

The parameters required in the DE model are: axialK and shearKs stiffness, cohesionc
and friction angleφ, as well as the damping parametersξmin andfmin.

The parameterp can be defined as the frequency associated with the system dueto the inter-
action of the block with its base. Therefore, it can be associated with the frequency of the joint.
In this context, it is possible to define the axial stiffnessK as:

K = Mp2 = K1 (8)

By taking into account the theoretical value ofp (Equation 3),K takes the following value:

K = M
3g

4R
= K2 (9)
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It is clear thatK1 will be equal toK2 if theoretical parameters are used; however if the fitting
parameters [10] are used thenK1 will be different thanK2. For this reason,K is defined as:

K =
K1 + K2

2
=

M

2

(

p2 +
3g

4R

)

(10)

Shear stiffnessKs is considered equal to axial stiffnessK [9, 16], while the cohesionc is
considered null, as typical of dry joints.

Theα parameter can be defined as the relationship between the rotation points of the base
(0-0’) and the position of the gravity center (cg) of the block. In theory these rotation points
are located at the corners of the block; however this is true only if the block and its base are
completely rigid. In practice, the rotation points are not located at the corners of the block,
because the material is not perfectly rigid. In the DE model,the rotation points are located at
the corners of the blocks. Thus it is necessary to consider anequivalent base (beq), in order to
take into account the real value of theα parameter, defined as:

beq = h tan(α) (11)

6 CALIBRATION OF THE MODELS

6.1 Single block model

The free rocking motion tests were used to calibrate the DE model. Table 1 shows the
geometrical characteristics of the four specimens used in the experimental testing program;
while Figure 8 depicts typical DE models during free rockingmotion.

a) b)

Figure 8: Typical DE models in free rocking motion; a) specimen 2, b) specimen 4.

The numerical models are very sensitive to variations on classical parameters particularly pa-
rameterα. The fitting parameters obtained according to the minimization procedure [10] (Table
3) have variations smaller than 5%. However, these small variations induce large differences in
the response of the numerical models.

Figure 9 shows the comparison on a typical free rocking test with the response obtained
from the DE model using the theoretical and fitted parameters. The friction angleφ is consid-
ered equal to 30o [8] for the four specimens. It is worth to note that stiffnessfor each model
was calculated with equation 10, while the dampingξmin was fitted in order to obtain the best
correlation with the experimental test data. Frequencyfmin was considered equal top (Table 5;
see next subsection). It can be seen that the response obtained with the theoretical parameters
do not fully agree with the experimental data. In particular, the differences lie inside the period
and amplitude range of each cycle. On the other hand, good agreement has been achieved be-
tween numerical and experimental results when fitted parameters are used.
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Specimen K (N/m) ξ (x10−3) fmin (Hz) 2beq (m)
T E T E T E T E

1 7233 6560 2.92 4.33 3.78 3.84 0.25 0.24
2 3302 3449 1.75 2.34 3.81 4.05 0.17 0.16
3 1174 2168 5.00 0.73 3.82 3.61 0.12 0.15
4 6454 6471 1.50 3.09 5.16 5.02 0.16 0.14

T = Theoretical, E = Experimental, % = Error (in percentage)

Table 5: Parameters used in the definition of the DE models.
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Figure 9: Typical free rocking motion response of DE model using theoretical and fitting parameters (Specimen
1).

The comparison between the acceleration measured at the topof the block and acceleration
calculated by the DE model using the fitted parameters is shown in Figure 10 for the horizontal
and vertical acceleration. Good agreement between experimental results and numerical model
can be again observed. The DE model presents higher values ofthe acceleration at the impact.
Nevertheless, this fact has no physical meaning since it is associated with the higher frequencies
obtained during the integration algorithm. In fact, it is possible to filtrate the output in order to
cancel the higher numerical frequencies without loosing accuracy.

6.2 Impact and equivalent viscous damping

The damping force appears only in the system during the impact as a Dirac–δ force [10]. As
the damping in the DE model is considered viscous and the Rayleigh formulation is used, some
considerations must be done in order to take into account thedamping in the real system due
to the impact. The damping in the DE model is related to each contact point. Thus, when the
contact point is detached from the base, the damping must be zero. Therefore, both terms of
Equation 5 (damping proportional to the mass and stiffness)must be zero. On the one hand, the
damping proportional to the mass will be zero only ifa = 0. On the other hand, the proportional
stiffness damping factorb will be the responsible for introducing the impulsive damping force.
This is possible because the stiffness is zero for tensile strength whereas the stiffness will reach
a finite value when contact takes place.

With the damping factors obtained with the calibration of the DE model by inverse fitting
(Table 5), it is possible to obtain an empirical formula for the equivalent viscous damping. This

10
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Figure 10: Typical free rocking motion response of DE model using fitting parameters (Specimen 1, with initial
conditions from Figure 9); a) Horizontal acceleration, b) Vertical acceleration.

formula is a function of the coefficient of restitutionµ and thegeneralized damping factor Γ
that relates the generalized damping forceQd [12] with the viscous dampingC. As C depends
only on the stiffnessK (Equation 5) andQd depends on the geometry of the block,Γ can be
defined as:

Γ = KR =
M

2

(

Rp2 +
3

4
g
)

(12)

In Figure 11, the values of factorb versus the ratioΓ/µ2 for the four specimens are plotted.
The best curve fitting is logarithmic and can be calculated as:

√
b = 0.0057 ln

(

Γ

µ2

)

− 0.0336 (13)
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b

Figure 11: Fitting curve for empirical formulation of equivalent damping.

As p can be considered as the associated frequency of the system due to the interaction of
the block and its base, the frequencyfmin associated with the dampingξmin can be calculated
as:

fmin = p (14)

Finally, the dampingξmin is obtained by means of:

ξmin = 2πbfmin (15)
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6.3 Bi–block model

The free rocking motion tests for each block of the bi–block structure were used to calibrate
the DE model. It is worth to note that stiffness for each blockwas calculated with equation
10, while the stiffness proportional damping constantb was obtained with equation 13. The
fitting parameters were used (Table 4). Table 6 shows the parameters used in the definition of
the bi–block model, while Figure 12 depicts typical DE modelduring free rocking motion.

Block K (N/m) ξ (x10−3) fmin (Hz) 2beq (m)
Upper 2166 0.50 5.00 0.14
Lower 4516 1.50 4.50 0.23

Table 6: Parameters used in the definition of the bi–block models.

Figure 12: Typical bi–block model in free rocking motion.

Figure 13 shows the comparison between experimental data and DE models of the free rock-
ing tests for each block, considering them as single blocks.Good agreement between experi-
mental results and DE model can be again observed.
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Figure 13: Typical free rocking motion response of DE model using fitting parameters (bi–block structure); a)
Upper block, b) Lower block.
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7 NUMERICAL SIMULATIONS

The numerical simulations were carried out with the DE models for the single blocks and
for the bi–block structure. These models use the parameter values obtained from free rocking
test defined in Section 6. Their values remain unchanged for all the harmonic and random
simulations.

7.1 Single blocks

Figure 14 shows a typical response of RB under constant sine base motion. For clarity of
the figure, there is a gap in the time axis that corresponds to the first part of the stationary
state. The response of the model is almost the same as the experimental test even during the
last cycles. The three states of the harmonic motions (transient, stationary and free rocking) are
well reproduced by the model.
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Figure 14: Typical results of harmonic motion simulation with a constant sine excitation; a) specimen 1, constant
sine with frequency of 3.3 Hz and amplitude of 6 mm, b) specimen 3, constant sine with frequency of 3.0 Hz and
amplitude of 4 mm.

It has been found that under random motion regime the response is very sensitive to pertur-
bations in the boundary conditions as well as impact and basemotion characteristics (frequency
and amplitude). In particular, small changes in the initialconditions or geometrical variations
due to the continuous degradation of the material at impact have shown to cause large differ-
ences in the experimental response. Thus, they will be a limitation of the analytical models in
the study of the random motion.

Figure 15 shows a typical result of random motion with specimens 2 and 3. The numerical
model is again in good agreement with the experimental test.As well as it is successful in
predicting the collapse of the specimens.

7.2 Bi–block model

In this section preliminary results from the bi–block modelare presented. Figure 16 shows
the four possiblepatterns of rocking motion that the bi–block model may exhibit [14]. They
can be divided in two main groups. The first one includes the patterns 1 and 2 and they are
equivalent to a two degree of freedom system response, in which the two blocks rotate in the
same or opposite direction. The second group (patterns 3 and4) corresponds a single degree
of freedom system response. In particular, pattern 3 is equivalent to one rigid structure, while
pattern 4 is the case where only the top block experiences rotation [14].
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Figure 15: Typical results of random motion test; a) specimen 2, earthquake record 21 and load factor of 0.6, b)
specimen 3, earthquake record 18 and load factor of 0.5.

Figure 16: Classification of rocking patterns for a bi–blockstructure; a) Pattern 1, b) Pattern 2, c) Pattern 3, d)
Pattern 4 [14].

From the experimental test first and corroborated by the numerical model, the principal pat-
terns that the bi–block structure tested exhibit are 2 and 3 (Figure 17). These patterns are
associated with the amplitude and frequency of the loads. The pattern 2 was record with con-
stant sine base motion with frequencies between 4 and 5 Hz andamplitudes greater than 4 mm,
with frequency of 6 Hz and amplitudes greater than 3 mm and frequency 7 Hz with amplitudes
greater than 1 mm. The pattern 3 was recorded with constant sine base motions with frequencies
between 1 and 5 Hz with amplitudes lesser than 4 mm.

Figure 18 shows a typical response of the bi–block structureunder constant sine excitation
following Pattern 2 (Figure 17a). The maximum response of the lower block is only half degree
but the numerical model can reproduce satisfactory the rocking motion of both blocks. On the
other hand, Figure 19 shows typical responses with constantsine excitations, following Pattern
4 (Figure 17b). The response of the upper block is only shown because the lower block did not
present rocking motion. The numerical model is in good agreement with the experimental data.

8 CONCLUSIONS

• This paper proposed a numerical model to study the out-of-plane behavior of unreinforced
masonry (URM) walls, by means of the Discrete Element Method.
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a) b)

Figure 17: Typical rocking patterns for a bi–block structure found experimentally and numerically; a) Pattern 2, b)
Pattern 4.
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Figure 18: Typical result of harmonic motion simulation with a constant sine excitation with frequency of 4.0 Hz
and amplitude of 3 mm; a) Lower block, b) Upper block.

• The Discrete Element Method (DEM) was successfully calibrated and validated with ex-
perimental results.

• A new methodology has been proposed to find the parameters of the DE model by using
the parameters of theclassical theory.

• An empirical formula to obtain the equivalent viscous damping necessary to define the
DE model has also been proposed.

• The models are extremely sensitive to theclassical parameters and small variations in
their values produce large differences in the response.

• Fitting parameters obtained from experimental data were used in order to obtain good
agreement between numerical models and experimental results.

• The equivalent viscous damping is a function of the geometryof the block, the stiffness
of the joint and the coefficient of restitutionµ.

• Despite the limitations and difficulties to reproduce the initial and boundary conditions,
good agreement has been found between numerical and experimental responses.
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Fernando Pẽna, Paulo B. Lourenço and José V. Lemos
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Figure 19: Typical result of harmonic motion simulation with a constant sine excitation (Upper block); a) frequency
of 3.0 Hz and amplitude of 3 mm, b) frequency of 4.0 Hz and amplitude of 1 mm.
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Fernando Pẽna, Paulo B. Lourenço and José V. Lemos
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[11] F. Pẽna,Dinámica de estructuras multibloque: experimentación y simulacíon nuḿerica.
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Report 40/98 – NDE/NEE, Laboratório Nacional de Engenharia Civil, Lisboa, 1998.

[14] P. Spanos, P. Roussis and N. Politis, Dynamic analysis ofstacked rigid blocks.Soil Dy-
namics and Earthquake Engineering, 21, 559–578, 2001.

[15] W. Tso and C. Wong, Steady state rocking response of rigidblocks to earthquake. Part 2:
Experiment.Earthquake Engineering and Structural Dynamics, 18, 107–120, 1989.

[16] T. Winkler, K. Meguro and F. Yamazaki, Response of rigid body assemblies to dynamic
excitation.Earthquake Engineering and Structural Dynamics, 24(2), 1389–1408, 1995.

[17] C. Yim, A. Chopra and J. Penzien,Rocking response of rigid blocks to earthquake. Report
UBC/EERC–80/02, University of California, 1980.

17


	INTRODUCTION
	PARAMETERS OF THE CLASSICAL FORMULATION
	EXPERIMENTAL TESTS
	Characteristics of the specimens
	Test set-up
	Types of base motion
	Theoretical and experimental parameters

	NUMERICAL MODEL
	DERIVATION OF THE JOINT CONTACT PARAMETERS
	CALIBRATION OF THE MODELS
	Single block model
	Impact and equivalent viscous damping
	Bi--block model

	NUMERICAL SIMULATIONS
	Single blocks
	Bi--block model

	CONCLUSIONS
	ACKNOWLEDGMENTS

