Available online at www.sciencedirect.com

SCIENCE(lenECT“ Electronic Notes in
Theoretical Computer

Science

et

ELSEVIER Electronic Notes in Theoretical Computer Science 130 (2005) 151-167
www.elsevier.com/locate/entcs

Architectural Prototyping: From CCS to .Net

Nuno F. Rodrigues’

Departamento de Informatica
Universidade do Minho
Braga, Portugal

Luis S. Barbosa?

Departamento de Informdtica
Universidade do Minho
Braga, Portugal

Abstract

Over the last decade, software architecture emerged as a critical issue in Software Engineering.
This encompassed a shift from traditional programming towards software development based on
the deployment and assembly of independent components. The specification of both the overall
systems structure and the interaction patterns between their components became a major concern
for the working developer. Although a number of formalisms to express behaviour and to supply
the indispensable calculational power to reason about designs, are available, the task of deriving
architectural designs on top of popular component platforms has remained largely informal.

This paper introduces a systematic approach to derive, from CCS behavioural specifications the
corresponding architectural skeletons in the Microsoft .NET framework, in the form of executable C*
and Cw code. The prototyping process is fully supported by a specific tool developed in HASKELL.

Keywords: Software architecture, prototyping, CCS, .NET.

1 Introduction

1.1 Motivation

In recent years the specification of software architectures [8,7] has been re-
cognized as a critical design step in software engineering. Its role is to make

! Email: nfredi.uminho.pt

2 Email: 1sb@di.uminho.pt

1571-0661/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.entcs.2005.03.009

mailto:nfr@di.uminho.pt
mailto:lsb@di.uminho.pt
http://www.elsevier.com/locate/entcs

152 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

explicit the underlying structure of a software system, identifying its compo-
nents and the interaction dynamics among them. I.e., the behavioural patterns
which characterise their interactions.

Classical process algebras (like, e.g., CCS [14] or CSP [10]) on the other
hand, emerged over the last thirty years as calculi to understand and reason
about systems in which interaction and concurrency play a significant, even
dominant, role. It is not surprising that such calculi, which embodied precise
notions of behaviour and observational equivalence, as well as specific proof
techniques, were often integrated in the design of generic architectural de-
scription languages (ADL). Typical examples are WRIGHT [1], based on CSP,
and DARWIN [12] or P1iccora [11], which integrate a number of constructions
borrowed from the 7-calculus [16,15].

It is not the purpose of this paper to introduce a new description language
for software architectures, not even to suggest additional features to existing
languages. Our motivation is essentially pragmatic: supposing behavioural
requirements for a given system are supplied as a collection of process algebra
expressions, how can such requirements be incorporated on the design of a
particular system? In other words, how can such requirements be animated
and, which is even more important, how can they guide the overall design of
the application architecture?

Our implementation target is the .NET framework [9] for component-
based, distributed application design. Behavioural specifications, on the other
hand, are written in the CCS [14] notation. The contribution of the paper is
basically a strategy to implement such CCS specifications on top of both C* [9]
and Cw [13]. Rather than relying on a specific ADL, we resort to behavioural
specifications written in a popular process algebra to identify its active compo-
nents, the interaction vocabulary and the, often distributed, execution control.
Such elements guide the (automatic) generation of an application skeleton in
the .NET framework.

The strategy proposed for prototyping behavioural specifications in C* is
described in section 2 and its application to a small example — the speci-
fication of a control architecture for a road/railway crossing — is discussed
in section 4. This is further extended to Cw in section 5. The systematic
character of the approach proposed is tested by the possibility of rendering it
automatic: section 3 describes a small tool for the derivation of C* prototypes
from CCS specifications. For quick reference, the next subsection provides a
(rather terse) introduction to CCS.

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 153

1.2 CCS: An Owverview

The CCS notation [14] describes labelled transition structures interacting via
a particular synchronisation discipline imposed on the labels. Such synchro-
nisation discipline assumes the existence of actions of dual polarity (called
complementary and represented as, e.g., a and @), whose simultaneous occur-
rence is understood as a synchronous handshaking, externally represented by
a non observable action 7.

Sequential, non deterministic behaviours are built by what in CCS are
called dynamic combinators: prefiz, represented by «.P, where o denotes an
action, for action sequencing, and sum, P + @ for non deterministic choice.
The inert behaviour is represented by 0. Their formal semantics is given
operationally by the following transition rules:

E-—-5FE P F
[
aF — F E+F_—>F ELF “ F

As shown by the rules above, dynamic combinators are sensible to transi-
tions and disappear upon completion. Differently, static combinators persist
along transitions, therefore establishing the system’s architecture. This group
includes parallel composition, P | @, and restriction new K P, where K is
a set of actions declared internal to process P, 1.e., not accessible from the
process environment. Their operational semantics is as follows:

E-“F [F E-% F F-2 F
E|F-FE|F E|F % FE|F E|F - E|F
E-SF

new {3} £ -% new {3} ' (ife ¢ {6.5})

On top of process terms a number of notions of observational equivalence
are defined based on the capacity of processes to simulate each other behaviour
(or an observable subset thereof). This entails a number of equational laws
which form the basis of a rich calculus to reason and transform behavioural
specifications. Such laws range, for example, from asserting the fact that both
sum and parallel are abelian monoids, idempotent in the first case, to the
powerful expansion law which equates the unfolding of a process with the sum
of all of its derivatives computed by the transition relation.

Typically, the architecture of a system composed of several processes run-
ning in parallel and interacting with each other is described by what is known
in CCS as a concurrent normal form

newK (P, | P2 | ...| P,)

where K is the subset of local (i.e., internal) actions (or communication ports)

154 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

and each process P; has the shape of a non empty non deterministic choice
between alternative execution threads.

Such a specification format seems to match reasonably well with the infor-
mal description of a software architecture as a collection of computational com-
ponents (represented by processes P; to B,) together with a description of the
interactions between them (represented by actions whose scope is constrained
by the scope of the new operator). While this abstraction ignores some other
fundamental aspects of architectural descriptions (namely non functional fea-
tures such as performance measures or resource allocation), it provides a useful
starting point for the software engineer.

In such a context, the following sections discuss how such behaviour ex-
pressions can be prototyped in C* to set the overall architectural structure
of a software system. Interestingly enough, as the specification notation sup-
ports a well-studied calculus, one becomes equipped with the right tools to
transform architectural designs at very early phases of the design process.

2 Prototyping Behaviour in the .Net Framework

This section focus on the prototyping process, starting from arbitrary CCS
specifications of a system behaviour to derive its skeleton architecture in .NET.
The qualificative skeleton is a keyword here. Actually, we do not aim to derive
the whole system, but just to resort to the behavioural requirements, as ex-
pressed by the CCS specifications, to automatically derive the bare structures
of implementations, i.e., their building blocks and corresponding interaction
and synchronization restrictions.

Thus, one is not particularly concerned with the flow of actual values as
arguments of methods or constructors, nor with how some eventually critical
algorithms, specific to individual components, will perform. What interests
us at this level are issues like the ways processes communicate, what kind of
messages do they pass to each others, what are their internal states at some
point, how control flow is performed, how processes evolve in time and the
implications of such evolutions in the other processes that also compose the
system. Bearing this in mind, the prototyping process is described in the
sequel.

2.1 Actions

An action in a CCS specification corresponds to a method whose name is
equal to the action’s label in the corresponding implementation. Since such
methods typically implement input ports in the system, they have invariably
data type void as the domain of their return values. On the other hand,

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 155

complementary actions specifying output ports, denoted in CCS by an overline
annotation, correspond to methods which may return values of any valid data
type.

Accessibility restrictions on methods will be addressed later. For the mo-
ment, let us consider all these methods to be public. As an example, consider
the following CCS specification of a simple vending machine which receives a
coin, performs an internal computation, retrieves a coffee and finally returns
to the initial state:

M = coin.T.cof fee. M

In C* the coin port will be implemented as
public void coin() { }

Later, in the method body, one will define the corresponding computation to
process coin reception.
On the other hand, the cof fee port, which specifies an output port, will
be translated as
public cof coffee() { }

declaring a method able to return a value of type cof. Of course, in this exam-
ple, the choice of returning some value is rather optional, since the action of
returning a coffee could be achieved inside the definition of the coffee method,
by some internal computation, instead of returning the desired output.

2.2 Processes

Processes in CCS correspond in C* to classes with the same identifier. Such
classes encapsulate all the methods derived from the process ports specifi-
cation. Therefore, in the previous example, one would get the following C*
class:

public class M {
public void coin() { ... }
public cof coffee() { ... }
}

Note that class M implements the contezrt for process M, by declaring
and grouping its two actions, but still, it does not capture its behaviour. In
fact, there is no method invocation order subjacent to class M, whereas in
process M one can only perform method coffee() after method coin() has
been activated. Even more, in process M the execution of method coin() is
immediately followed by a single execution of method coffee(). The speci-
fication does not allow, for example, that several calls to coin() precede the
coffee() call or that several calls to coffee() follow a coin() insertion.

156 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

Addressing such issues, concerning the process execution order, requires some
additional control flow code on the implementation side. Such is the topic of
the following subsection.

2.8 Reactions

Prototyping sequential port activation, as typically specified in a CCS expres-
sion, requires the introduction of an additional variable for state control. This
auxiliary variable, denoted by state and simply declared of type string, con-
tains the current state, captured by the name of the last executed method.
Operationally, every method must inspect this variable to check whether its
value is exactly the identifier of the port that precedes the current one.

For ports corresponding to initial actions on the CCS specification, a
slightly different approach is adopted. In such cases, the corresponding meth-
ods must check whether variable state is either null or contains one of the port
identifiers from the set of ports that precede a (re-)execution of the current
process.

The implementation of this flow control mechanism requires the introduc-
tion of three basic functions to analyse the specification: initialPorts(P),
precPorts(P), finalPorts(P). Their purpose is to identify the initial, pre-
ceding and final actions on a CCS expression, respectively. Once these func-
tions evaluate, the rest of the implementation process falls into pretty-printing
and class accessibility control routines.

Nevertheless, one still has to prevent that no sequential ports execute si-
multaneously. To accomplish this, a method must first set the state variable
to a particular temporary execution value (in the example the "processing”
value is used), and release it at the end of its execution, a scheme similar to
what is called a semaphore in classical concurrency control. This way, one not
only guarantees that no sequential ports execute simultaneously, but also gets
a way to inspect the current state of a particular port. Note that any port
in the system is either performing some computation (revealed by the value
"processing” in the state variable) or prepared to be called. Applying the
above translation scheme to the example at hands results in the following C*
code:

public class M {
private string value;
public void coin()
{
if (state != null || state.Equals("coffee"))

state = "processing";
"code from the coin computations"
state = "coin";

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 157

else { throw new Exception("Process sequence violation."); }

}

public cof coffee()

{
if (state.Equals("coin"))
{

state = "processing";
"code from the coffee computations"
state = "coffee";
}
else { throw new Exception("Process sequence violation."); }

}}

Example

2.4 Alternative Reactions

Alternative reactions in a behavioural specification are achieved by the CCS
non deterministic choice combinator. At the implementation level this com-
binator is regarded as a special sequence control. This is implemented on the
analysis phase by means of functions initialPorts(P), precPorts(P) and
finalPorts(P), which deal as expected with the choice combinator + while
evaluating over the inspected processes.

2.5 Restriction

Interaction restrictions within a process are handled in CCS by the new com-
binator. Its implementation at the prototype level resorts to the accessibility
mechanisms of the .NET platform. Thus, for every variable in the scope of
a CCS restriction, the corresponding method is set to an internal method,
rather than to a public one, as used so far in our toy example.

With this additional step, methods declared internal become only avail-
able for classes inside the same aggregation, isolating them from possible direct
interactions with other classes.

Through accessibility control, one may regard a .NET prototyping struc-
ture as a process execution domain, where every identifier lies within a precise
execution scope. Again, a question remains: where should the boundaries of
the system be set?

At a first glance one might think that processes are themselves good candi-
dates for the boundary definition of the corresponding classes. This approach,
however, would easily lead to a great amount of aggregations (one per pro-
cess) without taking any direct advantage out of it, even because there can
be no bounded variables at the level of the entire system. Thus, a minimal-
ist approach is preferred, where one starts with a single aggregation for the
entire system, and then relies on each new occurrence in the CCS expres-

158 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

sion to define process scopes and the corresponding bounded variables. Such
scopes are created at implementation time leading to the construction of fresh
aggregations with their methods correctly addressed in terms of accessibility.

By adopting such a methodology for prototyping CCS restrictions, one not
only obtains a correct isolation of process ports, but also specific process space
domains within a system, which can be regarded as smaller (sub)systems of
the overall architecture.

With the introduction of subsystems, another characteristic of typical ar-
chitectural reasoning becomes explicit at the prototyping level: the ability to
reason safely on simpler and isolated parts of the entire system.

2.6 The Parallel Architecture

The previous sections have shown how sequential CCS processes can be cor-
rectly implemented in C*2 but one is still missing the entire picture of a
system composed of several interacting processes, as specified by a CCS par-
allel expression.

To address this last issue two techniques are presented. In the first one the
execution of the system is totally controlled by a system’s analyser. In the
second alternative, which is closer to the execution model of CCS, processes
evolve in time by internally reacting to each other until the system reaches a
point where it requires interaction with the outside world.

Both ways provide an encapsulation of the entire system and a simple way
to test it. They rely on the introduction of an additional class, called the sys-
tem interaction class. This class encapsulates the entire system, exposing only
its free variables and ensuring a correct execution order for all the assembled
processes.

The first technique relies on a single class with a single method which is
able to deal with all the assembled processes. This requires that the state of all
processes is kept and, that on every action occurrence, all possible interactions
are checked.

The second technique builds a system interaction class in a similar way,
but for the fact that, for each action occurrence (and corresponding execution
call), all the internal reactions are performed until the system stops for com-
munication (on an external input or output port) or faces a non deterministic
control choice.

At this point, one might think that some of the previous presented strate-
gies, addressing process restriction and correct process order reaction, were

3 Actually such a prototyping methodology can be tuned to any object-oriented language,
or with some modifications, even to classical imperative ones.

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 159

unnecessary since the system interaction class already addresses all this is-
sues. However, the system interaction class should be regarded as a simpler
way of interacting with the entire system, and not as the only way of inter-
action. At the prototyping level it is always possible, and even desirable, to
make use of single processes or process’s domains for interaction in order to
test individual parts of the system or, in general, any of its sub-architectures.

3 Prototype Derivation

To automate the application of this methodology to derive C* architectural
skeletons out of CCS specifications, a specific tool was developed in HASKELL.

The translator is based on a two phase procedure. The first phase consists
of a parser for the CCS notation which converts the processes’ specifications
into a suitable HASKELL data type. Its implementation is achieved by the
CCSParser HASKELL module, which resorts to the PARSEC libraries. There-
fore, after the parsing stage, all CCS specifications are encoded in the following
data type:

data Process a = Port a (Process a)
| CompPort a (Process a)
| Sum (Process a) (Process a)
| Conc (Process a) (Process a)
| New [a] (Process a)
| RCall
| PCall (ProcDef a)

| ProcessEnd deriving Show

data ProcDef a = PDef (String, Process a) deriving Show

Type Process a

The PDef type constructor receives a pair with a process identifier and the
process definition itself. The former is used to define the class for the process
currently under implementation as well as for cross reference calls between
processes, specified by the type constructor PCall or by complementary port
calls.

Data type Process a captures a CCS process definition, as presented in
section 1, with a minor difference: recursive calls (RCall) are explicitly dis-
tinguished from non recursive ones (PCall). Of course the latter require that
the identifier and definition of the process being called are supplied, in order
to correctly define inter-class calls at the implementation level.

The second phase of the translator performs the calculation of the C*
implementation out of instances of data type ProcDef a. This second phase
is implemented by the CCS2DotNet module, which includes the buildSystem
function, responsible for the generation of the corresponding C* code.

160 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

Function buildSystem receives an instance of data type ProcDef a, cap-
turing a CCS system definition, and produces a series of files, each containing
a C* class definition for each process in the CCS specification.

The buildSystem function relies on several auxiliary functions, but three of
them really constitute the building blocks where the entire Automatic Trans-
lator stands upon. These functions analyse the CCS specification and were
already mentioned above as central functions for an automatic implementa-
tion. They are, respectively, getFinalPorts, which computes all the final
ports of a given process, getInitialPorts, which computes all the available
initial ports when a process executes and finally portPreds, which finds all
the possible preceding ports of a given port in a given system.

4 An Example

As a small case study, consider the specification of a control system governing
a crossing between a road and a railway. Notice this example, in despite of
its small size, has a number of characteristics which are paradigmatic of the
sort of systems this prototyping approach may be useful for. First of all it
is a simple and effective system, concerned with a real world situation which
embodies safety-critical requirements. Avoidance of deadlock and safe control
flow are certainly properties which are required to be formally proved. This
can be done within the CCS calculus. Once proved, our prototyping approach
allows the software architect to derive an architectural skeleton of the final
implementation which is, therefore, correct by construction.

We start with the following CCS specification, due to C. Stirling [19]:

Road =car.up.ccross.dw. Road

Rail =train.green.tcross.red. Rail
Signal =green.red.Signal + up.dw.Signal

C =new{green, red, up, dw}(Road|Rail|Signal)

The specification is self-explanatory: basically note that process Signal en-
sures the mutual exclusion of control access to both the (physical) semaphore
controlling the railway and the gate governing the road traffic. The overall
system is specified by process C' which, presented in the concurrent normal
form, exposes the overall system’s architecture.

To use the prototype generator to automatically derive process C' as a

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 161

skeleton architecture in .NET, one has to perform the two-phase procedure
described in the previous section. For illustration purposes, we shall consider
here process Signal in some detail, and abstract a little of the entire system,
though some calls to other processes which interact with Signal will appear
in the implementation. A similar procedure applies to the other processes.
In a first step function parseCCS, from module CCSParser, is called on the
original specification:
Signal = /green.red.Signal + /up.dw.Signal
This returns the correspondent process as a value of data type ProcDef a:

signal = Sum (CompPort "green" (Port "red" RCall))
(CompPort "up" (Port "dw" RCall))

psignal = PDef ("Signal", signal)

Once the CCS system is defined as a value of the ProcDef a data type, one
just has to apply function buildSystem to that value. Function

buildSystem :: ProcDef String -> I0 ()

is responsible for creating all the files containing the C* classes which imple-
ment the original process.

Function buidSystem relies on many other functions, many of them work-
ing exhaustively with strings and string manipulation. To improve this sort of
operations a new type ShowS = String -> String was introduced. The ad-
vantage of resorting to ShowS values, instead of directly working with String,
is that functional composition with ShowS maintains linear complexity in func-
tions dealing with many string concatenations.

The resulting implementation of the process specification must then be
stimulated with the initial action string (in this case the empty string), and
the result written to a .cs file or passed to other function. The result of
applying function buildSystem is the different .cs files implementing each
process defined in the CCS specification. For example, Signal.cs contents is
as follows:

using System;

namespace CCS {
public class Signal
{

private static string state;
public static void greenComp(bool b)

{
if (state == null || state.Equals("red") || state.Equals("dw"))
{

162 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

if (!b) { Rail.green(true); }

state = "processing";
//(computational details to be supplied)
state = '"green";

}

else { throw new Exception("Process sequence violation."); }

public static void red(bool b)
{

if (state.Equals("green"))

{
if(!b) { Signal.red(true); }
state = "processing";
//(computational details to be supplied)
state = "red";
}

else { throw new Exception("Process sequence violation."); }

}
public static void upComp(bool b)
{
if (state == null || state.Equals("red") || state.Equals("dw"))
if (!b) { Road.up(true); }
state = "processing";
//(computational details to be supplied)

state = "up";

else { throw new Exception("Process sequence violation."); }

}
public static void dw(bool b)
{

if (state.Equals("up"))

{
if(!b) { Signal.dw(true); }
state = "processing";
//(computational details to be supplied)
state = "dw";
}

else { throw new Exception("Process sequence violation."); }

Signal.cs

Note that every method receives a boolean value. This has to do with cross
reference calls when treating calls to complementary actions. Its objective is
to prevent the system to get into an infinite loop when complementary actions
are called. This is achieved by forcing false as an argument in every user
call to a method. Only internal calls use the value true to call other com-
plementary actions. This protocol guarantees that each method can inspect
if it is being called by an internal call and therefore not needing to call the
method that called him again from users calls that do need to check if there
are complementary actions to be called.

Also notice that the definition of specific computations inside each method
implementing process ports is simply signalised by the

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 163

//(computational details to be supplied)

annotation, making explicit the skeleton character of the derived code. In any
case, however, the underlying architecture specified in the CCS expression has
been translated to the .NET framework in a way which is both executable and
guarantees, by construction, all the relevant safety-critical properties.

5 Prototyping in Cw

Cw [13] is an extension to the C* language at two different levels: data type
support for XML and table manipulation, on the one hand, and new asyn-
chronous concurrency abstractions, based on the join calculus [6], on the other.
The language brings to life a model of concurrency rich enough to be appli-
cable both to multithreaded applications running on a single machine and to
the orchestration of asynchronous, event-based components interacting over a
(wide area) network.

The major contribution of Cw to concurrent programming is the intro-
duction of chords. In contrast to normal methods where for each method
declaration corresponds a body containing the code of its implementation,
in a chord a method implementation can be associated to a set of methods.
The code corresponding to a chord only executes when all the methods in the
head of the chord are called. This structure, combined with the notion of
asynchronous methods, already present in C*, is extremely powerful. Note, en
passant, that a chord may have at most a synchronous method in its definition.

This section reports on the use of Cw as a target language for prototyping
behavioural specifications. Experience shows that translations become closer
to the corresponding CCS specification and smaller (in terms of the amount of
code written). Some aspects of this approach are outlined below; the reader
is referred to [18] for a detailed introduction.

5.1 From CCS to Cw

The process of prototyping CCS specifications in Cw is similar to the corre-
sponding translation to C*. The main differences are pointed out below.

5.1.1 Actions

Ports are implemented either by methods, as before, or by chords to reflect
cases of dependence on other ports or to maintain strict sequencing control
in process execution. The distinction between the use of chords and methods
and when to use one or the other will be made clear below.

164 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

Output ports, with corresponding complementary ports that need to be ex-
ecuted simultaneously, wait to be called from the latter. They must therefore
be guarded by a semaphore insuring the sequential evolution of the process.
This semaphore is implemented by an asynchronous method which is then
bounded to the port as in the following implementation of port fork;, from
process P, taken from the dining philosophers problem mentioned below.

public async allow_c_fork1();
public void c_forkl(object obj) & allow_c_fork1i() {
Console.WriteLine("Phil_12 releases fork 1");
if (obj is Fork1l) {
((Forkl) obj).obs_fork1();

allow_c_fork2();

A Port Implementation

5.1.2 Reactions

The way reactions are implemented as already been partially revealed in the
previous section. As mentioned above output ports with corresponding com-
plementary ports in the specification wait to be called by them. Input ports,
on the other hand, are always called by their predecessors and, therefore, are
not required to be bounded to semaphores to ensure their correct sequential ex-
ecution. Nevertheless, input ports with corresponding complementary ports,
which need to be executed simultaneously, are also implemented as chords
to force simultaneity of action occurrence* This way, a port in this condi-
tions Such a port must perform a previous call to the asynchronous method
request_obs_Port () in the process(es) holding its corresponding output port.
This call acts like a request activation, signalising the beginning of an active
waiting state.

5.1.3 Alternative Reactions

Alternative reactions are implemented by defining their initial ports as chords
bounded to a semaphore (alternative()). This is a private asynchronous
method which becomes available whenever the choice for the alternative reac-
tion is also available. Notice that non determinism in choice was not treated
in the C* approach. With Cw, however, it can be prototyped by performing
random choices in the actions previous to the alternative reaction.

4 understood here as atomicity in the sense that both actions occur in an atomic way, that

is, without being interleaved by other events.

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 165

5.1.4 The Parallel Architecture

Every process prototype is equipped with an asynchronous start() method
which wakes the process and starts its execution. The parallel composition in
the CCS specification is then implemented by calling the start () method of
each process composed in a parallel context.

5.2 Dining Philosophers Example

To illustrate how CCS behavioural specifications can be prototyped in Cw, a
solution to the dining philosophers problem[4] was developed. This example,
which by space limitations can not be discussed in this paper, is detailed in
[18]°.

It is interesting to compare the prototype obtained with the approach
discussed in this paper, starting from a CCS specification, with the direct
implementation of the same problem supplied in the Cw documentation [13].
In the latter the boundaries of each entity in the system are not clear nor are
the means by which they interact or how resource sharing is accomplished.
The Cw prototype in [18], on the other hand, follows very closely the original
CCS specification, which entails a concise description of the solution, a clear
definition of the intervening entities and a precise notion of the behaviour
of each of them. Moreover all the interaction vocabulary is established in
function main, which also deals with the activation of processes’ instances.
Therefore, the resulting Cw code is easier to understand and analyse.

6 Conclusions and Future Work

This paper, an extended version of [17], proposed a simple, yet powerful, ap-
proach to the automatic derivation of C* and Cw prototypes of behavioural
specifications written in CCS. The resulting code can be used in a number
of different contexts. For example, applications developed under stateless
environments which abound in the internet, with particular relevance to Web-
Services. Targeting this last paradigm, one can easily distribute processes in
an (inter/intra)net and make use of SOAP to manage all external method
calls.

The motivation is exactly the one typically invoked on the use of formal
methods: first resort to a formal notation to enable precise expression of
requirements and calculation power to discuss correctness and refinement.
Then, derive executable prototypes in suitable implementation frameworks
closer to the working programmer concerns.

% the corresponding Cw code is available from wiki.di.uminho.pt/wiki/bin/view/Nuno.

166 N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167

We believe that the working programmer is more and more becoming the
working software architect, whose job is essentially to look for suitable soft-
ware components and plugging them in order to guarantee some desirable be-
haviour. If CCS seems to be a sound and relatively well-known calculational
formalism, .NET is becoming an almost de facto standard for implementing
component based applications. The approach, however, is largely independent
of the interaction discipline of CCS: for example, CSP-like synchronization,
as used in some popular ADLs, or broadcast communication, can easily be
incorporated as well. In any case the emphasis is shifted from stand-alone
programming to architectural design and, in such a sense, we believe the ap-
proach sketched in this paper may be found useful in practice. It should be
mentioned that this ideas have been used in the context of a project on ar-
chitectural reconstruction of legacy systems as well as in an undergraduate
course on software architecture taught to third-year students of a Computer
Science degree at Minho University.

Current work includes

e The generation of test classes and the derivation of a web-based interface
for prototype testing.

e The extension of the prototyping approach to mobile applications, starting
from behavioural specifications in the m-calculus [15].

e The integration of this approach in a methodology for formal specification of
software architectures. This basically requires the construction of a library
of specifications of typical software connectors, and corresponding .NET
skeletons, able to be re-used in architectural design. Recall that a software
connector [7,5,2] is an abstraction intended to represent the interaction pat-
terns among components, the latter regarded as primary computational el-
ements or information repositories. The aim of connectors is to mediate the
communication and coordination activities among components, acting as a
sort of gluing code between them. Examples range from simple channels or
pipes, to event broadcasters, synchronization barriers or even more complex
structures encoding client-server protocols or hubs between databases and
applications. All of them can be specified in a process algebra notation (as
in, e.g., [1,12]) and, therefore translated to .NET skeletons.

Finally, it should be mentioned that C* itself is also evolving towards the
integration of primitive distribution and concurrency control primitives at the
language level [3]. As sketched in section 5, this provides a richer environment
for architectural prototyping.

Acknowledgements. This research was carried on in the context of the
PURE Project (Program Understanding and Re-engineering) supported by

N.F. Rodrigues, L.S Barbosa / Electron. Notes Theor. Comput. Sci. 130 (2005) 151-167 167

FcT under contract POSI/ICHS/44304/2002.

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM TOSEM, 6(3):213—
249, 1997.

[2] M. Barbosa and L. Barbosa. Specifying Software Connectors. In K. Araki and Z. Liu,
editors, Proc. First International Colloguim on Theoretical Aspects of Computing (ICTAC’04),
Guiyang, China, pages 53—68. Springer Lect. Notes Comp. Sci. (3407), 2004.

[3] N. Benton, L. Cardelli, and C. Fournet. Modern concurrency abstractions for C*. In Proc.
ECOOP 2002. Springer Lect. Notes Comp. Sci. (2374), 2002.

[4] E. W. Dijkstra. Cooperating sequential processes. Technical report, Technische Universiteit
Eindhoven, The Netherlands (reprinted in Programming Languages, F. Genuys (ed.), Academic
Press, New York, 1968, 43-112), September 1965.

[5] J. Fiadeiro and A. Lopes. Semantics of architectural connectors. In Proc. of TAPSOFT 97,
pages 505-519. Springer Lect. Notes Comp. Sci. (1214), 1997.

[6] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.
In Proc. CONCUR’ 96. Springer Lect. Notes Comp. Sci. (1119), 1996.

[7] D. Garlan. Formal modeling and analysis of software architecture: Components, connectors
and events. In M. Bernardo and P. Inverardi, editors, Third International Summer School on
Formal Methods for the Design of Computer, Communication and Software Systems: Software
Architectures (SFM 2003). Springer Lect. Notes Comp. Sci, Tutorial, (2804), Bertinoro, Italy,
September 2003.

[8] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering (volume I).
World Scientific Publishing Co., 1993.

[9] E. Gunnerson. A Programmer’s Introduction to C*. Apress, 2000.

[10] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice-
Hall International, 1985.

[11] M. Lumpe. A w-calculus Based Approach to Software Composition. PhD thesis, University of
Bern, January 1999.

[12] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architectures.
In 5th European Software Engineering Conference, 1995.

[13] Microsoft Research. Cw Documentation, 2004.

[14] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall
International, 1989.

[15] R. Milner. Communicating and Mobile Processes: the w-Calculus. Cambridge University Press,
1999.

(16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).
Information and Computation, 100(1):1-77, 1992.

[17] N. Rodrigues and L. S. Barbosa. Prototyping behavioural specifications in the .Net framework.
In A. Mota and A. Moura, editors, Proc. 7th Brazilian Symposium on Formal Methods
(SBMF’2004), pages 108-118. UFP, November 2004.

[18] N. Rodrigues and L. S. Barbosa. Prototyping concurrent systems in cw. Technical report,
Universidade do Minho, Portugal, February 2005.

[19] C. Stirling. Modal and temporal logics for processes. Springer Lect. Notes Comp. Sci. (715),
pages 149-237, 1995.

	Introduction
	Motivation
	CCS: An Overview

	Prototyping Behaviour in the .Net Framework
	Actions
	Processes
	Reactions
	Alternative Reactions
	Restriction
	The Parallel Architecture

	Prototype Derivation
	An Example
	Prototyping in C
	From CCS to C
	Dining Philosophers Example

	Conclusions and Future Work
	References

