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Abstract. This paper addresses the numerical modeling of masonry &alisgid blocks.
Models based on rigid block assemblies provide a suitableé work for understanding their
dynamic behavior under seismic actions. In this contex,foblem is primarily concerned
with Rocking Motion dynamics. The numerical tool is basedhenDiscrete Element Method
(DEM) specially effective for the numerical modeling ofidiglocks. Some authors have been
used successfully the DEM in the study of block structuresvéyer, they have used experimen-
tal test to calibrate their models and to obtain the parametesed in the DEM; because these
parameters cannot be obtained directly form the charast&s of the stones. In this context,
a new methodology is proposed to find the parameters of the B¥Msing the parameters of
the classical theory. Special attention regards about tAmping factor, since in the DEM a
viscous damping is considered, but in reality the dampinduis to impulsive forces that they
can be considered as a type of Diraderces. An extensive comparison between numerical
and experimental data has been carried out to verified th@@ed methodology. Very good
agreement between the numerical model and experimentalsiathieved.
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1 INTRODUCTION

Historical constructions formed by large stone blocks. (iawlumns, sculptures, arches,
Greek temples, etc.) have no tensile strength and stakslignsured if the line of pressure
due to their own weight falls inside the structure. Thesecstures are particularly vulnerable
objects under lateral seismic loading. However, this benas typical of most masonry con-
structions, which often fail forming large macro-blockgden seismic loading. In this way, the
study based upon the assumption of continuum structureklwotibe realistic for many cases.
On the other hand, models based on rigid block assembliesdera suitable framework for
understanding their dynamic behavior under seismic asti@o that the problem is primarily
concerned with Rocking Motion (RM) dynamics [2].

Rocking motion is defined as the oscillation of the rigid bedi@B) present in a structure
when center of rotation instantly change from one point totlaer one; this instantaneous
change produces a loss of energy due to an impulsive force.

In this context, the study of the out-of-plane behavior akimforced masonry (URM) walls
can be studied as an assemblage of rigid blocks. Figures|2 ahdw two simply models of a
URM wall. The first one presents the case in which the URM walkigdhed from the rest of
the structure. The collapse mechanism is due to overtuwfitige wall. This behavior can be
study by a single rigid block under RM (Figure 1). The secondlehés made by an ensemble
of two rigid blocks. Particularly, this model is useful ifetwall has different width along its
height or if the upper part of the wall is restrained (Figuye 2

a)l e u b)

Figure 1: Modeling URM walls as single rigid block; a) realhlagior, b) collapse mechanism, c) rigid block
model.

The reference analytical frame for the study of RM dynamicsaias based on the formu-
lation introduced by Housner [6] (which will be referred dassical theory in this study).
Housner obtained the equation for the period of the systdnichwdepends on the amplitude of
rocking, and the equation for the restitution coefficient.

Several authors [3, 5, 9, 16] have used thacrete Element Method (DEM) to study the
rocking motion of RB. Those works show that DEM is a useful toahe study of RB in free
rocking motion or subjected to base motion. However, in #ferred contributions, the para-
meters that define the characteristics of the model (matiffpesss and damping) are found by
means of fitting numerical results to experimental testadpa major limitation of this method
for engineering applications. For this reason, a methagadio find the parameters of DE model
based on the parameters of the classical formulation isgsexphere. An extensive comparison
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Figure 2: Modeling URM walls as ensemble of two rigid blocékreal behavior, b) collapse mechanism, c) rigid
blocks model.

between numerical and experimental data [10] has beeredaorit to verified the proposed
model. Very good agreement between the numerical modelgetienent is achieved.

2 PARAMETERS OF THE CLASSICAL FORMULATION

It has been observed in experimental test [10, 1, 15] thaethee three main parameters
for the planar Rocking Motion problem. These quantities delgesolely on the geometry of
the specimens, as follows: is defined as the angle at which the stone overturns due o stat
forces, it is called theritical angle; p is the frequency associated to the system due to the
interaction between the block and its base and the so-calledoef ficient of restitution
and it is defined as the angular velocity reduction ratioyeen two consecutive impacts.

These three parameters will be referenced in this wotk@s-etical parameters since they
govern the differential equation of RM of a RB. For a rectangblack, with a bas€b and a
height2h the differential equation is:

0" + p? sin(a F 0) = p*cos(a F 0)@ (1)
g

where (' ) means differentiation with respect to timeg is the acceleration of gravity, the
sign refers to the domains of the rocking angle- 0 andf < 0 respectively, whilex is a
geometrical parameter defined as:

(b
a = tan (h) (2)

andp is a parameter with dimensions of frequency defined as:

_ |39
P=\1p 3)
where R is defines ast = /b2 + h? (Figure 1c).

In order to take into account the impact mechanism, it is s&agy to assume a coefficient
of restitutiony [6] that multiplies the angular velocity when the block passes through the
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equilibrium position a¥ = 0. By considering that angular moment conservation existreefo
and after impact, the coefficient of restitution can be olgdiby means of:

3 .
n= 5 = 1— ismz(a) (4)

whered'® and@” are the angular velocities just after and before the impaspectively.

3 EXPERIMENTAL TESTS

The numerical model proposed here has been verified by camypes response with results
obtained from an extensive experimental tests on the rgaldeponse of RB. The tests were
performed at the shaking table of the National LaboratorfCwil Engineering (LNEC) of
Portugal on four single RB (blue granite stones) and one eblgeof two blocks (referred as
bi — block structure), submitted to different types of base motion. In this sett brief review
of the experimental tests is made. The complete descriptidhe experimental tests can be

found in [10, 11].

3.1 Characteristics of the specimens

The experimental tests were carried out on four single btarite stones (Figure 3a) and an
ensemble of two blue granite stones (Figure 3b). Each stasdlifferent geometrical dimen-
sion (Tables 1 and 2). The dimensions of the single specithehand 3 were fixed to achieve a
Height-Width ratio {/b) of 4, 6 and 8, respectively. In addition, single specimember 4 was
specifically designed with a different geometry than theegtspecimens, in order to compare
its performance with the rest of the stones. It has a largeeffsed cut (40 mm) at the base.
Moreover, a foundation of the same material was used as gewlaere the blocks are free to
rock. This foundation was fixed to the shaking table by medfsur steel bolts.

Figure 3: Test specimens, a) single blocks, b) bi-blockcstme.

3.2 Testset-up

The data acquisition system was designed to describe thitopasf the specimens at each
instant of the test and, simultaneously, to avoid the pdggithat the system influences the
response of the specimens. In this context, the data atiqoig based upon monitoring Light
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Specimen Width Height Thickness Mass Inertia
2b(m) 2h(m) 2t (m) M (kg) Iy (kg-m?)

1 0.25 1.000 0.754 503 179
2 0.17 1.000 0.502 228 78
3 0.12 1.000 0.375 120 42
4 0.16  0.457 0.750 245 26

Base 1.00 0.250 0.750 500 -

Table 1: Test specimens dimensions.

Block Width Height Thickness Mass Inertia
20 (m) 2n(m) 2t (m) M (kg) Iy (kg-m?)

Upper 0.15 0.60 0.40 91 5
Lower 0.20 0.60 0.55 204 15
Base 1.00 0.25 0.75 500 -

Table 2: Dimensions of the blocks used in the bi-block strrect

Emission diode Systems (LEDS) by means of high resolutionetas. This eliminates noise
errors and enables accurate position measurement.

The main data obtained were: rotations arothdnd Z axes, and linear displacements
andY (see Figure 4 for the system coordinate). Rotatibnand Z were directly measured
by means of a mirror linked to the blocks surface on the West faf the specimens. Two
accelerometers were placed at the top of each block. Ongalreeccelerometer was located in
the North face and one biaxial accelerometer was locatdtkisouth face. The displacements
and accelerations of the shaking table were also measured.
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Figure 4: Reference system of the data acquisition systehtygical location of LEDs in the RB.
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3.3 Types of base motion

In order to study the dynamic behavior of the RB, three diffetest were made: a) Free
rocking motion, b) Harmonic motion, and ¢) Random motion. Tir& type of test allows
to identify the parameters used in the classical theory arileasame time to calibrate the
analytical models. On one hand, the harmonic tests allotuttysin a simple way, the dynamic
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behavior of single blocks undergoing RM regime; while on ttleeohand, the behavior of the
RB under earthquake conditions was studied with the randsin te

Thirty synthetic earthquakes compatibles with the desjgecsum proposed by the Eu-
rocode 8 [4] were generated. In order to identify them, theyeasnamed consecutively with
the number of generating. Figure 5 shows a typical syntihetiord and the response spectrum
of four different records. The constant branch of the spectis located between 0.1 and 0.3
seconds, with a spectral acceleration of 7°mvkile the maximum ground acceleration is 2.8
m/s’. The main aim of the study is to address stability of RM undedeoan motion.

i “H il thlﬂ H“ i,
ki MMU‘“ WHWWMH

Acceleration [m/sz]
)
Acceleration [m/sz]

T T T T T T
0 5 10 15 0.0 0.2 0.4 0.6 0.8 1.0
Time [s] Period [s]

a) b)

Figure 5: Generation of synthetic earthquakes; a) typicakkerogram, b) response spectra of four different
records.

3.4 Theoretical and experimental parameters

The theoretical parameters give useful information abdweitharacteristics of the RM. They
can be obtained by Equations 2 to 4 or by means of free rocktgpmtests. It is well known
that the experimental values of these parameters are nat e theoretical values, because
the hypotheses assumed by the classical theory are noftilfilied. So that, the experimental
parameters are adjusted by means of a minimized error e8¢ In general, the experimen-
tal value ofa is lower than theoretical while the restitution coefficién} is larger. Parameter
p does not have a defined pattern.

Tables 3 and 4 show the theoretical and experimental valutgsese parameters. Experi-
mental parameters for specimens 1 and 2 are similar to tloedtieal values, with differences
smaller than 3%. On the ohter hand, specimens 3 and 4, assv#lédlocks of the bi-block
structure, present significant differences in their patansesee [10, 11] for a detail discussion.

It most be highlighted that the calibration of the numerioaldels (see section 6) were made
by using the experimental parameters. The theoreticabgalere discarded because they do
not represent the real parameters of the specimens.

4 NUMERICAL MODEL

The Discrete Element Method (DEM) can be considered as aauddthr modeling dis-
continuous media. This analysis technique allows relatiation between elements, which is
especially suitable for problems in which the relative raontbetween blocks is a significant part
of the deformation, as in the RM. A brief review of the formigat of the DEM is presented
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Specimen a (rad) 1 p (1/s)
T E % T E % T E %
1 0.242 0.235 -2.9 0.914 0.936 2.4 3.78 384 16
2 0.168 0.163 -3.0 0.958 0.973 1.6 381 405 6.3
3 0.119 0.154 294 0.978 0.978 0.0 3.82 361 -55

4 0.310 0.268 -13.5 0.860 0.927 7.8 516 5.02 -2.7
T = Theoretical, E = Experimental, % = Error (in percentage)

Table 3: Theoretical and experimental classic paramefesiagle blocks.

Block a (rad) 1 p (1/s)

T E % T E % T E %
Upper 0.245 0.229 -6.5 0.912 0.955 4.7 488 500 25
Lower 0.322 0.366 13.7 0.850 0.948 11.5 482 450 -6.6
T = Theoretical, E = Experimental, % = Error (in percentage)

Table 4: Theoretical and experimental classic parameféss-block structure.

and was taken from [7, 13]. The commercial UDEC code, based@BEM, has been used to
perform the numerical analyses.

The following two main characteristics of the DEM make ittabie for the analysis of RM
[13]: a) it allows large displacements and rotations betwdecks, including complete detach-
ment of the blocks and, b) it automatically detects new arstas the calculation progresses.

It is possible to represent the material as rigid or defolmalbhe first option is used here
because in the rocking motion, most of displacements ardaltlee relative motion between
elements and not due to the deformation of the materials. edery the contact between ele-
ments (joint) has not been considered as completely rigidumee the energy dissipation at each
impact depends on the material of the block and its base [17].

The contact between elements is defined as sets of contats pmsated at the corner of the
elements. No special joint element or interface elementisiée be defined [13]. The contact
point is defined by two linear springs, one axial and one slaat a viscous damper (Figure
6). The axial spring is linear—elastic in compression, wlziéro tensile strength is assumed
for tension. The shear spring is defined as linear—elasiteqtly plastic and a Coulomb-type
behavior is assumed (Figure 7). Therefore, four paramaterseeded to define the mechanical
behavior of the contact: axial stiffnegs, shear stiffnesds, friction angle¢ and cohesion.
The viscous damping' is regarded as a magg and stiffnesg< dependent quantity by means
of the Rayleigh formulation:

C = aM +bK (5)

whereaq is the mass proportional damping constant amlthe stiffness proportional damping
constant. These quantities are defined as:

5 .
a = Eminwmin; b= 2 y o Wmin = 27Tfmin (6)
Wmin

being¢,,.;, the fraction of the critical damping associated to the feswy f,,.;...
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Figure 6: Discrete Element Model.
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Figure 7: Joint constitutive laws, shear (left) and axiegh).

The stability of the solution algorithm used in the DEM (cahtifference algorithm) is
related to the time stefd¢. The stability criteria for inter—block relative displanent must be
satisfied and it can be calculated as:

M, min
K max

At = (frac)2 (7
where M,,;, is the mass of the smallest block in the systédi,,. is the maximum contact
stiffness and the factgfirac takes into account the fact that a single block may be in cbmitgh
several blocks at the same time. The default value is 0.Jighesually sufficient to guarantee a
numerical stability [7].

5 DERIVATION OF THE JOINT CONTACT PARAMETERS

The parameters required in the DE model are: akishnd sheai« s stiffness, cohesion
and friction anglep, as well as the damping parametgrs, and f,,;,.

The parametep can be defined as the frequency associated with the systeto thesinter-
action of the block with its base. Therefore, it can be asdediwith the frequency of the joint.
In this context, it is possible to define the axial stiffnéSss:

K = Mp* = K, (8)
By taking into account the theoretical valuepofEquation 3),K takes the following value:

39
K= ME = K, (9)
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It is clear that/(; will be equal toK, if theoretical parameters are used; however if the fitting

parameters [10] are used th&n will be different thank,. For this reasonis is defined as:
Kl + KQ M 2 3g
K== _2(p+4R> (10)

Shear stiffnesd(s is considered equal to axial stiffness[9, 16], while the cohesion is
considered null, as typical of dry joints.

The o parameter can be defined as the relationship between thi@nopmints of the base
(0-0’) and the position of the gravity centetg of the block. In theory these rotation points
are located at the corners of the block; however this is tnlg i6 the block and its base are
completely rigid. In practice, the rotation points are rmtdted at the corners of the block,
because the material is not perfectly rigid. In the DE mothed,rotation points are located at
the corners of the blocks. Thus it is necessary to consideqaivalent baseb(,), in order to
take into account the real value of theparameter, defined as:

beq = htan(a) (11)
6 CALIBRATION OF THE MODELS
6.1 Single block model

The free rocking motion tests were used to calibrate the DBehoTable 1 shows the
geometrical characteristics of the four specimens usetienekperimental testing program;
while Figure 8 depicts typical DE models during free rockingtion.

a) b) ‘

Figure 8: Typical DE models in free rocking motion; a) spegin2, b) specimen 4.

The numerical models are very sensitive to variations ossatal parameters particularly pa-
rameterx. The fitting parameters obtained according to the mininopgtrocedure [10] (Table
3) have variations smaller than 5%. However, these smahltans induce large differences in
the response of the numerical models.

Figure| 9 shows the comparison on a typical free rocking test the response obtained
from the DE model using the theoretical and fitted parametEng friction anglep is consid-
ered equal to 30[8] for the four specimens. It is worth to note that stiffnésseach model
was calculated with equation 10, while the damping, was fitted in order to obtain the best
correlation with the experimental test data. Frequefigy was considered equal to(Table 5;
see next subsection). It can be seen that the responseaibtaith the theoretical parameters
do not fully agree with the experimental data. In particullae differences lie inside the period
and amplitude range of each cycle. On the other hand, go@®agnt has been achieved be-
tween numerical and experimental results when fitted paenare used.
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Specimen K (N/m) £ (x107%) Frmin (HZ) 2b., (M)
T E T E T E T E

1 7233 6560 292 4.33 3.78 3.84 0.25 0.24

2 3302 3449 1.75 2.34 3.81 4.05 0.17 0.16

3 1174 2168 5.00 0.73 3.82 3.61 0.12 0.15

4 6454 6471 1.50 3.09 5.16 5.02 0.16 0.14
T = Theoretical, E = Experimental, % = Error (in percentage)

Table 5: Parameters used in the definition of the DE models.

Experimental
= DEM - Theoretical
o DEM - Fitted

Rocking Angle [°]
(=}

Figure 9: Typical free rocking motion response of DE modéhgisheoretical and fitting parameters (Specimen
1).

The comparison between the acceleration measured at ttod tiop block and acceleration
calculated by the DE model using the fitted parameters is shwwigure 10 for the horizontal
and vertical acceleration. Good agreement between expetairesults and numerical model
can be again observed. The DE model presents higher valdles atceleration at the impact.
Nevertheless, this fact has no physical meaning since ssis@ated with the higher frequencies
obtained during the integration algorithm. In fact, it isspible to filtrate the output in order to
cancel the higher numerical frequencies without loosirayeacy.

6.2 Impact and equivalent viscous damping

The damping force appears only in the system during the itrgsaa Diracé force [10]. As
the damping in the DE model is considered viscous and the Rayflermulation is used, some
considerations must be done in order to take into accourdangping in the real system due
to the impact. The damping in the DE model is related to eacdaod point. Thus, when the
contact point is detached from the base, the damping musedee Zherefore, both terms of
Equation 5 (damping proportional to the mass and stiffnesst be zero. On the one hand, the
damping proportional to the mass will be zero only ¥ 0. On the other hand, the proportional
stiffness damping factdrwill be the responsible for introducing the impulsive dangpforce.
This is possible because the stiffness is zero for tensiéagth whereas the stiffness will reach
a finite value when contact takes place.

With the damping factors obtained with the calibration af DE model by inverse fitting
(Table 5), it is possible to obtain an empirical formula foe £quivalent viscous damping. This

10
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Figure 10: Typical free rocking motion response of DE modghg fitting parameters (Specimen 1, with initial
conditions from Figurg]9); a) Horizontal acceleration, iyfital acceleration.

formula is a function of the coefficient of restitutiprand thegeneralized damping factor T’
that relates the generalized damping fofz€[12] with the viscous damping'. As C' depends
only on the stiffnesss (Equation 5) and)? depends on the geometry of the blotkcan be
defined as:
M
I'=KR= 5 (Rp2 + ig) (12)

In Figure 11, the values of factérversus the rati@' /2 for the four specimens are plotted.
The best curve fitting is logarithmic and can be calculated as

r
Vb = 0.0057In (M) —0.0336 (13)
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Figure 11: Fitting curve for empirical formulation of eqalent damping.

As p can be considered as the associated frequency of the systio the interaction of
the block and its base, the frequengy;, associated with the dampirdg,;,, can be calculated
as:

Finally, the damping,,.;, is obtained by means of:
gmz'n = 27bemin (15)
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6.3 Bi-block model

The free rocking motion tests for each block of the bi—blackcure were used to calibrate
the DE model. It is worth to note that stiffness for each blaas calculated with equation
10, while the stiffness proportional damping constamias obtained with equation 13. The
fitting parameters were used (Table 4). Table 6 shows thengess used in the definition of
the bi—block model, while Figure 12 depicts typical DE modieting free rocking motion.

Block K (N/m) & (x107%)  fun (Hz) 2b., (M)
Upper 2166 0.50 5.00 0.14
Lower 4516 1.50 4.50 0.23

Table 6: Parameters used in the definition of the bi—blocketsod

Figure 12: Typical bi—block model in free rocking motion.

Figure 13 shows the comparison between experimental ddtBBEmodels of the free rock-
ing tests for each block, considering them as single bloGsod agreement between experi-
mental results and DE model can be again observed.

Experimental

Experimental
+« DEM

| | | | | - | |
0 1 2 3 4 5 6 0 I 2 3
a) Time [s] b) Time [s]

Rocking Angle [°]
AN R W N = O = N W R KO

AR
<‘(
L and
]
o
Rocking Angle [°]

Figure 13: Typical free rocking motion response of DE modshg fitting parameters (bi-block structure); a)
Upper block, b) Lower block.
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7 NUMERICAL SIMULATIONS

The numerical simulations were carried out with the DE medet the single blocks and
for the bi—block structure. These models use the parametees obtained from free rocking
test defined in Section 6. Their values remain unchangedlfdhe& harmonic and random
simulations.

7.1 Single blocks

Figurel 14 shows a typical response of RB under constant s fpation. For clarity of
the figure, there is a gap in the time axis that correspondbldditst part of the stationary
state. The response of the model is almost the same as theneeptal test even during the
last cycles. The three states of the harmonic motions (eanstationary and free rocking) are
well reproduced by the model.

& Experimental Experimental|
15 i © DEM 154§ ! DM

Rocking Angle []
Rocking Angle [°]

a) Time [s] b) Time [s]

Figure 14: Typical results of harmonic motion simulatiortwé constant sine excitation; a) specimen 1, constant
sine with frequency of 3.3 Hz and amplitude of 6 mm, b) speaieconstant sine with frequency of 3.0 Hz and
amplitude of 4 mm.

It has been found that under random motion regime the resgengry sensitive to pertur-
bations in the boundary conditions as well as impact and ivasi®n characteristics (frequency
and amplitude). In particular, small changes in the init@ahditions or geometrical variations
due to the continuous degradation of the material at impaee Ishown to cause large differ-
ences in the experimental response. Thus, they will be &difon of the analytical models in
the study of the random motion.

Figure 15 shows a typical result of random motion with specisn2 and 3. The numerical
model is again in good agreement with the experimental tAstwell as it is successful in
predicting the collapse of the specimens.

7.2 Bi-block model

In this section preliminary results from the bi—-block moded presented. Figure 16 shows
the four possibleatterns of rocking motion that the bi-block model may exhibit [14]hdy
can be divided in two main groups. The first one includes theepe 1 and 2 and they are
equivalent to a two degree of freedom system response, iohvthe two blocks rotate in the
same or opposite direction. The second group (patterns 3padrresponds a single degree
of freedom system response. In particular, pattern 3 isvatgnt to one rigid structure, while
pattern 4 is the case where only the top block experiencationt[14].

13
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Figure 15: Typical results of random motion test; a) speai@eearthquake record 21 and load factor of 0.6, b)
specimen 3, earthquake record 18 and load factor of 0.5.

a) b) c) d)

Figure 16: Classification of rocking patterns for a bi-blatkucture; a) Pattern 1, b) Pattern 2, c) Pattern 3, d)
Pattern 4 [14].

From the experimental test first and corroborated by the ngalenodel, the principal pat-
terns that the bi—block structure tested exhibit are 2 anBi@ufe 17). These patterns are
associated with the amplitude and frequency of the loads. pettern 2 was record with con-
stant sine base motion with frequencies between 4 and 5 Haraptitudes greater than 4 mm,
with frequency of 6 Hz and amplitudes greater than 3 mm argu&acy 7 Hz with amplitudes
greater than 1 mm. The pattern 3 was recorded with constambsise motions with frequencies
between 1 and 5 Hz with amplitudes lesser than 4 mm.

Figure 18 shows a typical response of the bi—block struainder constant sine excitation
following Pattern 2 (Figure 17a). The maximum response @falwer block is only half degree
but the numerical model can reproduce satisfactory theimgakotion of both blocks. On the
other hand, Figure 19 shows typical responses with consia@texcitations, following Pattern
4 (Figure 17b). The response of the upper block is only shaezairse the lower block did not
present rocking motion. The numerical model is in good agexd with the experimental data.

8 CONCLUSIONS

e This paper proposed a numerical model to study the outarigobehavior of unreinforced
masonry (URM) walls, by means of the Discrete Element Method.

14
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a) b)

Figure 17: Typical rocking patterns for a bi—-block struetéound experimentally and numerically; a) Pattern 2, b)
Pattern 4.
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Figure 18: Typical result of harmonic motion simulation fwé constant sine excitation with frequency of 4.0 Hz
and amplitude of 3 mm; a) Lower block, b) Upper block.

e The Discrete Element Method (DEM) was successfully caldmtand validated with ex-
perimental results.

e A new methodology has been proposed to find the parametengs @& model by using
the parameters of théassical theory.

e An empirical formula to obtain the equivalent viscous damgpnecessary to define the
DE model has also been proposed.

e The models are extremely sensitive to thessical parameters and small variations in
their values produce large differences in the response.

¢ Fitting parameters obtained from experimental data weeel uis order to obtain good
agreement between numerical models and experimentatsesul

e The equivalent viscous damping is a function of the geomeitithe block, the stiffness
of the joint and the coefficient of restitution

e Despite the limitations and difficulties to reproduce thidahand boundary conditions,
good agreement has been found between numerical and expeaimesponses.
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1.5
Experimental Experimental
‘ - UDEC
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Figure 19: Typical result of harmonic motion simulationinét constant sine excitation (Upper block); a) frequency
of 3.0 Hz and amplitude of 3 mm, b) frequency of 4.0 Hz and atugé of 1 mm.
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