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Preface

It is often the case that small decisions end up causing a big impact into one’s

life. It is funny look behind and see how everything started, all the path that

I have been through, and all the people that accompanied me.

It all started in the 5th year Formal Methods course taught by Professor

José Nuno Oliveira. My partner and friend Paulo Silva and I were challenged

to create a simple prototype tool for database calculation from formal specifi-

cations (VooDooM). Although both of us were a bit sceptic at first, the project

was successfully accomplished. A key factor for the project’s success was

the valuable help from Joost Visser, who introduced us to advanced software

technologies such as “strategic term-rewriting” and “grammar engineering”.

Meanwhile, in other 5th year project supervised by Joost Visser, Paulo,

Bruno Herdeiro and I were asked to implement software analysis techniques

for some mainstream programming languages in a bilateral project with the

Dutch company Software Improvement Group (SIG). I still remember the

first meeting, where all of us were sitting together discussing whether we were

going to accept that work or not. I am glad we did, since this was one of the

projects that changed me the most. It was the first time that I was faced

with a completely different point of view to look at software: the program

understanding point of view.

This project allowed us to caught a glimpse of the real-world software, by

performing quantitative analysis of real-world systems in different languages.

It was a tough challenge, but once more we succeeded. The involvement with

SIG was profitable in other ways since they provided Paulo and me a PL/SQL

iii



iv

grammar that we used in the VooDooM project, thus saving a lot of work.

Both these works were not only professionally stimulating, but they have

also captivated me with the charms of software science.

After finishing the first semester of the 5th year, I was faced with the

choice of doing an internship at some company or doing it in the University.

Influenced by professor José Nuno, and Dr. Lúıs Neves, I decided to embrace

a new challenge, a University of Minho research project called IKF. The IKF

project created all the conditions for starting a MSc, and once more professor

José Nuno had a great impact in my decision by persuading me to accept.

Once more I am glad that I followed his advice.

Many other persons had relevance to my work. One of them was professor

Lúıs Barbosa who gently bought the ISO VDM Standard which allow me to

build the tool front-end. Thank you for your trust.

With a hint from professor José Carlos Ramalho, after the IKF project I

became teacher at University of Minho. This not only helped me to financially

support myself, but also granted me some time to finish this thesis. Thus,

I have to thank professors Pedro Henriques, João Saraiva and José João

Almeida for all their support.

A special thanks to my supervisors, for all their patience and all the time

and trust they invested in me.

Finally, I would like to thank all my friends for their support during all

periods of this work, and for always remembering me what is important.

Thanks to Andreia for all the love and care, and for gently bringing me

back down to earth every time my mind was somewhere else.

Thanks to my sisters and parents. Thanks mom, for all the hard work for

me to have the best conditions to work and thanks dad, for the incentive by

starting or ending all those long phone calls by asking “when are you going

to finish you MSc?” or saying “You really have to finish your MSc!”.

Thank you all, and it is to all of you that I dedicate this work.
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VooDooM: Support for understanding and

re-engineering of VDM-SL specifications

Abstract

The main purpose of this work is to define steady ground for supporting the

understanding and re-engineering of VDM-SL specifications.

Understanding and re-engineering are justified by Lehman’s laws of soft-

ware evolution which state, for instance, that systems must be continually

adapted and as a program evolves its complexity increases unless specific

work is done to reduce it.

This thesis reports the implementation of understanding and re-enginering

techniques in a tool called VooDooM, which was built in three well defined

steps. First, development of the language front-end to recognize the VDM-

SL language, using a grammar-centered approach, supported by the SDF

formalism, in which a wide variety of components are automatically generated

from a single grammar; Second, development of understanding support, in

which graphs are extracted and derived and subsequently used as input to

strongly-connected components, formal concept analysis and metrication.

Last, development of re-engineering support, through the development of a

relational calculator that transforms a formal specification into an equivalent

model which can be translated to SQL.

In all steps of the work we thoroughly document the path from theory to

practice and we conclude by reporting successful results obtained in two test

cases.
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VooDooM: Support for understanding and

re-engineering of VDM-SL specifications

Resumo

O objectivo principal deste trabalho é a definição de uma infra-estrutura para

suportar compreensão e re-engenharia de especificações escritas em VDM-SL.

compreensão e re-engenharia justificam-se pelas leis de evolução do soft-

ware. Estas leis, formuladas por Lehman, definem, por exemplo, que um

qualquer sistema deve ser continuamente adaptado e à medida que os progra-

mas evoluem a sua complexidade tende sempre a aumentar.

Esta tese descreve o estudo de técnicas de compreensão e re-engenharia

que foram implementadas numa ferramenta chamada VooDooM. Esta imple-

mentação foi efectuada em três etapas bem definidas.

Primeiro, foi desenvolvido um parser (front-end) para reconhecer a lingua-

gem VDM-SL. Para tal, foi utilizada uma abordagem centrada na gramática,

suportada no formalismo SDF, que está equipado com ferramentas de geração

automática de diversos componentes.

Segundo, para o suporte de compreensão, foram desenvolvidas funcionali-

dades para extrair e derivar grafos que são utilizados em técnicas de análise

como componentes fortemente relacionados, análise de conceitos (formal

concept analysis) e métricas.

Por último, para o suporte de re-engenharia, foi prototipada uma calcu-

ladora relacional que transforma um modelo, definido numa especificação

formal, no seu equivalente relacional que pode ser traduzido para SQL.

Em todas as etapas realizadas h a preocupação de documentar o percurso

entre teoria para a prática. A análise de resultados obtida no estudo de caso

revela o sucesso da abordagem e as suas potencialidades para desenvolvimentos

futuros.
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Chapter 1

Introduction

The main purpose of this research is to define steady ground for supporting

understanding and re-engineering of VDM-SL specifications.

Understanding will be accomplished through the extraction and deriva-

tion of different kinds of graphs which can be both visualized or subject of

metrication. Re-engineering, on the other hand, will by achieved with the

prototyping of a relational calculator which is able to convert a specification

to its relational equivalent and hence, subsequently generate SQL.

The global contribution of this work is the VooDooM tool which supports

understanding and re-engineering of VDM-SL specifications. Besides the

general contribution, we specifically contribute with the following:

• A VDM-SL grammar which serves both as documentation and for

generation of tool support,

• Powerful program understanding techniques that can be applied during

development or to guide understanding,

• A database calculator which intends to promote database design through

formal specification.

Our main motivation is the belief that formal methods and in particular

VDM-SL lack proper tool support. Emphasis is put on development and

1



2 CHAPTER 1. INTRODUCTION

validation but understanding and re-engineering is left to second plan. In this

work we specifically intend to address those.

1.1 Motivation

Investigation about the evolution of OS/360 software led Lehman to formulate

eight laws of Software Evolution [67].

Briefly, the first law, continuous change, states that a program that is used

must be continually adapted else it becomes progressively less satisfactory;

and the sixth law, continuing growth, states that functional content of a

program must be continually increased to maintain user satisfaction over its

lifetime.

Moreover, Lehman states, that as a program evolves, its complexity

increases unless work is done to maintain or reduce it (second law - increasing

complexity); and programs will be perceived as of declining quality unless

rigorously maintained and adapted to a changing operational environment

(seventh law - declining quality).

Formal specifications are normally used as a contract in which the most

relevant system details are specified before they are implemented. When new

requirements arise, they first are formally specified and after implemented.

This describes an “one-way” only process, from specifications to the system’s

implementation.

Nevertheless, the contrary is also possible since it is feasible to do automatic

re-engineering of parts of existing systems to formal specifications.

When formal specifications have such important role, they can be re-

garded as any other software artifact, being under “jurisdiction” of the same

Lehman laws, and hence suffering the same evolution problems and requiring

complexity and quality control.

The Vienna Development Method (VDM) [53, 32] is a collection of tech-

niques for the formal specification and development of computing systems.

VDM consists of a specification language, called VDM-SL, and an associated
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proof theory. Specifications written in VDM-SL describe mathematical models

in terms of data structures and data operations that may change the model’s

state.

VDM-SL is quite a rich language in the sense that its syntax provides

notation for a wide range of basic types, type constructors, and mathematical

operators. VDM’s origins lie in the research on formal semantics of program-

ming languages at IBM’s Vienna Laboratory in the 1960s and 70s, in particular

of the semantics of PL/I. In 1996, VDM achieved ISO standardization [50].

A successful comercial tool supporting VDM-SL was developed by the

Danish company IFAD. IFAD introduced extensions to the ISO VDM-SL [40]

to allow executable specifications in order to make it a more appealing formal

methods language. IFAD further extended the language with object oriented

concepts calling it VDM++ [39]. VDM++ was supported by its own version

of the VDMTools which additionally supported automatic code generation

for C++ and Java, and re-engineering from VDM++ to Java [49].

ISO VDM-SL offers a clear notation and well-defined semantics. It is

based on a mathematical model built from simple datatypes like sets, lists

and mappings. Specifications can have state which is explicitly defined and

manipulated by operations.

In this project we chosen to use ISO VDM-SL as model/specification

language in program understanding and re-engineering, rather than using

a set of ad-hoc or mathematically less rigorous notations. The motivation

for this choice is that it allows us to develop techniques with a more solid

theoretical foundation, and it brings into reach more sophisticated reasoning

and calculation approaches to re-engineering and program understanding.

Additionally, and in contrast with IFAD VDM-SL and VDM++, full semantics

of the ISO VDM-SL1 is available from [50].

Figure 1.1 provides an overview about how we interpret software re-

engineering and understanding based on VDM-SL specifications.

1Whenever we mention VDM-SL or VDM, we will refer to ISO VDM-SL and not to

any of their extensions.
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System
VDM-SL 
Model

re-engineering

understanding

Figure 1.1: Re-engineering and understanding overview.

Our focus is the right side of the dashed lines, re-engineering and under-

standing of VDM-SL specifications, which can be obtained from a previous

re-engineering project.

1.2 Program understanding

Associated with the system growth and complexity increase, Lehman’s sixth

and second law, respectively, there is also the problem of losing knowledge.

As a rule, lack of understanding is due not only to outdated documentation

or unavailability of key personnel, but also to the sheer size and complexity to

which systems grow over time. When this happens, design decisions, system’s

architecture and, sometimes, program semantics become entangled in the

extensive details of the source code.

Program understanding [85] is the process of acquiring knowledge about

programs and provides valuable help in solving this problem. Program

understanding can achieve this by using reverse engineering techniques based

on source code analysis.

Many program understanding techniques used today were borrowed from

other areas. Data and control flow analysis were first used in optimizing

compilers [3]. Data flow analysis is used for finding dependencies between

different data items manipulated by a program and it can be used to discover
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relationships in data, verify properties in concurrent programs, and others.

Control flow analysis [77] allows for execution of a given program to be

discovered, and to identify dependencies in the execution of code. These two,

combined with slicing [90, 77], for isolating specific parts of the program code,

are powerful techniques [77] used for automatic debugging, property checking

and validation, and aiding program understanding.

Architecture recovery has been subject of research in order to assist

migration of legacy systems but also to validate systems design. Techniques

such as cluster and concept analysis have been developed and applied with

some success [93].

Quantitative analysis, or software metrics, is used to assign numeric values

to particular aspects of software. Halstead, McCabe and Allbrecht in the late

seventies are credited for defining the most well-known metrics today. The

Halstead metrics [41] were developed to measure program module complexity

from the operators and operands they use. McCabe defined cyclomatic

complexity [71] as the number of linearly-independent paths through a program

module. Allbrecht defined function point analysis [4] as a means of measuring

software size and productivity using functional, logical entities such as inputs

and outputs. After almost two decades, in a effort to measure and track

maintainability, the Maintainability Index [104] was proposed, combining

Halstead, McCabe and other simple metrics.

1.3 Program re-engineering

Program re-engineering can be defined as “examination and alteration of a

system to rebuild it in a new form and subsequent implementation of the new

form” [20].

Different software engineering processes fit in this category, namely soft-

ware maintenance and software renovation.

Forward engineering [21], also called reification or refinement in formal

methods, is the process of deriving a lower level model, specification, or
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program from a higher-level one. Thus, to reify (or refine) is to make it into

‘a more concrete thing’.

Refinement can also be divided into two categories, data and operation

refinement. Converting from an abstract data model type such as a product

type, into its implementable data structure such as a C struct or a Java

class, are examples of data refinement. Examples of operation refinement

are, for instance, the conversion of a specification of an operation into an

implementable program such as a C procedure or Java method.

Because formal specification languages have a strong mathematical basis,

these transformations can be methodically derived and mathematical proofs

can be done to prove their correctness.

In VDMTools, the refinement process is implemented targeting C++ or

Java.

In [26], the author investigated the refinement process between the two

dialects of VDM, by converting functional specifications written in VDM-SL

to VDM++. In this work, we are interested in exploring the possibility of

targeting other models, specifically the SQL model [34].

1.4 Objectives

The general objective of the work is to provide basic support for understanding

and re-engineering. This requires development of a language front-end, or

parser, for VDM-SL and development of understanding and re-engineering

functionalities.

For each of these items mode detailled objectives will be given next:

VDM-SL front-end Develop an SDF grammar using strong software en-

gineering practices applied to grammar development such as grammar

versioning, metrication, visualization, and testing.

Program understanding Implement a few static analysis techniques like

type dependency, function call and function and type dependency graphs.
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The results of these analysis will be fed to both visualization and

quantitative analysis. The novelty that will be introduced here, is

the derivation of metrics (quantification analysis) which we expect to

provide us insights over the complexity or structure of systems formal

specifications.

Program re-engineering Introduce a novel approach for database design

through its specification using a VDM-SL model. The more abstract

model specified in VDM-SL will be refined to an SQL database schema.

We will provide not only a detailed overview over the method that

can support database specification, but also about the transformation

process.

Throughout this work, we show how these techniques can be elegantly and

concisely implemented in the Haskell [54, 89] programming language using

strategic term rewriting provided by the Strafunski [66] bundle.

As proof of concept, a tool called VooDooM has been developed.

1.5 General approach

In order to achieve the objectives just stated, a roadmap was set up (Figure 1.2)

which reflects both the architecture of the intended, and the thesis structure.

This is as follows:

First of all, background about the technology adopted to accomplish the

whole work will be presented in Chapter 2.

The first step of the work was the implementation of a language recognition

component: a parser for the VDM language (represented at the bottom of

Figure 1.2). The development of this component is of great importance

since all of the work relies on this component. This requires strong grammar

engineering techniques in order to achieve the required high-quality. Both the

engineering techniques and the development method will be fully described

in Chapter 3.
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Graphs
Rep.

VDM-
SL

SQLMetrics
Report

VDM-
SLVDM-

SLVDM-
SL

VDM-SL 
Parser

Understanding Reengineering
VoooDooM

Facts 
Extraction

Quantification

Transformation

Conversion

VDM 
PPDOT

Metri
cs

SQL 
PP

Figure 1.2: Overall architecture of the VooDooM tool.

For program understanding, represented on the left hand side of Figure 1.2,

two main components, “Facts extraction” and “Quantification”, have been

developed. The “Facts extraction” module is responsible for extracting

information such as procedure calls, type dependencies and procedure-type

flow. The results of this module can be output using the “DOT” module,

for visualization purposes, or fed to the “Quantification” module. The

“Quantification” module is responsible for metrics calculation and its result is

output as a metrics report.

All the work done for program understanding is detailed in Chapter 4. The

program re-engineering part, represented on the right hand side of Figure 1.2,

supports database calculation in two steps, represented by the “Transfor-

mation” and “Conversion” components. The “Transformation” component

implements the refinement process by transforming the input model into an

equivalent VDM model. The result can be both output to the “VDM-SL PP”

component, that prints it as a VDM specification (through “VDM-SL PP”
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component) and to the “Conversion” component that converts it to SQL and

prints it (through the “SQL PP” component). Chapter 4 documents both

the method and the implementation of database calculation.

Finally, the conclusions and future work are presented in Chapter 6.

1.6 Origins of the chapters

Sections 2.1, 3, 6.2.1, 6.3.1, and 6.4.1 were based on the work co-authored by

Joost Visser, submitted for publication:

T. Alves and J. Visser. Grammar engineering applied for develop-

ment of a VDM grammar. [7]

Sections 2.3, 5, 6.2.3, 6.3.3, and 6.4.3 were based on the work co-authored

by Paulo Silva, Joost Visser and José Nuno Oliveira, published earlier as:

T.L. Alves, P.F. Silva, J. Visser, and J.N. Oliveira. Strategic term

rewriting and its application to a VDM-SL to SQL conversion.

In Proceedings of FM 2005: 13th International Symposium on

Formal Methods, In Lecture Notes in Computer Science 3582,

pages 399-414. Springer, 2005. [6]
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Chapter 2

Technology

The aim of this chapter is to introduce basic notions about the technology

adopted, as follows:

Section 2.1 introduces grammar-centered tool development, which advo-

cates the generation of several components from a single grammar. These

components, as we will explain, are the foundation of the language front-end.

Section 2.2 introduces SDF, the formalism in which grammars are specified.

We will also provide a brief overview of the available tools.

Finally, Section 2.3 introduces a library of combinators which add support

for generic traversal in Haskell [54, 89]. This library, called StrategyLib avail-

able in the Strafunski [66] bundle developed by Ralf Lämmel and Joost Visser,

is extensively used in the implementation of both analysis and transformation

rules.

2.1 Grammar-centered tool development

One of the first challenges for language tool support is the development of

a language front-end (parser). In traditional approaches, the grammar of

the language is encoded in a parser specification. Commonly used parser

generators include Yacc/Bison [51], Antlr [82], and JavaCC [58]. However, the

parser specifications read by such tools are not general context-free grammars.

11
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grammar

parser
pretty-printer

Abstract 
Syntax

serialization
deserialization

Traversal
Support

Figure 2.1: Grammar-centered approach to language tool development.

Rather, they are grammars within a proper subset of the class of context-free

grammars, such as LL(1), or LALR [3]. Entangled into the syntax definitions

are semantic actions in a particular target programming language, such as

C, C++ or Java. As a consequence, the grammar can serve only a single

purpose: to generate a parser in a single programming language, with a single

type of associated semantic functionality (e.g. compilation, tree building,

metrics computation). For a more in-depth discussion of the disadvantages of

traditional approaches to language tool development see [92].

For language tool support we will use a grammar-centered approach [28].

In such an approach, the grammar of a given language takes a central role

in the development of a wide variety of tools or tool components for that

language. For instance, the grammar can serve as input for generating parsing

components to be used in combination with several different programming

languages. In addition, the grammar serves as basis for the generation of

support for representation of abstract syntax, serialization and de-serialization

in various formats, customizable pretty-printers, and support for syntax tree

traversal. This approach is illustrated by the diagram in Figure 2.1.

For the description of grammars that play such central roles, it is essential

to employ a grammar description language that meets certain criteria: it

must be neutral with respect to target implementation language, it must not

impose restrictions on the set of context-free languages that can be described,
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SyntaxPP

Grammar

SyntaxParser

Eq ShowTermATerm

DrIFT

sdf2table Sdf2Haskell

Figure 2.2: Grammar-centric approach diagram.

and it should leave the specification of semantics to a specific layer, but

be concerned with syntax only. Since grammar changes potentially lead to

changes in many related tools, grammars must reach a high level of maturity

before tool development starts. We contend that for the development of

grammars with such characteristics the use of advanced grammar engineering

techniques such as grammar metrics, grammar unit testing, and coverage

analysis are essential.

Possible candidates are BNF or EBNF, or our grammar description of

choice: SDF [43, 94]. The reason for this choice is that SDF is the only

formalism that has tool support and it offers an excellent integration with

Haskell. SDF will be introduced in Section 2.2.

The grammar centered approach is supported in the Haskell programming

language via tools such as eg. sdf2table, Sdf2Haskell and DrIFT as illustrated

in Figure 2.2.

Parse tables are automatically generated by the sdf2table tool from the

SDF software bundle, which corresponds to the Parser ellipses of Figure 2.2.

The AST Haskell datatype definition and the pretty-printer are generated

with the Sdf2Haskell tool from Strafunski [66]. They correspond to the Syntax

and SyntaxPP ellipsis in the picture.

From the abstract syntax, further components are generated in the form

of Haskell class instances, using the DrIFT tool. The ATerm instances

support serialization to the ATerm format, which is used as interchange
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context-free syntax

"mk_" Name "(" ExpressionList? ")" -> Expression { cons("RecordConstructor") }

"let" { LocalDefinition "," }+ "in" Expression -> Expression { cons("LetExpr") }

Figure 2.3: Excerpt of the Expressions module of the VDM-SL grammar.

format between the generated parser and other components. The Term

instances support generic traversal and strategic term rewriting over ASTs.

The last two (Eq and Show), are not mandatory: they add comparison and

printing functions to the Haskell datatypes.

2.2 SDF by example

The syntax definition formalism [94], or SDF for short is a simple notation

to define grammars. Figure 2.3 presents an example of SDF notation (an

excerpt of the VDM-SL grammar [50]).

One of the most noticeable differences between (E)BNF and SDF is

that SDF rules are written in reverse order. Moreover, SDF allows for the

specification of even more regular expression-style constructs to BNF than

EBNF does, such as separated lists, for instance.

In the example of Figure 2.3, non-terminal Expression is defined with

two rules. The first rule specifies Expression as being a terminal “mk ”,

followed by a Name, and an optional ExpressionList between brackets. The

second rule specifies Expression as being a terminal “let”, a list with one or

more elements of LocalDefinition separated by a comma, a terminal “in”,

and an Expression.

Alternatives can either be specified as (E)BNF with the | operator (as in

Yacc [51] or BNF) or just by adding a new rule defining the same non-terminal

(as shown in the example).

Yacc or its sucessor Bison allows grammar rules1 to have semantic actions

1Actually semantic actions can be specified just after any symbol in a rule and are



2.2. SDF BY EXAMPLE 15

module VDM-Syntax

imports Characters Layout

exports sorts SymbolicLiteral Identifier QuoteLiteral

context-free syntax

"true" -> BooleanLiteral { cons("TRUE") }

"false" -> BooleanLiteral { cons("FALSE") }

...

lexical syntax

Numeral ( "." Digit+)? Exponent? -> NumericLiteral

Digit+ -> Numeral

"E" ("+" | "-")? Numeral -> Exponent

Figure 2.4: An excerpt of module VDM-Syntax.

made up of statements in the C [56] programming language.

Although this enables doing some processing during parsing, this implies

that the grammar can be only used for creating a parser generator in a single

programming language (in this particular case, C). SDF overcomes this by

being purely declarative, i.e., not allowing for semantic actions. However, SDF

allows for the specification of rule attributes such as, for instance, disambiguity

and abstract syntax tree constructs. In the example of Figure 2.3 the latter

kind is shown.

Additionally, in contrast to (E)BNF, SDF has the important advantage

of allowing one to specify both context-free and lexical syntax and it offers a

flexible modularization mechanism. The module mechanism accepts mutually

dependent modules, and distribution of alternatives of the same non-terminal

across multiple modules.

In Figure 2.4 an excerpt of the module VDM-Syntax is shown in which the

module import and export mechanisms, the context-free section and the lexical

syntax are used. Besides, SDF also allows the user to specify restrictions and

priorities sections which provide a mechanism for disambiguation.

SDF is supported by several tools such as a well-formedness checker, a GLR

executed if that symbol is matched.
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parser generator, generators of abstract syntax support for various program-

ming languages (among which Java [9], Haskell [54, 89], and Stratego [95]),

and customizable pretty-printer generators [16, 95, 66, 59, 55].

2.3 Strategic term rewriting

Traditional term rewriting distinguishes the rewriting equations of a particular

term rewriting system (TRS) from the strategy that is used to apply these

equations to an input term. Most commonly, term rewriting environments

has a fixed rewriting strategy, such as the leftmost-innermost strategy. In

some rewriting environments, for instance those where the equations may

be governed by conditions and may be stratified into default and regular

equations, more sophisticated strategies may be employed. In any case,

however, these strategies are fixed, i.e. hard-wired into the environment.

By contrast, strategic term rewriting generalizes the traditional term

rewriting paradigm by making rewriting strategies programmable, just as the

equations are. Stratego [95] and the Rewriting Calculus [22] are among the

first rewriting environments to offer such programmable rewriting strategies.

Such environments offer a small set of basic strategy combinators, which can

be combined with each other and with rewriting equations to construct term

rewriting systems with arbitrarily complex strategies.

Figure 2.5 shows a set of such basic strategy combinators, along with

their operational semantics, from which more elaborate ones can easily be

constructed. Consider for instance the following definitions:

try(s) = choice(s , id)

repeat(s) = try(seq(s , repeat(s)))

full topdown(s) = seq(s , all(full topdown(s)))

innermost(s) = seq(all(innermost(s)), try(seq(s , innermost(s))))

The try combinator takes a potentially failing strategy as argument, and

attempts to apply it. Should failure occur, the identity strategy id is used to

recover. The repeat combinator repeatedly applies its argument strategy, until
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Combinators
s :: = id Identity strategy

| fail Failure strategy

| seq(s, s) Sequential composition

| choice(s, s) Left-biased choice

| all(s) All immediate components

| one(s) One immediate component

| adhoc(s, a) Type-based dispatch

Notation
d ... data

c ... data constructors

d ... data with failure “↑”
a ... type-specific actions

s ... strategies

a@d ... application of a to d

s@d ... application of s to d

d ⇒ d ... big-step semantics

a : t ... type handled by a

d : t ... type of a datum d

[d ] ... indivisible data

c(d1 · · · dn ) ... compound data

Meaning
id@d ⇒ d

fail@d ⇒ ↑
seq(s, s′)@d ⇒ d if s@d ⇒ d ′ ∧ s′@d ′ ⇒ d

seq(s, s′)@d ⇒ ↑ if s@d ⇒ ↑
choice(s1, s2)@d ⇒ d ′ if s1@d ⇒ d ′

choice(s1, s2)@d ⇒ d if s1@d ⇒ ↑ ∧ s2@d ⇒ d

all(s)@[d ] ⇒ [d ]

all(s)@c(d1 · · · dn ) ⇒ c(d ′
1 · · · d ′

n ) if s@d1 ⇒ d ′
1,. . . ,s@dn ⇒ d ′

n

all(s)@c(d1 · · · dn ) ⇒ ↑ if ∃ · i .↼−s @di ⇒ ↑
one(s)@[d ] ⇒ ↑
one(s)@c(d1 · · · dn ) ⇒ c(· · · d ′

i · · ·) if ∃ · i .↼−s @d1 ⇒ ↑ ∧ · · · ∧ s@di-1 ⇒ ↑ ∧ s@di ⇒ d ′
i

one(s)@c(d1 · · · dn ) ⇒ ↑ if s@d1 ⇒ ↑,. . . ,s@dn ⇒ ↑
adhoc(s, a)@d ⇒ a@d if a : t and d : t

adhoc(s, a)@d ⇒ s@d if a : t ∧ d : t ′ ∧ t 6= t ′

Identities
[unit] s ≡ seq(id, s) ≡ seq(s, id) ≡ choice(fail, s) ≡ choice(s, fail)

[zero] fail ≡ seq(fail, s) ≡ seq(s, fail) ≡ one(fail)

[skip] id ≡ choice(id, s) ≡ all(id)

[nested type dispatch]
adhoc(adhoc(s, a), a′) ≡ adhoc(s, a′) if a : t ∧ a′ : t

adhoc(adhoc(s, a), a′) ≡ adhoc(adhoc(s, a′), a) if a : t ∧ a′ : t ′ ∧ t 6= t ′

adhoc(adhoc(fail, a), a′) ≡ choice(adhoc(fail, a), adhoc(fail, a′)) if a : t ∧ a′ : t ′ ∧ t 6= t ′

Figure 2.5: Specification of a guideline set of basic strategy combinators.
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it fails. The full topdown combinator applies its argument once to every node

in a term, in pre-order. Finally, the innermost strategy applies its argument

in left-most innermost fashion to a term, until it is not applicable anywhere

anymore, i.e. until a fixpoint is reached.

For a more in-depth explanation of these combinators we refer the reader

to [96, 65].

The challenge of combining strategic term rewriting with strong typing was

first met by the Haskell-based Strafunski bundle [66], which we will use in this

thesis, and the Java-based JJTraveler framework [96, 59]. A formal semantics

of typed strategic programming is defined in [61]. Further generalizations

were provided in the Haskell context [65, 63].

Strategic term rewriting has several benefits over traditional term rewrit-

ing. The most important benefits derive from the fact that many applications

require rewrite equations that together do not form a confluent and terminat-

ing TRS. A program refactoring system, for instance, may require equations

both for “extract method” and for “inline method”. A document processing

system may include equations that change mark-up only inside the context of

certain document tags. In a traditional term rewriting environment, the only

option to obtain sufficient control over when and where equations are applied,

is to switch to so-called ‘functional style’. This means that every rewrite rule

t 7→ . . . s . . . is reformulated to include function symbols to control rewriting:

f (t) 7→ . . . g(s) . . .. In this way, the rewriting strategy becomes explicit in

the additional function symbols, but is thoroughly entangled with the rewrite

equations. In strategic programming, the rewrite equations can stay as they

are, the strategy is specified separately, and both equations and strategies can

be used and reused in different combinations to obtain different TRSs. So,

apart from full control over when and where equations are applied, strategic

rewriting enhances separation of concerns, reusability, and understandability.

In this work, we will rely on strategic term rewriting to cleanly separate

the individual rules from the strategy of applying them to the abstract

syntax terms. The Strafunski bundle is our choice of strategic term rewriting
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environment, in which we will implement a understanding and re-engineering

tool called VooDooM.
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Chapter 3

A front-end for VDM-SL

In this chapter, we provide details about the grammar engineering part of this

project, in which a full grammar of the VDM-SL [50] language is obtained

from its ISO standard language reference. We do so with two complementary

objectives.

Firstly, we intend to convey our experiments with the application of a mix

of grammar engineering techniques, thus contributing to the body of knowledge

about best grammar engineering practises. Our approach can be characterised

as a tool-based methodology for iterative grammar development embedded

into the larger context of grammar-centered language tool development.

Secondly, we aim to document the delivered grammar of VDM-SL, as

well as the steps that led to its creation and account for its quality. A well-

engineered grammar can significantly reduce the risks and effort involved in

subsequent language tool development, and developers of VDM processing

tools need to be convinced of the quality of the grammar on which their

product hinges.

These two objectives are mutually complementary, in the sense that the

application of the techniques validate their practical value and scalability,

and that the quality of the grammar is strongly dependent on the techniques

used for its development. In accordance with this two-fold aim, this chapter

is structured as follows.

21
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Section 3.1 describes our tool-based methodology for grammar engineering,

independent of any specific grammar development project. We address key

issues such as grammar versioning, metrication, visualization, and testing,

and we embed our grammar engineering approach into the larger context

of grammar-centered language tool development. Section 3.2 describes the

application of these general techniques in the specific case of our VDM

grammar development project. We describe the development process along

with its intermediate and final deliverables.

3.1 Grammar Engineering

Grammar engineering is an emerging field of software engineering that aims

to apply solid software engineering techniques to grammars, just as they are

applied to other software artifacts. Such techniques include version control,

static analysis, and testing. Through their adoption, the notoriously erratic

and unpredictable process of developing and maintaining large grammars can

become more efficient and effective, and can lead to results of higher-quality.

Such timely delivery of high-quality grammars is especially important in the

context of grammar-centered language tool development, where grammars

are used for much more than single-platform parser generation.

In this section we will discuss the grammar engineering techniques that

we adopted, and how we adapted them to the specific process of developing

SDF grammars.

3.1.1 Grammar evolution

Grammars for sizeable languages are not created in a single goal: they arise

through prolonged, resource consuming processes. After an initial version

of a grammar has been created, it goes through an evolutionary process,

where piece-meal modifications are made at each step. After delivery of the

grammar, evolution may continue in the form of corrective and adaptive

maintenance.
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A basic instrument in making such evolutionary processes tractable is

version control. We have chosen the Concurrent Versions System (CVS) as

the tool to support such version control [33].

In grammar evolution, different kinds of transformation steps occur:

Recovery: An initial version of the grammar may be retrieved by reverse

engineering from an existing parser, or by converting a language reference

manual, available typically as a Word or PDF document. If only a

hardcopy is available then it should be typed in.

Error correction: Making the grammar complete, fully connected, and

correct by supplying missing production rules, or adapting existing

ones.

Extension or restriction: Adding rules to cover the constructs of an ex-

tended language, or removing rules to limit the grammar to some core

(sub) language.

Refactoring: Changing the shape of the grammar, without changing the

language that it generates. Such shape changes may be motivated

by different reasons. For instance, changing the shape may make

the description more concise, easier to understand, or it may enable

subsequent correction, extensions, or restrictions.

In our case, grammar descriptions will include disambiguation information,

so adding disambiguation information is yet another kind of transformation

step present in our evolution process.

3.1.2 Grammar metrics

Quantification is an important instrument in understanding and controlling

grammar evolution, just as it is for software evolution in general. We have

adopted, adapted, and extended the suite of metrics defined for BNF in [83]

and implemented a tool, called SdfMetz citeDI-PURe-05.05.01, to collect

grammar metrics for SDF grammars.
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Size and complexity metrics

TERM Number of terminals

VAR Number of non-terminals

MCC McCabe’s cyclometric complexity

AVS-P Average size of RHS per production

AVS-N Average size of RHS per non-terminal

Figure 3.1: Size and complexity metrics for grammars.

Some adaptation was necessary because SDF differs from (E)BNF in more

than syntax. For instance, it allows several productions for the same non-

terminal. This forced us to choose between using the number of productions

or the number of non-terminals in some metrics definitions.

Furthermore, SDF grammars contain more than just context-free syntax.

They also contain lexical syntax and disambiguation information. We decided

to apply the metrics originally defined for BNF only to the context-free

syntax, in order to make comparisons possible with the results of others.

For the disambiguation information these metrics were extended with the

definition of a dedicated set of metrics. Full details about the definition and

the implementation of these SDF metrics are provided in [8].

We will discuss several categories of metrics: size and complexity metrics,

structure metrics, Halstead metrics, and disambiguation metrics by providing

a brief description of each.

Size, complexity, and structure metrics

Figure 3.1 lists a number of size and complexity metrics for grammars. These

metrics are defined for BNF in [83]. The number of terminals (TERM) and

non-terminals (VAR) are simple metrics applicable both to BNF and SDF

grammars. McCabe’s cyclometric complexity (MCC), originally defined for

program complexity, was adapted for BNF grammars, based on an analogy

between grammar production rules and program procedures. Using the same

analogy, MCC can be extended easily to cover the operators that SDF adds

to BNF.
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Structure metrics

TIMP Tree impurity (%)

CLEV Normalized count of levels (%)

NSLEV Number of non-singleton levels

DEP Size of largest level

HEI Maximum height

Figure 3.2: Structure metrics for grammars.

The average size of right-hand sides (AVS) needs to be adapted to SDF

with more care. In (E)BNF the definition of AVS is trivial: count the number

of terminals and non-terminals on the right-hand side of each grammar rule,

sum these, and divide by the number of rules. In SDF, this definition can

be interpreted in two ways, because each non-terminal can have several

productions associated to it. Therefore, we decided to split AVS into two

separate metrics: average size of right-hand sides per production (AVS-P)

and average size of right-hand sides per non-terminal (AVS-N). For grammars

where each non-terminal has a single production rule, as is the case for (E)BNF

grammars, these metrics will present the same value. For SDF grammars,

the values can be different. While the AVS-N metric is more appropriate to

compare with other formalisms (like BNF and EBNF), the AVS-P metric

provides more precision.

Structure metrics

Figure 3.2 lists a number of structure metrics also previously defined in [83].

Each of these metrics is based on the representation of a grammar as a graph

which has non-terminals as nodes, and which contains edges between two

non-terminals whenever one occurs in the right-hand side of the definition of

the other. This graph is called the grammar’s flow graph.

Tree impurity (TIMP) measures how much the flow graph resembles a

tree, expressed as a percentage. A tree impurity of 0 percent means that

the graph is a tree and a tree impurity of 100 percent means that it a fully
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connected graph.

Only the tree impurity metric (TIMP) is calculated directly from the flow

graph, all the other structure metrics are calculated from the corresponding

strongly connected components graph. This latter graph is obtained from

the flow graph by grouping the non-terminals that are strongly connected

(reachable from each other) into nodes (called components of levels of the

grammar). An edge is created from one component to another if in the

flow graph at least one non-terminal from one component has an edge to a

non-terminal of the other component. This graphs is called the grammar’s

level graph or graph of strongly connected components.

Normalized count of levels (CLEV) expresses the number of nodes in the

level graph (graph of strongly connected components) as a percentage of the

number of nodes in the flow graph. A normalized count of levels of 100 percent

means that there are as many levels in the level graph as non-terminals in

the flow graph. In other words, there are no circular connections in the flow

graph, and the level graph only contains singleton components. A normalized

count of levels of 50 percent means that about half of the non-terminals of

the flow graph are involved in circularities and are grouped into non-singleton

components in the level graph.

Number of non-singleton levels (NSLEV) indicates how many of the

grammar levels (or strongly connected components) contain more than a

single non-terminal.

Size of the largest level (DEP) measures the depth (or width) of the level

graph as the maximum number of non-terminals per level.

Maximum height (HEI) measures the height of the level graph as the

longest vertical path through the level graph, i.e. the largest path length

from a source of the level graph to a sink.

Halstead metrics

The Halstead Effort metric [41] has also been adapted for (E)BNF grammars

in [83]. We compute values not only for Halstead’s effort metric but also
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Halstead metrics

n1 Number of distinct operators

n2 Number of distinct operands

N1 Total number of operators

N2 Total number of operands

n Program vocabulary

N Program length

V Program volume

D Program difficulty

E Program effort (HAL)

L Program level

T Program time

Figure 3.3: Halstead metrics for grammars.

for some of its ingredient metrics and related metrics. Figure 3.3 shows the

full list. The essential step in adapting Halstead’s metrics to grammars is to

interpret the notions of operand and operator in the context of grammars.

For details of how we extend this interpretation from BNF to SDF we refer

the reader again to [8].

The theory of software science behind Halstead’s metrics has been widely

questioned. In particular, the meaningfulness and validity of the effort and

time metrics have been called into question [30]. Below, we will still report

HAL-E, for purposes of comparison to data reported in [83].

Ambiguity metrics

In SDF, disambiguation constructs are provided in the same formalism as the

syntax description itself. To quantify this part of SDF grammars, we define a

series of metrics, which are shown in Figure 3.4. These metrics are simple

counters for each type of ambiguity construct offered by the SDF notation.
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Ambiguity metrics

FRST Number of follow restrictions

ASSOC Number of associativity attributes

REJP Number of reject productions

UPP Number of unique productions in priorities

Figure 3.4: Ambiguity metrics for grammars.

3.1.3 Grammar testing

In software testing, a global distinction can be made between white box

testing and black box testing. In black box testing, also called functional or

behavioral testing, only the external interface of the subject system is available.

In white box testing, also called unit testing, the internal composition of the

subject system is taken into consideration, and the individual units of this

composition can be tested separately.

In grammar testing, we make a similar distinction between functional tests

and unit tests. A functional grammar test will use complete files as test data.

The grammar is tested by generating a parser from it and running this parser

on such files. Test observations are the success or failure of parsing input files,

possibly including time and space consumption. A unit test will use fragments

of files as test data. Typically, such fragments are composed by grammar

developers to help in detecting and solving specific errors in the grammar, and

to protect themselves from reintroducing the error in subsequent development

iterations. In addition to success and failure observations, unit tests may

observe the number of ambiguities that occur during parsing, or the shape of

the parse trees that are produced.

For both functional and unit testing we have used the parse-unit util-

ity [18]. Tests are specified in a simple unit test description language with

which it is possible to declare whether a certain input should parse or not,

or that a certain input sentence should produce a specific parse tree (tree

shape testing). Taking such test descriptions as input, the parse-unit utility

allows batches of unit tests to be run automatically and repeatedly.
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3.1.4 Coverage metrics

To determine how well a given grammar has been tested, a commonly used

indicator is the number of non-empty lines in the test suites.

A more reliable tool to determine grammar test quality is coverage analysis.

We have adopted the rule coverage (RC) metric [84] for this purpose. The RC

metric simply counts the number of production rules used during parsing of a

test suite, and expresses it as a percentage of the total number of production

rules of the grammar.

SDF allows for two possible interpretations of RC, due to the fact that

a single non-terminal may be defined by multiple productions. (Above, we

discussed a similar interpretation problem for the AVS metric.) One way is

to count each of these alternative productions separately. Another way is to

count different productions of the same non-terminal as one. For comparison

with rule coverage for (E)BNF grammars, the latter is more appropriate.

However, the former gives a more accurate indication of how extensively a

grammar is covered by the given test suite. Below we report both, under the

names of RC (rule coverage) and NC (non-terminal coverage), respectively.

These numbers were computed for our functional test suite and unit test suite

by a tool developed for this purpose, called SdfCoverage [8].

An even more accurate indication can be obtained with context-dependent

rule coverage [60]. This metric takes into account not just whether a given

production is used, but also whether it has been used in every context (use

site) where it can actually occur. However, implementation and computation

of this metric is more involved.

3.2 Development of the VDM grammar

We have applied the grammar engineering techniques described above during

the iterative development of an SDF grammar of VDM-SL.

In this section we describe the scope, priorities, and planned deliverables of

the project, as well as its execution. We refer to the evolution of the grammar
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during its development both in qualitative and quantitative terms, using the

metrics described above. The test effort during the project is described in

terms of the test suites used and the evolution of the unit tests and test

coverage metrics during development.

3.2.1 Scope, priorities, and planned deliverables

Language Though we are interested in eventually developing grammars for

various existing VDM dialects, such as IFAD VDM and VDM++ [40, 39], we

limited the scope of the initial project to the VDM-SL language as described

in the ISO VDM-SL standard [50].

Grammar shape Not only should the parser generate the VDM-SL lan-

guage exactly as defined in the standard, but also the shape of the grammar,

the names of the non-terminals, and the module structure should correspond

closely to the grammar. Moreover, we want to take advantage of SDF’s

advanced regular expression-style constructs wherever this leads to additional

conciseness and understandability.

Parsing and parse trees Though the grammar should be suitable for

generation of a wide range of tool components and tools, we limited the scope

of the initial project to developing a grammar from which a GLR parser cold

be generated. The generated parser should be well-tested, exhibit acceptable

time and space consumption, parse without ambiguities, and build abstract

syntax trees that correspond as closely as possible to the abstract syntax as

defined in the ISO standard.

Planned deliverables Based on the defined scope and priorities, a release

plan was drawn up with three releases within the scope of the initial project:

Initial grammar Straightforward transcription of the concrete syntax BNF

specification of the ISO standard into SDF notation. Introduction of

SDF’s regular expression-style constructs.
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Disambiguated grammar Addition of disambiguation information to the

grammar, to obtain a grammar from which a non-ambiguous GLR

parser can be generated.

Refactored grammar Addition of constructor attributes to context-free

productions to allow generated parsers to automatically build ASTs with

constructor names corresponding to abstract syntax of the standard.

The grammar’s shape should be changed to better reflect the tree shape

as intended by the abstract syntax in the standard.

3.2.2 Grammar creation and evolution

To accurately keep track of all grammar changes, a new revision was created

for each grammar evolution step. This led to the creation of a total of 48

development versions. While the first and the latest release versions (initial

and refactored) correspond to development versions 1 and 48 of the grammar,

respectively, the intermediate release version (disambiguated) corresponds to

development version 32.

The initial grammar

The initial version of the grammar was typed in from the hardcopy of the ISO

Standard [50]. In this document, context-free syntax, lexical syntax and dis-

ambiguation information are specified in a semi-formal notation. Context-free

syntax is specified in EBNF, but the terminals are specified as mathematical

symbols. Translating these mathematical symbols to ASCII symbols involves

an interchange table. Lexical syntax is specified in tables by enumerating all

possible symbols. Finally, disambiguation information is specified in terms of

precedence in tables and equations.

Apart from changing syntax from EBNF to SDF and using the interchange

table to replace mathematical symbols by their parseable representation, the

following actions were involved in the transcription.
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Added SDF constructs Although a direct transcription from the EBNF

specification was possible, we preferred to use SDF specific regular-

expression-style constructs. For instance consider the following excerpt

from the ISO VDM-SL EBNF grammar:

product type = type, "*", type, { "*", type} ;

During transcription this was converted to:

{ Type "*" }2+ -> ProductType

Both excerpts define the same language. Apart from the syntactic

differences from EBNF to SDF, the difference is that SDF has special

constructs for definition of the repetition of a non-terminal separated by

a terminal. In this case, the non-terminal Type appears at least twice

and is always separated by the terminal "*".

Detected top and bottom non-terminals To help in the manual process

of typing the grammar, a small tool was developed to detect top and

bottom non-terminals. This tool helped to detect typos. More than one

top non-terminal, or a bottom non-terminal indicates that a part of the

grammar is not connected. This tool provided a valuable help not only

in this phase but also during the overall development of the grammar.

Modularized the grammar EBNF does not support modularization. The

ISO Standard separates concerns by dividing the EBNF rules over sec-

tions. SDF does support modules, which allowed us to modularize the

grammar following the sectioning of the ISO standard. Moreover, an-

other small tool was implemented to discover the dependencies between

modules.

Added lexical syntax In SDF, lexical syntax can be defined in the same

grammar as context-free syntax, using the same notation. In the ISO

standard, lexical syntax is described in an ad hoc notation resembling
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BNF, without clear semantics. We interpreted this lexical syntax de-

scription and converted it into SDF. Obtaining a complete and correct

definition required renaming some lexical non-terminals and providing

additional definitions. Detection of top and bottom non-terminals in

this case helped to detect some inconsistencies in the standard such as

name consistency.

Disambiguation

In SDF, disambiguation is specified by means of dedicated disambiguation

constructs [17]. These are specified more or less independently from the

context-free grammar rules. The constructs are associativity attributes,

priorities, reject productions and lookahead restrictions.

In the ISO standard, disambiguation is described in detail by means of

tables and a semi-formal textual notation. We interpreted these descriptions

and expressed them with SDF disambiguation constructs. This was not a

completely straightforward process, in the sense that it is not possible to

simply translate the information of the standard document to SDF notation.

In some cases, the grammar must respect specific patterns in order to enable

disambiguation. For each disambiguation specified, a unit test was created.

Refactoring

As already mentioned, the purpose of this release was to automatically generate

ASTs that follow the ISO standard as close as possible. Two operations were

performed:

• adding constructor attributes to the contex-free rules to specify AST

node labels

• removing injections to make the grammar and the ASTs nicer to read

How the AST will look with the construct attributes depends to the target

language. An example of a construct attribute and the result in Haskell can

be read as follows:
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Version term var mcc avs-n avs-p hal-e timp clev nslev dep hei

initial 138 161 234 4.4 2.3 55.4 1% 34.9 4 69 16

disambiguated 138 118 232 6.4 2.8 61.1 1.5% 43.9 4 39 16

refactored 138 71 232 10.4 3.3 68.2 3% 52.6 3 27 14

Table 3.1: Grammar metrics for the three release versions.

Type "*" Type -> Type { left, const("ProducType") }

...

data Type = ProductType Type Type

| ...

Note that the construct attribute name was used as selector from the type,

while the name of type of the rule was used as the Haskell type.

The removal of the injections needs further explanation. We call a production

rule an injection when it is the only defining production of its non-terminal,

and its right-hand side contains exactly one (different) non-terminal. Such

injections, which already exist in the original EBNF grammar, were actively

removed, because they needlessly increase the size of the grammar (which

can be observed in the measurements) and degrade readability. Also, the

corresponding automatically built ASTs are more compact after injection

removal.

3.2.3 Grammar metrics

We measured grammar evolution in terms of the size, complexity, structure,

and Halstead metrics introduced above. The data is summarized in Table 3.1.

This table shows the values of all metrics for the three released versions. In

addition, Figure 3.5 plots the evolution of a selection of these metrics for all

48 development versions.
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Figure 3.5: The evolution of VAR, HAL-E, and CLEV grammar metrics

during development. The x-axis represents the 48 development versions.

Size and complexity metrics

A first important observation to make is that the number of terminals (TERM)

is constant throughout grammar development.

This is conform to expectation, since all keywords and symbols of the

language are present from the first grammar version onward.

The initial number of 161 non-terminals (VAR) decreases via 118 after

disambiguation to 71 after refactoring. These numbers are the consequence

of changes in grammar shape where non-terminals are replaced by their

definition. In the disambiguation phase (43 non-terminals removed), such

non-terminal inlining (unfolding) was performed to make formulation of the

disambiguation information possible, or easier. For instance, after inlining,

simple associativity attributes would suffice to specify disambiguation, while

without inlining more elaborate reject productions might have been necessary.

In the refactoring phase (47 non-terminals removed), the inlinings performed

were mainly removals of injections. These were performed to make the

grammar easier to read, more concise, and suitable for creation of ASTs closer

to the abstract syntax specification in the standard.

The value of the McCabe cyclometric complexity metric decreases by 2

during disambiguation, meaning that we eliminated two paths in the flow

graph of the grammar. This was caused by refactoring the syntax of product
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types and union types in similar ways. The reason for this refactoring during

the disambiguation phase was to make disambiguation easier. In case of

product types, the following two production rules:

ProductType -> Type

{ Type "*" }2+ -> ProductType

were replaced by a single one:

Type "*" Type -> Type

For union types, the same replacement was performed. The language gen-

erated by the grammar remained the same after these refactorings, but

disambiguation using priorities became possible.

The average rule size metrics, AVS-N and AVS-P increase significantly.

These increases are also due to inlining of non-terminals. Naturally, when

a non-terminal with a right-hand size of more than 1 is inlined, the number

of non-terminals decreases by 1, and the size of the right-hand sides of the

productions in which the non-terminal was used goes up. The increase of

AVS-N is roughly by a factor of 2.4, while the increase of AVS-P is by a factor

of 1.4.

Halstead metrics

The value of the Halstead Effort metric (HAL-E) fluctuates during develop-

ment. It starts at 228K in the initial grammar, and immediately rises to

255K. This initial rise is directly related to the removal of 32 non-terminals.

The value then rises more quietly to 265K, but drops again abruptly towards

the end of the disambiguation phase, to the level of 236K. During refactoring,

the value rises again to 255K, drops briefly to 224K, and finally stabilizes at

256K. Below, a comparison of these values with those of other grammars will

be offered.
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Structure metrics

Tree impurity (TIMP) measures how much the grammar’s flow graph resembles

a tree, expressed as a percentage. The low values for this measure indicates

that our grammar is almost a tree, or, in other words, that complexity due

to circularities is low. As the grammar evolves, the tree impurity increases

steadily, from little more than 1%, to little over 3%. This development can be

attributed directly to the non-terminal inlining that was performed. When a

non-terminal is inlined, the flow graph becomes smaller, but the number of

cycles remains equal, i.e. the ratio of the latter becomes higher.

Normalized count of levels (CLEV) indicates roughly the percentage of

modularizability, if grammar levels (strongly connected components in the

flow graph) are considered as modules. Throughout development, the number

of levels goes down (from 58 to 40; values are not shown), but the potential

number of levels, i.e. the number of non-terminals, goes down more drastically

(from 161 to 71). As a result, CLEV rises from 34% to 53%, meaning that

the percentage of modularizability increases.

The number of non-singleton levels (NSLEV) of the grammar is 4 through-

out most of its development, except at the end, where it goes down to 3.

Inspection of the grammar tells us that these 4 levels roughly correspond to

Expressions, Statement, Type and StateDesignators. The latter becomes a

singleton level towards the end of development due to inlining.

The size of the largest grammar level (DEP) starts initially very high at

69 non-terminals, but drops immediately to only 39. Towards the end of

development, this number drops further to 27 non-terminals in the largest

level, which corresponds to Expressions. The decrease in level sizes is directly

attributable to inlining of grammar rules involved in cycles.

The height of the level graph (HEI) is 16 throughout most of the evolution

of the grammar, but sinks slightly to 14 towards the end of development.

Only inlining of production rules not involved in cycles leads to reduction of

path length through the level graph. This explains why the decrease of HEI

is modest.
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Figure 3.6: The evolution of the ASSOC and UPP ambiguity metrics compared

with the evolution of the number of productions (PROD). The x-axis represents

the 48 development versions.

Ambiguity metrics

In Figure 3.6 we plot the evolution of two ambiguity metrics and compare

them to the number of productions metric (PROD). Although we computed

more metrics, we chose to show only the number of associativity attributes

(ASSOC) and the number of unique productions in priorities (UPP) because

these are the two types of disambiguation information most used during the

development.

In the disambiguation phase, 31 development versions were produced

(version 32 corresponds to the disambiguated grammar). Yet, by analyzing

the chart we can see that the ASSOC and the UPP metrics stabilize after the

23rd version. This is because after this version other kind of disambiguation

information was added (reject productions and lookahead restrictions) which

are not covered by the chosen metrics.

Also, it is interesting to see that in the 2nd development version no

disambiguation information was added but the number of productions drops

significantly. This was due to injection removal necessary to prepare for

disambiguation.

Between versions 2 and 9, the UPP and ASSOC metrics grow, in most cases,

at the same rate. In these steps, the binary expressions were disambiguated
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using associativity attributes (to remove ambiguity between a binary operator

and itself) and priorities (to remove ambiguity between a binary operator

and other binary operators). Between versions 9 and 10, a large number

of unary expressions were disambiguated, involving priorities (between the

unary operator and binary operators) but not associativity attributes (unary

operators are not ambiguous with themselves).

From versions 9 to 16 both metrics increase fairly gradually. But in version

17, there is a surge in the number of productions in priorities. This was caused

by the simultaneous disambiguation of a group of expressions with somewhat

similar syntax (let, def, if, foreach, exits, etc. expressions) which do not have

associativity information.

From versions 18 to 24 the number of production in priorities grows

simultaneously while the total number of productions decreases. This shows

that, once more, disambiguation was only enabled by injection removal or by

inlining.

Although not shown in the chart, from the 24th version until the 32th

disambiguation was continued by adding lookahead restrictions and reject

productions. In this phase lexicals were disambiguated by keyword reservation

or by preferring the longer match in lexical recognition. For that reason, the

total number of productions remains practically unchanged.

3.2.4 Observations

Some errors were found in the ISO standard, caused by ambiguities between

production rules.

Three cases are particular relevant, since changes to the grammar language

were made.

Incomplete definition: We noted some omissions in the ISO standard in

respect to language keywords. Some of the used language keywords

were not specified as reserved, meaning that in our first approach some

keywords were incorrectly parsed as identifiers.
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Grammar term var mcc avs-n avs-p hal timp clev nslev dep hei

Fortran 77 21 16 32 8.8 3.4 26 11.7 95.0 1 2 7

ISO C 86 65 149 5.9 5.9 51 64.1 33.8 3 38 13

Java v1.1 100 149 213 4.1 4.1 95 32.7 59.7 4 33 23

AT&T SDL 83 91 170 5.0 2.6 138 1.7 84.8 2 13 15

ISO C++ 116 141 368 6.1 6.1 173 85.8 14.9 1 121 4

ECMA C# 138 145 466 4.7 4.7 228 29.7 64.9 5 44 28

ISO VDM-SL 138 71 232 10.4 3.3 256 3.0 52.6 3 27 14

VS Cobol II 333 493 739 3.2 1.9 306 0.24 94.4 3 20 27

VS Cobol II (alt) 364 185 1158 10.4 8.3 678 1.18 82.6 5 21 15

PL/SQL 440 499 888 4.5 2.1 715 0.3 87.4 2 38 29

Table 3.2: Grammar metrics for VDM and other grammars. The italicized

grammars are in BNF, and their metrics are reproduced from [83]. The

remaining grammars are in SDF. Rows have been sorted by Halstead effort

(HAL-E), which is reported in thousands.

Syntax Ambiguity: There was an ambiguity between IsDefinedType-

Expression (which will allow the parser to know if a given variable

belongs to a predefined type) and the Apply expression (used, for in-

stance, in function application). To solve this ambiguity, a terminal

was introduced.

Semantic Ambiguity: There are some rules in which it is not possible

to distinguish between Expression and CallStatement rules. This

happen because the syntax of Apply and CallStatement are almost

identical. Looking at the IFAD VDM-SL reference [40] we noticed that

in all cases this ambiguity existed in the CallStatement was removed

leading us to believe that an semantic ambiguity existed.
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Grammar comparisons

In this section we compare our grammar, in terms of metrics, to those

developed by others in SDF, and in Yacc-style BNF. The relevant numbers

are listed in Table 3.2, sorted by the value of the Halstead Effort metric

(HAL-E).

The numbers for the grammars of C, Java, C++, and C# are reproduced

from the same paper from which we adopted the various grammar metrics [83].

These grammars were specified in BNF, or Yacc-like BNF dialects. Note

that for these grammars, the AVS-N and AVS-P metrics are always equal,

since the number of productions and non-terminals is always equal in BNF

grammars.

The numbers for the remaining grammars were computed by us. These

grammars were all specified in SDF by various authors. Two versions of the

VS Cobol II grammar are listed: the one marked alt makes heavy use of

nested alternatives, while in the other one, such nested alternatives have been

folded into new non-terminals.

Note that the tree impurity (TIMP) values for the SDF grammars are

much smaller (between 0.2% and 12%) than for the BNF grammars (between

29% and 86%). This can be attributed to SDF’s extended set of regular

expression-style constructs, which allows for more kinds of iterations to be

specified without (mutually) recursive production rules.

In terms of Halstead effort, our VDM-SL grammar ranks quite high, only

behind the grammars of the giant Cobol and PL/SQL languages.

3.2.5 Test suites

Integration test suite

The body of VDM-SL code that strictly adheres to the ISO standard is

rather small. Most industrial applications have been developed with tools

that support some superset or other deviations from the standard, such as

VDM++. We have built an integration test suite by collecting specifications
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Origin LOC RC NC

Specification of the MAA standard (Graeme Parkin) 269 19% 30%

Abstract data types (Matthew Suderman and Rick Sutcliffe) 1287 37% 53%

A crosswords assistant (Yves Ledru) 144 28% 43%

Modelling of Realms in VDM-SL (Peter Gorm Larsen) 380 26% 38%

Exercises formal methods course Univ. do Minho (Tiago Alves) 500 35% 48%

Total 2580 50% 70%

Table 3.3: Integration test suite. The second column gives the number of

code lines. The third and fourth columns gives coverage values for the final

grammar.

from the internet1. A preprocessing step was performed to extract VDM-

SL specification code from literate specifications. We manually adapted

specifications that did not adhere to the ISO standard.

Table 3.3 lists the suite of integration tests that we obtained in this way.

The table also shows the lines of code (excluding blank lines and comments)

that each test specification contains, as well as the rule coverage (RC) and

non-terminal coverage (NC) metrics for each. The coverage metrics shown

were obtained from the final, refactored grammar.

Note that, in spite of the small size of the integration test suite in terms

of lines of code, the test coverage it offers for the grammar is satisfactory.

Still, since test coverage is not 100%, a follow-up project specifically aimed

at enlarging the integration test suite would be justified (see conclusion and

future work).

Unit tests

During development, unit tests were created incrementally. For every problem

encountered, one or more unit tests were created to isolate the problem.

We measured unit tests development during grammar evolution in terms

1A collection of specifications is available from http://www.csr.ncl.ac.uk/vdm/.

http://www.csr.ncl.ac.uk/vdm/
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Figure 3.7: The evolution of unit tests during development. The x-axis

represents the 48 development versions. The three release versions among

these are 1, 32, and 48. The left y-axis corresponds to lines of unit test code.

Rule coverage (RC) and non-terminal coverage (NC) are shown as well.

of lines of unit test code, and coverage by unit tests in terms of rules (RC) and

non-terminals (NC). This development is shown graphically in Figure 3.7. As

the chart indicates, all unit tests were developed during the disambiguation

phase, i.e. between development versions 1 and 32. There is a small fluctuation

in the beginning of the disambiguation process that is due to unit-test strategy

changes. Also, between version 23 and 32, when lexical disambiguation was

carried out, unit tests were not added due to limitations of the test utilities.

During the refactoring phase, the previously developed unit tests were

used to prevent introducing errors unwittingly. Small fluctuations of coverage

metrics during this phase are strictly due to variations in the total numbers

of production rules and non-terminals.

3.3 Summary

In this chapter we document the development of a VDM-SL grammar used

as front-end for the VooDooM tool. By choosing the SDF formalism we were

able to use a grammar centered approach in which several components are

automatically generated, such as the parser, pretty-printer and abstract syntax

tree representation. This choice also allowed us to focus on the grammar
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development and we did so using strong software engineering techniques.

We follow an iterative grammar development approach in which, for every

modification made, we apply versioning, metrication (including coverage),

and extensive testing using both white box testing and black box testing. We

conclude by analysing the evolution of our grammar metrics and comparing

these with others in the literature.



Chapter 4

Support for understanding

Program understanding is the process of recovering the knowledge embedded

in computer programs. This means abstracting from the source code details

which lead to better understanding of what the programmers had in mind

when they write a particular piece of code. It can be achieved using ad-hoc

techniques, such as manually browsing source code, or by using automatic

techniques for program understanding.

In this chapter we are interested in exploring the latter. We focus on

automatic techniques source code at different abstraction levels in which,

using a similar approach as [46], the information extracted can be represented

by finite graphs.

Using graphs offers many advantages. To name a few, graphs can be used

to represent different kinds of information, they are easy to transform (eg.

using many known algorithms) and they are easy to visualize.

Visualization will be accomplished using Graphviz [35], an open source-

tool developed by AT&T which accepts a simple graph description language

(DOT) and automatically lays out the output graph in different formats.

Although formal specifications are abstract models which lay much higher

than conventional source code (eg. SQL, C, etc.), they can be as large

as programs and difficult to understand. We intend to explore program

understanding techniques concerning VDM-SL formal specifications. This

45
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Figure 4.1: VDM-SL understanding process through graph analysis.

will be done in three well defined steps: primary graph extraction, secondary

graph derivation, and graph metrication. This three steps are represented in

Figure 4.1 and will be explained in each of the following sections.

Section 4.1, will describe how to extract information directly from a

VDM-SL specification and how to represent it using graphs.

Firstly, we will introduce a graph library available in the UMinho Haskell

Libraries1. We will explain how graphs are represented in Haskell and provide

a brief overview about the most relevant functions.

Secondly, we will formally define procedure call, type dependency, and

procedure-type flow graphs and explain how these graphs can be extracted and

challenges involved in the extraction process. Explanations will be enriched

with examples and pictures of the resulting graphs.

In Section 4.2 we will introduce graph transformations such as transitive

closure, strongly connected components computation and formal concept

analysis [103, 102, 101, 37]. These transformations will be applied to the

graphs extracted from the VDM-SL specification to obtain different kinds of

abstraction views.

Finally, from both the extracted and derived graphs, we will compute

structural metrics adding quantification to abstract models.

1http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware

http://wiki.di.uminho.pt/wiki/bin/view/PURe/PUReSoftware
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As test case we decided to use the SAFER VDM-SL specification, re-

engineered from an existing PVS specification by Sten Agerholm and Peter

Gorm Larsen [2, 1]. The SAFER system specifies some important components

of a NASA specification of a lightweight propulsive backpack system designed

to provide self-rescue capabilities to a NASA space crew-member separated

during an extravehicular activity. The SAFER models the thrusters selection

based on commands coming from both a hand grip and the existent automatic

attitude hold.

For the reader’s convenience the SAFER specification, previously published

in [2], is in Appendix.

We intend to analyse this specification using our program understanding

techniques to get better insight about the system’s architecture.

4.1 Primary graphs extraction

4.1.1 Graphs representation

Using the definition found in [15], a directed graph G is as a pair (V ,E ),

where V is a set of vertices, and E is a set of edges between the vertices,

E ⊆ {(u, v) | u, v ∈ V }.
An edge (u, v) captures a relationship between u and v . One says that u is

connected to v . Using as example the type dependency graph, the relationship

(u, v) means that the globally defined type u is defined using the globally

defined type v . For the other dependency graphs, definitions will be provided

in the sequel.

In the UMinho Haskell Libraries, graphs are modelled exactly as in their

formal definition: a pair of a set of vertices and a relation between the elements

of that set.

A relation between types a and b is simply a set of pairs of inhabitants

of such types. The corresponding Haskell datatype definitions can be found

in Figure 4.2. Note that an invariant should be associated with the Graph

datatype to record the fact that all elements of the Gph component must be
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type Graph a = (Set a,Gph a)

type Gph a = Rel a a

type Rel a b = Set (a, b)

Figure 4.2: Haskell Graph datatype definition.

contained in the other component.

The simplicity of this datatype is also its main strength. It is very easy

to use, specially when collecting information with traversals using strategic

term-rewritting, as it will be shown in the sequel.

A comprehensive set of functionalities is already available from the

GraphR library which makes it the perfect candidate to be used in this work.

Figure 4.3 lists the signatures2 of the functions used in this work.

4.1.2 Procedure call graph extraction

A procedure call graph records the invocation relationship between functions

and operations in a formal specification. Recalling the formal definition

presented in Section 4.1.1, a procedure call graph is a pair (V ,E ), in which

V is the set of globally defined functions or operations and E is a relation

between elements of V . In this context, an edge (pcaller , pcallee) records the

fact that function (or operation) pcaller can call function (or operation) pcallee .

Computing the procedure call graph is not easy because it must take into

account a few details such as higher order functions, locally defined functions

and mappings. This is illustrated in the example of Figure 4.4 which shows

to subtle details.

In line .2 a lambda function is locally defined using a let expression and

it is applied to the m variable in line .3. Since a lambda function is not a

globally defined function, it should not be considered in the procedure call

graph.

2Some of the datatypes will be defined in the following sections.
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transClose :: Ord a ⇒ Rel a a → Rel a a

strongComponentGraph :: (Ord a,Ord (Set a)) ⇒ Gph a → Graph (Set a)

lattice :: (Ord g ,Ord m) ⇒ Context g m → ConceptLattice g m

printRel :: (Show a,Ord a,Show b,Ord b)

⇒ GraphName → Rel a b → String

printRelWith :: (Ord a,Ord b)

⇒ (a → NodeName)

→ (Rel a b → a → String)

→ (b → NodeName)

→ (Rel a b → b → String)

→ GraphName

→ Rel a b

→ DotGraph

printConceptLattice :: (Ord g ,Ord m)

⇒ (Set g → String)

→ (Set m → String)

→ ConceptLattice g m

→ String

Figure 4.3: Overview of the functionality available from the GraphR library.

The second detail has to do with finite mappings (partial functions) passed

as arguments. In line .5, we are retrieving the value associated with key 0.

Since a mapping is (mathematically) a partial function, the notation of a

map is the same as that of a function. Nevertheless, be it a function or a

map, the variable m is not a globally defined function and hence should also

not be considered in the graph.

The procedure call graph of this code excerpt is simply represented as an

edge from exampleFunction to applyFunc. An example of a procedure call

graph will be shown latter.

In the implementation is necessary to consider both locally defined vari-

ables and variables passed as function arguments so as not to introduce false
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1.0 exampleFunction : Z m-→ (char∗) → char∗

.1 exampleFunction (m) 4

.2 let mapIsEmpty = λm : Z m-→ char∗ · card dom m = 0 in

.3 if mapIsEmpty (m)

.4 then applyFunc (m)

.5 else m (0);

Figure 4.4: VDM function call example with locally defined function.
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Figure 4.5: Procedure call graph of the SAFER specification.

references into the procedure call graph.

To compute the procedure call graph a strategy was developed to traverse

the source code tree and identify function and operation definitions. For each

function or operation, a first traversal is performed to collect all parameter

names. The variable names will be used as state when collecting all functions

or operations called. This is performed by a second traversal function, that

updates the variable name list wherever it finds a let or a def expression,

and returns a function or operation application if the function or operation

names are not in the list.

The outcome of procedure call analysis of the SAFER specification is

given in the graph depicted in Figure 4.5. This and the following graphs has

a mark node with tags t, s, f, o meaning datatypes, state, functions and
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operations, respectively.

From this graph we can observe several facts about both structure and

system’s functionality.

For instance, it reveals small complexity due its resemblance with a tree.

(Note that the structure it is not a tree only because both Integrated-

Commands and ButtonTranstion call AllAxesOff.)

From the same graph we can also clearly identify the main, or top-level,

function of the system, ControlCycle and then follow its dependencies.

Since only SelectedThrusters has dependencies, we can guess that most

of the work is done in this function and it dependencies, while ActiveAxes,

GripCommand and IgnoreHcm are just auxiliary functions. Moreover, the

Transition function reveals only two dependencies (one direct and other

indirect) which indicates some separation of concerns.

By manually inspecting the specification files we confirm our expecta-

tions. Functions ActiveAxes, IgnoreHcm and GripCommand are all auxiliary

functions. The first two return state values and the latter is a table lookup

function which performs some conversions.

Doing a similar analysis to the SelectedThrusters function, we can ob-

serve that are also two auxiliary functions BFThrusters and LRUDThrusters.

Inspecting the functions we again confirm our expectations, since both func-

tions perform lookups using “case” statements to select a subset of the

available thrusters.

By iteratively following function dependencies we were able to uncover

important facts about the system. Not only we were immediately able to

identify the main function, but we were also able to discover the functions

that perform the most relevant computations.

4.1.3 Type dependency graph extraction

A type dependency graph records the dependency relationship between glob-

ally defined datatypes. Recalling the formal definition presented in Sec-

tion 4.1.1, a type dependency graph is a pair (V ,E ), in which V is the set
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2.0 SwitchPositions : :mode : ControlModeSwitch

.1 aah : ControlButton;

3.0 ControlModeSwitch = 〈Rot〉 | 〈Tran〉;

4.0 ControlButton = 〈Up〉 | 〈Down〉;

5.0 HandGripPosition : : vert : AxisCommand

.1 horiz : AxisCommand

.2 trans : AxisCommand

.3 twist : AxisCommand

Figure 4.6: Excerpt of SAFER datatype definitions.

of globally defined datatypes and E is a relation between elements of V . In

this context an edge (tuses , tisUsed) is defined if the tuses datatype uses tisUsed

datatype in its definition.

In VDM-SL a state definition can also be regarded as a globally defined

datatype, it has a name and is defined using other datatypes. Thus, our type

dependency graph will also consider a state as an ordinary type.

As example we will consider an excerpt of the SAFER specification

presented in Figure 4.6. In this excerpt, we can see two particularities.

Firstly there are two unconnected datatypes: SwitchPositions and Hand-

GripPosition; and secondly the HandGripPosition datatype references the

AxisCommand datatype four times. Note that only one edge is created in the

graph between HandGripPosition and AxisCommand.

The result of the type dependency analysis of the SAFER specification is

represented in Figure 4.7.

In this figure we can observe that there are three unconnected graphs

whose top-level datatype names are SixDofCommand, SwitchPositions, and

ThrusterSet.

The graph alone unveils little information about these types. Nevertheless

by showing how the datatypes are structured, we can use an approach similar



4.1. PRIMARY GRAPHS EXTRACTION 53

t: AxisCommand

t: ControlButton t: ControlModeSwitch

t: EngageState t: RotAxis

t: RotCommand t: ThrusterName

t: TranAxis

t: TranCommandt: HandGripPosition

t: SixDofCommand t: SwitchPositions t: ThrusterSet

s: AAH

Figure 4.7: Type dependency graph for the SAFER specification.

6.0 GripCommand : HandGripPosition×ControlModeSwitch → SixDofCommand

.1 GripCommand (mk-HandGripPosition (vert , horiz , trans, twist),mode) 4

.2 let . . .

.3 in mk-SixDofCommand (tran, rot)

Figure 4.8: SAFER excerpt function definition.

to that used in the previous section, by starting analysing the top-level

datatype and then following all its dependencies.

In contrast with SixDofCommand and its dependencies, the Switch-

Positions and ThrusterSet datatypes serve specific details.

The SwitchPositions and its dependencies are a dedicated set of data-

types which are defined to model the hand controller module, and the

ThrusterSet is the result datatype of the main function which contains

the set of thrusters that should be activated.

Although the type dependency graph reveals the datatype structure, it is

difficult to understand how these datatypes are actually used in the system.

For that purpose a more appropriate graph should be produced, such as the

procedure-type flow graph.

4.1.4 Procedure-type flow graph extraction

A procedure-type flow graph records the dependency relationship between

functions or operations and the globally defined datatypes used as input and

output. Recalling the formal definition presented in Section 4.1.1, a procedure-
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t: ControlModeSwitch

f: GripCommand

t: HandGripPosition

t: SixDofCommand

Figure 4.9: SAFER excerpt procedure-type flow graph.

type flow graph will be a pair (V ,E ), in which V is the set of globally defined

functions, operations and datatypes, and E is a relation between them, i.e.,

an edge (tinput , p) is defined wherever the globally defined datatype tinput is

used as input in the function or operation p, and an edge (p, toutput) is defined

if the globally defined datatype toutput is the result datatype of the function

or operation p.

As example we will consider the excerpt from the SAFER specifica-

tion presented in Figure 4.8. From the function definition we can observe

that the GripCommand function has as input the HandGripPosition and

ControlModeSwitch datatypes, and has as output the SixDofCommand data-

type.

The procedure-type flow graph of this code excerpt is represented in

Figure 4.9, showing that relationship. Note that, wherever a function uses

the same datatype more than once, only one edge will be represented in the

graph. Moreover, if the function definition uses set of ControlModeSwith

or a composite datatype which contains the ControlModeSwitch datatype,

the result graph will be exactly the same.

Although the example refers to a function and not an operation, it is

worth noting that a similar result would be achieved for an operation. How-

ever, there is a small detail that must be clarified. Operations in VDM-SL

manipulate state, which is explicitly defined in the formal specification. Since

all operations manipulate the same state we decided not include it in the

procedure-type flow graph. For more about this see conclusions.
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t: EngageState

f: ButtonTransition

t: RotAxis

f: AllAxesOff f: CombinedRotCmds

f: IntegratedCommands

f: SelectedThrusters

t: RotCommand

f: RotCmdsPresent o: ControlCycle

t: SixDofCommand

o: Transition

t: ThrusterSet

t: TranCommand

f: PrioritizedTranCmd

f: BFThrusters

f: GripCommand

f: LRUDThrusters

f: ThrusterConsistency

t: AxisCommand

t: ControlButton

t: ControlModeSwitch t: HandGripPosition t: SwitchPositions

t: ThrusterNameo: ActiveAxes o: IgnoreHcm o: Toggle

Figure 4.10: Excerpt of the procedure-type flow graph for the SAFER specifi-

cation.

Procedure-type flow analysis of the whole SAFER specification leads to

the graph presented in Figure 4.10.

In the upper right corner of the figure we find two functions that are

isolated: PrioritizedCommand and ThrusterConsistency.

The ThrusterConsistency uses the ThrusterName datatype that is not

used elsewhere. Since we saw, in Section 4.1.3, that ThrusterName belongs

to the result datatype of the main function, we can assume that this function

performs some validation. Analysis of the source code, reveals that this

function is the post-condition used in the main function, hence our assumptions

are correct.

The PrioritizedCommand has both as input and output the TranCommand

datatype. Additionally, by analysing the procedure call graph, Figure 4.5

of Section 4.1.2, we can see that this function does not depend of any other

function. Therefore, we can assume that this function does some sort of

transformation. By manually inspecting the function body we find out that



56 CHAPTER 4. SUPPORT FOR UNDERSTANDING

it performs corrections by replacing some commands by others with higher

priority.

The approach used to analyse the PrioritizedCommand function can also

be used to analyse ButtonTransition and IntegratedCommands functions.

Moreover, it is interesting to note that although ControlCycle is the

main function, there are other functions that have the same output datatype,

such as SelectedThrusters and LRUDThrusters.

The procedure-type flow graph provides a good indication about the ab-

stract flow of the datatypes which can give us hints about what some functions

do. Nevertheless to validate those hints we sometimes used information from

other graphs and we did manual inspection of the implementation to validate

hypotheses.

4.2 Secondary graph derivation

By secondary graph derivation we mean transformation of previously extracted

graphs.

Examples of transformations are edge reversal, aggregation of different

graphs or applying well known algorithms such as transitive closure, strongly

connected components and formal concept analysis.

Each of these transformations will be explained in the following sections.

4.2.1 Procedure-type dependency derivation

A procedure-type dependency graph is an abstraction of the procedure-type

flow graph presented in Section 4.1.4 in which it is irrelevant whether if the

datatype is used as input or output.

Recalling the formal definition presented in Section 4.1.1, a procedure-

type dependency graph is a pair (V ,E ), in which V is the set of globally

defined functions, operations and datatypes, and E is a relation between

functions or operations, and datatypes, i.e., and edge (puses , tisUsed) is defined
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t: AxisCommand t: ControlButton t: ControlModeSwitcht: EngageStatet: HandGripPositiont: RotAxis t: RotCommand t: SixDofCommandt: SwitchPositions t: ThrusterNamet: ThrusterSet t: TranCommand

f: AllAxesOfff: BFThrusters f: ButtonTransitionf: CombinedRotCmds f: GripCommandf: IntegratedCommandsf: LRUDThrusters f: PrioritizedTranCmdf: RotCmdsPresentf: SelectedThrusters f: ThrusterConsistencyo: ActiveAxes o: ControlCycleo: IgnoreHcm o: Toggleo: Transition

Figure 4.11: Excerpt of the procedure-type dependency graph for the SAFER

specification.

if the procedure (function or operation) puses uses the tisUsed datatype in the

procedure definition.

This graph is derived from the procedure-type flow graph by reversing

all edges (t , p), in which t is a globally defined datatype and p is a globally

defined function or operation.

By applying this analysis to the SAFER specification one obtains a huge

graph, of which only the right part is represented in Figure 4.11.

Although this analysis produces more abstract information than the

procedure-type flow graph, introduced in Section 4.1.4, we are not able to

extract more knowledge than using that graph. We are able to visualize

the procedures that are unconnected, namely ThrusterConsistency and

PrioritizedTranCmd, yet for the rest of the graph interpretation is burden-

some.

This outcome of the analysis does not mean that it is inadequate for

understanding. What it means ist that for this particular specification does

not add much value. With larger specifications the scenario can be different.

For more of this see conclusions.

Additionally, it is possible to feed this graph to formal concept analysis

to try and find groups of functions that use the same types, thus providing

us, for instance, with some modularization hints.
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t: AxisCommand

f: BFThrustersf: LRUDThrusters

t: ControlButton

f: ButtonTransition

o: Transition

t: ControlModeSwitch

f: GripCommand

t: EngageState

t: RotAxis

f: AllAxesOff

f: CombinedRotCmds

f: IntegratedCommands

f: SelectedThrusters

t: RotCommand

f: RotCmdsPresento: ControlCycle

t: SixDofCommand

t: TranCommand

t: ThrusterName

f: ThrusterConsistency

t: ThrusterSet

t: TranAxis f: PrioritizedTranCmd

f: ActiveAxesf: IgnoreHcm

t: HandGripPosition t: SwitchPositions s: AAH o: ActiveAxeso: IgnoreHcm

o: Toggle

Figure 4.12: Excerpt of the full dependency graph for the SAFER specification.

4.2.2 Full dependency graph derivation

The full dependency graph is a union of the procedure call, type dependency,

and procedure-type flow graphs defined, respectively, in Sections 4.1.2, 4.1.3,

and 4.1.4.

Recalling the formal definition presented in Section 4.1.1, a full dependency

graph is a pair (V ,E ), in which V is the set of globally defined functions,

operations and datatypes, and E is a relation between elements of V , such

as:

• (pcaller , pcallee) is defined if the function or operation pcaller can call pcallee ,

• (tuses , tisUsed) is defined if the tuses datatype uses tisUsed datatype in its

definition,

• (tinput , p) is defined if the tinput datatype is used as input in the function

or operation p, and

• (p, toutput) is defined if the toutput datatype is the result datatype of the

function or operation p.

The result of the full dependency analysis of the SAFER specification

is represented in Figure 4.12. It can be observed that, even for a small
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f: ActiveAxes

f: AllAxesOff

f: BFThrustersf: ButtonTransition

f: CombinedRotCmds

f: GripCommand f: IgnoreHcm

f: IntegratedCommands

f: PrioritizedTranCmd f: RotCmdsPresent

f: LRUDThrusters

f: SelectedThrusterso: Transition

o: ControlCycle

Figure 4.13: Excerpt of the Function and Operation transitive closure call

graph for the SAFER Specification.

specification like the one we chose, it is not very easy to extract knowledge

from it.

Still, this kind of graph is a perfect candidate for applying the strongly con-

nected components analysis and discover groups with related functionalities,

as we will see in further sections.

4.2.3 Transitive closure derivation

The transitive closure (TC), as defined in [103], of a binary relation R on

a set X is the minimal transitive relation R+ on X that contains R and it

can be defined as R+ = R ∪ R.R+. Thus uR+v ≡ uRv ∨ ∃w · , uRw ∧ wR+v ,

meaning that the transitive closure of graph, is a graph which contains an

edge (u, v) whenever there is a direct or indirect path from u to v .

Figure 4.13 represents the transitive closure graph of the procedure call

graph of Figure 4.5.

The transitive closure can be used for reachability analysis, i.e., it allows

for querying, in a efficient way, if any two nodes on a graph are connected.

This can be used to detect dependencies that are not immediately perceived

and/or to detect cycles.

In case of the transitive closure of the procedure call graph, it can also be

used to guide testing, in the sense that nodes that are dependent of many

nodes should be paid particular attention. In the graph of Figure 4.13 we can
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observe that the AllAxesOff, CombinedRotCmds, PrioritizedTranCmd and

RotCmdsPresent have the highest rate of dependability.

Although not shown, we also computed the transitive closure for type

dependency graph, procedure-type flow graph and full dependency graph. In

case of the latter, the graph presents so many edges that is impossible to

understand anything at all.

In general, as understanding technique, the transitive closure may present

two problems. Firstly, to many dependencies hinder analysis. Secondly,

for large specifications the analysis does not scale well. Nevertheless, the

transitive closure has practical use in this work, in which the type dependency

transitive closure is used during re-engineering of a formal specification to an

SQL scheme to discover mutually recursive definitions. For more details will

be provided in Section 5.2.1.

4.2.4 Strongly connected components derivation

A strongly connected component (SCC), as defined in [102], is a maximal

subgraph of a directed graph such that for every pair of vertices u, v in the

subgraph, there is a directed path from u to v and a directed path from v to

u.

Informally, the SCC is a graph in which nodes are formed by sets of the

directed graph nodes (components) and edges represents the relations between

these components. Real-world applications of SCC are partitioning a problem

into smaller problems and hence it is used in many fields such as biology or

computer science.

We shall be interested in using strongly connected components analysis to

reveal the architecture or structure of the analysed data, in which as result

we will get several nodes aggregated in many components. Components can

be regarded as programming language modules which can provide us hints

about possible ways of modularizing, for instance, functions.

However, SCC analysis can lead to two extreme situations: either the

graph results in a single component (meaning that all elements are connected
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{t: AxisCommand}

{f: BFThrusters}{f: LRUDThrusters}

{t: ControlButton}

{t: EngageState,
f: ButtonTransition}

{o: Transition}

{t: ControlModeSwitch}

{t: RotAxis,
t: RotCommand,

t: SixDofCommand,
f: CombinedRotCmds,

f: GripCommand,
f: IntegratedCommands,

f: SelectedThrusters,
o: ControlCycle}

{f: AllAxesOff}

{t: ThrusterSet}

{t: TranCommand,
f: PrioritizedTranCmd}{f: ActiveAxes}{f: IgnoreHcm} {f: RotCmdsPresent}

{t: ThrusterName}

{f: ThrusterConsistency}

{t: TranAxis}

{t: HandGripPosition}

{t: SwitchPositions}

{s: AAH} {o: ActiveAxes}{o: IgnoreHcm}

{o: Toggle}

Figure 4.14: Excerpt of the Strongly Connected Components for the full

dependency graph.

to each other) or each element ends up forming its own component, indicating

that no grouping took place. The latter case could be observed in both the

procedure call and type dependency graphs.

Applying the strongly connected components analysis to the full depen-

dency graph results in the graph partially presented in Figure 4.14.

Only the full dependency and procedure-type flow graphs present cycles,

being the only graphs in which the strongly connected components analysis

would do some grouping. We chose the full dependency graph since it is the

one containing more information.

By analyzing this graph, we can identify three non-singleton components

(components which have more than one element grouped). Two of these

components are small, containing only two elements. The other is thus a

quite large component.

Starting from the right hand side of the graph, we can see the component

formed by the ButtonTransition function and the EngageState datatype.

This indicates that both should belong to the same module in the specification.
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Moreover, all around that component there exist singleton components, such

as the Toggle datatype and Transition and AllAxesOff functions, which

are related to this component and could also be included in the same module.

The larger component is much more interesting to analyse since it groups

togehter the most important functions and datatypes of the system. We

can start by observing that the ControlCycle main function is present in

this component. Additionally, functions previously identified as important,

such as SelectedThrusters and IntegratedCommands, are also in the same

component, as well as the involved datatypes.

It is interesting to note that SCC analysis identifies the same set of

important functions as with other techniques, namely the procedure call and

the procedure-type flow graphs.

Even so our testcase is small, these techniques reveal to be of interest. We

guess that with larger specifications we would first apply the SCC analysis

first and then do a more fine grain analysis to each component using the other

techniques.

4.2.5 Formal Concept Analysis derivation

Formal Concept Analysis (FCA) is a mathematical theory which detects

the presence of groups of elements which instantiate a common, repeated

pattern [19]. FCA was firstly introduced by Wille [105, 37] based on Lattice

Theory, the foundations of which were laid in 1967 by Birkhoff [13]. For a

more extensive background about FCA, we refer the reader to [105, 37, 19].

Before studying the applicability of FCA to our graphs (eg. procedure

call graph) we will firstly introduce the basic concepts of theory.

The first step in FCA is to define a context. A context C is formally defined

as a triple C = (E ,P , I), in which E is a finite set of elements, P is a finite

set of properties and I is a binary relation between E and P : I ⊆ E × I.

Based on the formal definition of context, two mapping relations can be

defined: common properties of X and common elements of Y , respectively

represented as σ(X ) and τ(Y ), where X ⊆ E and Y ⊆ P. Then:
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type Context g m = Rel g m

type Concept g m = (Set g ,Set m)

type ConceptLattice g m = Rel (Concept g m) (Concept g m)

Figure 4.15: Haskell datatype definitions to support FCA.

σ(X ) = {p ∈ P | ∀e ∈ X : (e, p) ∈ I}

τ(Y ) = {e ∈ E | ∀p ∈ Y : (e, p) ∈ I}

Informally, σ(X ) defines the set of common properties of the elements of

X , and τ(Y ) defines the set of elements that share the properties in Y .

Based on the formal definitions of σ(X ) and τ (Y ), a concept is a maximal

collection of elements sharing common properties and can be formally defined

as a pair of sets (X ,Y ): a set of elements (the extent) and a set of properties

(the intend), such that:

Y = σ(X ) and X = τ(Y )

Finally, we can define a concept lattice as the ordered set of all formal

concepts. Informally, this can be defined as a graph which represents the

relation between all concepts.

The Haskell datatypes definition for context, concept and concept lattice

are represented in Figure 4.15.

FCA, as contrast with other program understanding techniques, does not

summarize information. It has all the details of the data represented by

the formal context. As stated in [36], the typical task of a concept lattice

is to unfold some given data, making the conceptual structure visible and

accessible in order to find patterns, regularities, exceptions, etc.

As test case we will analyze the results of applying formal concept analysis

to the procedure call graph presented in Section 4.1.2.
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ActiveAxes

AllAxesOff

BFThrusters

ButtonTransition x

CombinedRotCmds

ControlCycle x x x x x

GripCommand

IgnoreHcm

IntegratedCommands x x x x

LRUDThrusters

PrioritizedTranCmd

RotCmdsPresent

SelectedThrusters x x x

Transition x

Table 4.1: Formal context of the procedure call relationship of the SAFER

model identifying two concepts marked in gray.

The first step is the definition of the formal context of the procedure call

relationship which is obtain from the procedure call graph, represented in

Figure 4.1.

Lines and columns represent, respectively, pcaller and pcallee , i.e., there is

an x in line pcaller and column pcallee if the function or operation pcaller calls

the function or operation pcallee .

From this formal context, the computed concept lattice graph is presented

in Figure 4.16.

We can observe that the concept lattice has a total of five concepts. Two

of them are related and the other three are completely independent of each

other, and of the first two.

The two concepts that are related were previously marked in gray in the

formal context table of Figure 4.1.
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{f: ButtonTransition}
{f: AllAxesOff}

{f: IntegratedCommands}
{f: CombinedRotCmds,f: PrioritizedTranCmd,f: RotCmdsPresent}

{f: SelectedThrusters}
{f: BFThrusters,f: IntegratedCommands,f: LRUDThrusters}

{o: ControlCycle}
{f: ActiveAxes,f: GripCommand,f: IgnoreHcm,f: SelectedThrusters,o: Transition}

{o: Transition}
{f: ButtonTransition}

Figure 4.16: Excerpt of the concept lattice for the procedure call relationship

of the SAFER specification.

In the fourth line of the table, marked with lighter gray, the concept is

formed by the ButtonTransition element and the AllAxesOff attribute.

In the ninth line, marked in darker gray, the concept is formed by the

IntegratedCommands element and four attributes: AllAxesOff, Combined-

RotCommands, PrioritizedTranCmd, and RotCmdsPresent. Note that, be-

cause the two elements share the same AllAxesOff attribute, the two concepts

are related. However, the former concept is considered a parent-concept of

the latter child-concept, since the latter has attributes that do not exist in

the former.

We must shed light on an important detail about the concept lattice

graph presented in Figure 4.16. As the AllAxesOff attribute is shared by

two concepts, this attribute only appears in the parent-concept and not in

the child-concept, since all child-concepts inherit all the parent-concept ’s

attributes.

By analysing the concept lattice it is interesting to observe that there are

unconnected concepts as previously mentioned. By individually analysing

the concepts, we observe that the most important set of functionalities is

represented in three concepts.

The ControlCycle function, which here represents a concept, was identi-

fied in Section 4.1.2 as the main function. In the same section, we have also

previously identified that the overall functionality of the system was speci-

fied in two other functions, SelectedThrusters and IntegratedCommands,

which also are represented in their own concepts.
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The relationship between the parent and child concepts was already

explained before. The concept lattice indicates us that the ButtonTranstion

concept is a more abstract concept than the IntegratedCommands concept.

However, by manually inspecting the body of the functions we realize that

the ButtonTranstion operation is responsible for activating or deactivating

the automatic attitude hold using a specific protocol, and the Integrated-

Commands function is responsible for aggregating commands information,

meaning that the two functions are not semantically related.

We can hypothesize two alternative explanations for this. Either the

formal concept analysis can sometimes be misleading, or the SAFER test

case is too small for a more accurate interpretation.

4.3 Metrics

Software metrics are an important tool for both controlling and validating

software development. With respect to their computation, metrics can be

classified as primitive or computed. A primitive metric is calculated directly

from the source code while the second is computed using other metrics. As

discussed in [72], computed metrics can provide a more general overview of

the aspects that are measured, since they aggregate information from other

metrics.

Many different metrics exist with different purposes. For instance, the

LOC metric (source lines of code) measures size, the McCabe metric measures

complexity, Function Point metric measures productivity, and so on.

In this work we are particular interested in structural metrics that are

defined over graph representations and we intend to use them as yet an-

other technique for program understanding. The metrics were adapted from

grammar engineering metrics previously introduced in [83, 97, 7].

This section is divided in two parts. Section 4.3.1 provides the definition

of several structure metrics, introduced in [97, 8], and adapts them to formal

specifications whenever necessary. Section 4.3.2 we will apply those metrics
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Structure metrics

Tree impurity after trans. closure (%)

Tree impurity of immediate successors (%)

Fan-in (absolute)

Fan-out (absolute)

Instability (%)

Efferent coupling (absolute)

Afferent coupling (absolute)

Instability (average %)

Coherence (average %)

Normalized count of modules (%)

Figure 4.17: Structure metrics for VDM-SL formal specifications.

and provide some observations about the results obtained.

As in [83, 97, 7, 8] a rigorous empirical validation of these metrics falls

outside the scope of this work.

4.3.1 Metrics Definition

In this section we will introduce a set of metrics and present their definition.

A summary indicating whether the metric uses absolute values or percentages,

can be found in Table 4.17.

Tree Impurity

The tree impurity metric (TIMP) indicates to what extent a given graph

deviates from a tree structure with the same number of nodes. Fenton et

al. [30] define tree impurity for connected undirected graphs without self-edges

as 2(e-n+1)
(n-1)(n-2)

.100%, where n is the number of nodes, and e is the number of

edges. A tree impurity of 0% means that the graph is a tree and a tree

impurity of 100% means that it is a fully connected graph.
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Power et al. [83] apply the tree impurity metric to the transitive closure

of the immediate successor graph, i.e. to the (non-immediate, transitive)

successor graph. Since tree impurity is defined for undirected graphs without

self-edges, this requires that self-edges and multiple edges between non-

terminals should be removed from the edge count before applying the formula.

In several situations, where we ignore edge direction, a path can exist

between any two edges, leading to exaggerated values of the tree impurity

metric. As seen in [8], even purely tree-shaped graphs will drastically increase

in tree impurity when we take their transitive closure.

Hence, we propose to apply the tree impurity metric also to the immediate

successor graph, and we will call this metric TIMPi.

Fan-in, Fan-out, and Instability

A pair of classic metrics are fan-in and fan-out. The fan-in of a node in a

directed graph is the number of its incoming edges. Conversely, the fan-out is

the number of outgoing edges of the node. Both metrics are directly applicable

to the nodes of each type of dependency graph. For the graphs as a whole,

the average and maxima of these metrics can be relevant.

The maximum fan-in and fan-out, in particular, can be useful to spot

unusual nodes, which subsequently may be inspected to identify the cause of

the abnormality, and a possible action to correct the situation.

Based on fan-in and fan-out, a measure called instability can be defined

as the fan-out fraction of total fan-out, i.e. as: fan-out
fan-in+fan-out

.100%.

The instability metric ranges between 0% (no outgoing edges) and 100%

(only outgoing edges). Low instability of a node indicates that it is dependent

on few other nodes, while many nodes are dependent on it. Thus, low

instability corresponds to a situation where changes to the node will affect

relatively many other nodes, and would hence be costly or difficult. In other

words, instability may be interpreted as resistance to change.
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Afferent and efferent coupling, and again instability

Coupling is a notion similar to fan, but taking modules into account, where

any group of nodes may be viewed as a module. The number of edges from

nodes outside the module to nodes inside the module is called afferent coupling

(Ca). Conversely, the number of edges from nodes inside the module to nodes

outside is called efferent coupling (Ce). Their sum is simply coupling. As in

the case of fan-in and fan-out, an instability metric can be defined based on

afferent and efferent coupling, as: Ce

Ce+Ca
.100%.

Since we do not support the IFAD module extension [40], the coupling

metrics will be calculated using the derived strongly connected components

graphs.

Coherence

Whereas coupling assesses the connections of a module with external nodes,

the coherence of a module concerns the degree to which its internal nodes

are connected with each other. As a general coherence metric we will use

the ratio of internal edges of a module versus all edges that start and/or

end in a node inside the module. Thus, Ch = Ci

Ci+Ca+Ce
.100%, where Ci is

the number of edges between nodes inside the module, i.e. the internal edge

count. In the limit case of singleton modules, we set Ch = 100%, rather than

0%, expressing that singletons are fully coherent.

Note that this measure of coherence takes external edges into account, not

only internal edges. Assuming a stable node count for a module, its coherence

increases both with the addition of internal edges and with the removal of

external edges. In other words, coherence is compromised both by lack of

connections between internal nodes, and by too many connections to the

outside, i.e. by breaches of encapsulation.

As an alternative measure of coherence, one may use tree impurity, as

defined before, at the module level.
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Normalized count of modules

For each notion of module, we can define a normalized count of modules by

expressing the module count as a ratio of potential module count, which is

the number of nodes in the underlying dependency graph. Thus, NCM =
#M
#N

.100%. Thus, the more nodes get grouped into modules, the lower the

normalized count of modules. A value of 100% indicates that no grouping

has occurred, i.e. each node sits in a separate module (full fragmentation). A

value approaching 0% indicates that nodes are grouped together in a very

small number of modules (monoliths).

The interpretation of normalized count of modules depends on the under-

lying notion of module. In case of the notion of modules as strongly connected

components, (mutual) recursion gives rise to non-singleton modules. Corre-

spondingly, NCM is a measure of recursiveness, where low NCM indicates

a high degree of mutual recursiveness. In the case of the notion of modules

as global definitions/declarations, local elements give rise to non-singleton

modules. Correspondingly, NCM is a measure of encapsulation, where low

NCM indicates a high degree of encapsulation.

Since we do not support the IFAD module extension, we will only use

NCM as a measure of recursiveness.

4.3.2 Data Collection

We decided to apply the metrics to the full dependency graph presented in

Section 4.2.2. This graph was chosen since it is among the graphs on which

we could take advantage of the strongly connected analysis, and hence observe

all defined metrics.

The outcome of metrics calculation of the SAFER model is presented in

Table 4.2. For metrics which calculate absolute values, the minimum, average

and maximum values are presented.

The values present in the table lead to the following observations.

The tree impurity metric of the immediate successors presents a reasonable
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Structure metrics

Tree impurity after trans. closure 72.91%

Tree impurity of immediate successors 7.14%

Fan-in 0 2.07 4

Fan-out 0 2.07 7

Instability based on fan 46.57%

Afferent coupling 0 1.89 5

Efferent coupling 0 1.89 14

Instability based on coupling 45.19%

Coherence 90.10%

Normalized count of modules 63.33%

Table 4.2: Metrics data collection for the full dependency graph of the SAFER

specification.

value of 7.14%. This suggests that trying to follow dependencies when doing

manual inspection can be feasible. However, the tree impurity metric after

transitive closure, as contrast, presents a very high value of 72.91% indicating

that most of the nodes are connected.

The fan-in and fan-out metrics reveal that, on average, each node has both

2 incoming and outgoing edges. Since this graph contemplates procedures and

datatypes this value suggests that the dependencies are quite small. Moreover,

the maximum value for the fan-out metric is only 7, which corresponds to

the RotCommand datatype. In Sections 4.1.3 and 4.1.4, we identified a set of

auxiliary datatypes which were used in the functions and operations that do

most of the computations, and the RotCommand was one of those datatypes.

Since this is the datatype that has more dependencies, we can conclude that

this datatype has a great impact in the system.

An instability with a value of 46.57% indicates that nodes are well balanced

by having the same number of both incoming and outgoing arrows, as we

noted before.
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Since the efferent and afferent coupling metrics are analogous to fan-

in and fan-out but for modules, and the values obtained are similar, then

observations are alike. Hence, by analysing the afferent and efferent coupling

we can observe that in average each module has both 2 incoming and outgoing

edges.

However, we should note that the maximum efferent coupling is 14, mean-

ing that there is a module with a large number of outgoing arrows. Addi-

tionally, we can observe that both afferent coupling and fan-in present higher

values than both efferent coupling and fan-out.

The instability based on coupling, like the instability based on fan, has a

value of near 50%, meaning that modules are well balanced.

The normalized count of modules indicates a recursiveness of 63.33%. We

observed in Section 4.2.4 that the overall system’s functionality belong to the

largest component found. Moreover, SCC analysis reveal that, except for two

components formed with two elements, all others are singletons, i.e., most

of the components are formed by a single node. Therefore, we can conclude

that the core of the system represents about 63.33% of the overall.

4.4 Summary

In this chapter we applied automatic techniques for program understanding to

formal models written in VDM-SL notation. To create abstract representations

from VDM-SL specifications we started by extracting procedure call, type

dependency, and procedure-type flow graphs. We have shown how inspection

of these graphs answers specific questions about the system’s details.

Other kinds of graph were derived by aggregating information from sev-

eral extracted graphs and through transformation such as transitive closure,

strongly connected components and formal concept analysis. We analysed

those graphs and commented on their applicability for our test case.

Finally, we introduce structure metrics as yet another way of model

understanding and we applied them to the full dependency graph of our test
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case.
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Chapter 5

Support for re-engineering

Runnable formal specifications, like the ones written in VDM-SL, cannot

be regarded as final software products because they are not efficient enough

(they lack in efficience what they gain in abstraction). Therefore, there is

a need to lower the level of abstraction while preserving the original model

semantics. This kind of re-engineering, wich is known as data-refinement [52],

can be carried out by transformation of both data models and the associated

functionality.

A particular relevant target is the relational model defined by Codd [24].

Since his pioneering work, relational database theory has been thoroughly

studied [68, 91, 38]. At the heart of this we find normalization, a theory

whereby efficient collections of (relational) files are derived from the original

design, which can be encoded in a data-processing language such as Sql [34].

Functional dependency theory and normalization deviate from standard

model-oriented formal specification and reification techniques [52, 32]. In

the latter, designs start from abstract models which are abstract enough to

dispense with normalization. Does one arrive at similar database designs by

using data reification techniques?

References [78, 79, 80, 81] address a formal calculus which has been

put forward as an alternative to standard normalization theory, by framing

database design into the wider area of data refinement [52]. Data models,

75
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such as described by E-R diagrams, for instance, are turned into systems

of equations involving set-theoretic notions such as finite mappings, sets,

and sequences. Integrity constraints and business rules are identified with

abstraction invariants [73] and datatype invariants [52], respectively, whose

structural synthesis (analysis) by calculation is at the core of the calculus.

In this chapter, we will describe a database schema calculator which,

inspired by [81], infers Sql relational meta-data from abstract data models

specified in the ISO standard VDM-SL formal modelling notation [32]. In

Section 5.1 the theory in which the re-engineering process is based on is

introduced, and in Section 5.2, the link from theory to practice will be made

explicit by explaining both design and implementation.

5.1 Database design by calculation

The calculation method which underlies our VDM-SL to Sql conversion finds

its roots in a “data refinement by calculation” strategy which originated in

[78, 79] and has been focussed on relational database design more recently

[80, 81]. Reference [76] describes its application to reverse engineering legacy

databases.

5.1.1 Abstraction and representation

The calculus consists of inequations of the form A 6 B (read: “datatype B

implements, or refines datatype A”) which abbreviates the fact that there is a

surjective, possibly partial function A B
Foo (the abstraction relation) and

an injective, total relation A
R // B (the representation relation) such that

F · R = idA (5.1)

holds, where idA is the identity function on datatype A. (F is traditionally

referred to as a retrieve function [52].) Since the equality R = S of two

relations R and S is bi-inclusion R ⊆ S ∧ S ⊆ R, we have two readings

of equation (5.1): idA ⊆ F · R, which ensures that every inhabitant of the
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abstract datatype A gets represented at B -level; and F · R ⊆ idA, which

prevents “confusion” in the representation process:

〈∀ b ∈ B , a ∈ A : b R a : 〈∀ a ′ ∈ A : a ′ F b : a ′ = a〉〉

(“Never forget whom you are representing”.)

Below we will present a series of particular 6-equations which together

specify a data model refinement calculus. The types of the refinement relations

will be mapped onto rewrite rules in the implementation.

5.1.2 Preorder

It can be shown that 6 is a preorder, reflexivity meaning that any datatype

represents itself (R = F = id) and transitivity meaning that 6-steps can be

chained by sequentially composing abstractions and representations:

A

R

''
6 B

F

gg ∧ B

S

''
6 C

G

gg ⇒ A

S ·R
''

6 C

F ·G

gg

This suggests that one may calculate implementations from specifications

Spec = X 6 X ′ 6 X ′′ 6 · · · 6 Imp

by adding implementation details in a controlled manner. This also makes

sense wherever the representation of a parameter of a datatype needs to be

promoted to the overall parametric datatype by structural data refinement :

A

R

''
6 B

F

gg ⇒ FA

FR
))

6 FB

FF

ii (5.2)

where F is such a parametric type, e.g. set ofA in VDM-SL notation. (Tech-

nically, F is named a relator [10].) This is valid also for parametric types of

higher arity, such as those of standard VDM-SL:

• binary product types A × B and n-ary ones
∏n

i=0 Ai , which can be

specified in VDM-SL as (nested) tuples or via record types, (semantically

equivalent modulo selectors). E.g. A*B or compose AB of a: A b: B

end, respectively.
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• sum types A + B , which in VDM-SL are specified by writing A | B

for suitably specified (disjoint) A and B , extensible to finitary sums∑n
i=0 Ai .

• finite mappings A ⇀ B , written map A toB in VDM-SL, in which

case the abstraction of the domain datatype is required to be injective

(otherwise the outcome may not be a mapping).

5.1.3 Conversion laws

It is often the case that the abstraction (resp. representation) relation is a

(total) function, in which case it is an injection (resp. surjection). As an

example of this we present law

A?

seq2index
**

6 IN ⇀ A

list

ii (5.3)

which indexes a finite sequence, for instance,

seq2index ([a, b, a]) = {1 7→ a, 2 7→ b, 3 7→ a}

list({11 7→ a, 12 7→ b, 33 7→ a}) = [a, b, a]

A more structural law is

A ⇀ (B + C )

uncojoin
--

6 (A ⇀ B)× (A ⇀ C )

cojoin

mm
(5.4)

whereby mappings of sums are represented as products of mappings. (Defi-

nitions for cojoin and uncojoin are easy to guess.) In a situation where the

abstraction is also a representation and vice-versa we have an isomorphism

A ∼= B , a special case of the 6-law which works in both directions. For

example, the abstraction/representation pair of the following isomorphism

A× (B + C )

distr
,,

∼= (A× B) + (A× C )

undistr

ll
(5.5)
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(product distributes through sum) is well-known from set-theory.

The VDM-SL finite mapping dom function witnesses a very useful isomor-

phism between finite sets and partial finite mappings,

2A

set2fm
**∼= A ⇀ 1

dom

hh (5.6)

which expresses the equivalence between VDM-SL data models set of A and

map A to nil. (The inhabitants of A ⇀ 1, often called right-conditions [47],

obey a number of interesting properties.) Another basic isomorphism tells us

how “singleton” finite mappings disguise “pointers” (opt-intro and opt-elim

are easy to guess):

A + 1

opt-intro
**∼= 1 ⇀ A

opt-elim

jj (5.7)

The following isomorphism law

(B + C ) ⇀ A

unpeither
--

∼= (B ⇀ A)× (C ⇀ A)

peither

mm
(5.8)

is a companion of (5.4).

Two important 6-rules from [81] are still missing from our catalog: unnjoin,

the representation function of one of these,

A ⇀ (B × (C ⇀ D))

unnjoin
--

6 (A ⇀ B)× (A× C ⇀ D)

njoin

mm
(5.9)

enables us to infer composite keys out of nested finite mappings. (See [79, 80]

concerning abstraction njoin and representation unnjoin.) In the abstraction
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direction (from right to left) it merges two tables which share a common

(sub)key.

The other rule still missing has to do with datatype “derecursivation”.

Suppose we are given a recursive datatype definition µF ∼= F µF where F

is polynomial [10, 79]. Then any “tree” in µF can be represented by a “heap”

and a “pointer” to it,

µF

rec-elim
,,

6 (K ⇀ FK )×K

rec-intro

jj (5.10)

for K a datatype of “heap addresses”, keys or “pointers”, such that K ∼= IN .

For example, the binary tree on the left-hand side of (5.11) below will be

represented — via (5.10) followed by (5.4) — by address 5 pointing at the

tables on the right-hand side:

(5.11)

See [79, 80, 81] for several important details we have to skip at this

point about this generic data representation technique, in particular in what

concerns the complex abstraction invariant imposed by (5.10), which requires

“well-founded heaps”.

5.1.4 Normal form

A pattern common to equations (5.3, 5.4, 5.6, 5.7, 5.8, 5.9 and 5.10) is that

right-hand-sides do not involve functors other than product (×) and finite

mapping (⇀). It so happens that these are exactly the functors admissible in

the following abstract model

DB =
n∏

i=1

(

ni∏
j=0

Kj ⇀

mi∏
k=0

Dk) (5.12)
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of a relational database, whereby every db ∈ DB is a collection of n relational

tables (index i = 1,n) each of which is a mapping from a tuple of keys

(index j ) to a tuple of relevant data (index k). Wherever mi = 0 we have∏0
k=0 Dk

∼= 1, meaning — via (5.6) — that we have a finite set of tuples in∏ni

j=0 Kj . (These are called entity relationships in the standard terminology.)

Wherever ni = 0 we are in presence of a singleton relational table. Last but

not least, all Kj and Dk are assumed to be “atomic” types, otherwise db

would fail first normal form (1NF) compliance [68].

To derive such normal forms, the above calculation laws can be used in

combination with appropriate laws for commutativity and associativity of

tuples, and laws for introduction and elimination of empty tuples. To avoid

these additional bookkeeping laws, we can generalize law (5.9) to:

A ⇀ (
∏

i Bi×
∏

j (Cj⇀Dj ))

g-njoin
..

6 (A⇀
∏

i Bi)×
∏

j (A×Cj ⇀ Dj )

g-unnjoin

nn
(5.13)

In the implementation, we will make use of this generalization.

Thus, with this collection of calculation rules we are able to unravel

(polynomial) recursive datatypes and decompose complex/nested mappings

or sequences into tuples of simpler mappings, leading to models in relational

normal form (5.12). In the upcoming section we will show how a term

rewriting system can be constructed and implemented that performs such

unraveling in a deterministic and confluent manner.

5.2 Design and Implementation

In this section we will explain how the bridge from this refinement theory to

practice was done using strategic term rewriting [95, 22, 66].

The overall architecture of the tool, shown in Figure 5.1, mirrors the

phases needed to tackle the problem:

1. Recognize a specification file written in VDM-SL and convert it to a

format that can be used for processing: abstract syntax tree (AST);
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VDM
.VDM

parsing
VDM

pretty-print
VDM

SQL
.SQL

parsing
SQL

pretty-print
SQL

translation

transformation

Figure 5.1: Overall architecture of the VooDooM tool.

2. Apply transformations to the AST to convert the input model into its

relational equivalent; and

3. Output the transformed specification either as VDM-SL or to SQL

concrete syntax.

To handle each of these steps, the following modules are necessary:

VDM-SL and SQL front-ends Deal with the language issues, namely

parsing, pretty-printing and abstract representation.

Transformation engine Receives a VDM-SL AST representing the original

specification and applies the calculation laws in order to compute a

relational model that refines it (also a VDM-SL AST).

VDM-SL to SQL translator Maps a relational model in VDM-SL AST

format to an equivalent SQL AST.

The VDM-SL front-end has already been introduced in Chapter 3 and the

SQL front-end was provided by the Software Improvement Group which gave

us permission to use.

In the upcoming sections we will describe the implementation of both the

transformation engine and the VDM-SL to SQL translator.

We will use the following specification of a tiny bank account management

system (BAMS) [5] as input example1:

1The intermediate steps will be presented in concrete VDM-SL syntax for clarity,

although the tool actually uses ASTs.
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types

7.0 BAMS = AccId m-→ Account ;

8.0 Account : :H : AccHolder -set

.1 B : Amount ;

9.0 AccId = char∗;

10.0 AccHolder = char∗;

11.0 Amount = Z

5.2.1 Transformation

The transformation engine is the core module of the VooDooM tool. It is

responsible for the refinement of the VDM-SL datatypes to a relational form,

in accordance with the refinement laws presented above.

Its implementation makes ample use of strategic term rewriting techniques.

The overall approach is as follows. First, we formulate individual term rewrit-

ing rules on the basis of the type signatures of the representation functions of

the refinement laws. Table 5.1 lists these individual rules. Secondly, we use

strategy combinators to compose these individual rules into a transformation

engine that applies the individual rules in a way that a normal form is reached

in a deterministic and confluent manner.

Before transformation begins, a single traversal is made over the AST

that represents the complete VDM-SL input specification and collects all

sub-ASTs that represent datatype definitions into a list. The transformation

process itself operates on this collection and is organized into the following

sequential phases:
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Function Rewrite rule Law

seq2index A? ⇒ IN ⇀ A (5.3)

unconjoin A ⇀ (B + C ) ⇒ (A ⇀ B)× (A ⇀ C ) (5.4)

distr A× (B + C ) ⇒ (A× B) + (A× C ) (5.5)

set2fm 2A ⇒ A ⇀ 1 (5.6)

opt-elim A + 1 ⇒ 1 ⇀ A (5.7)

unpeither (B + C ) ⇀ A ⇒ (B ⇀ A)× (C ⇀ A) (5.8)

unnjoin A ⇀ (B × (C ⇀ D)) ⇒ (A ⇀ B)× (A× C ⇀ D) (5.9)

rec-elim µF ⇒ (K ⇀ FK )×K (5.10)

Table 5.1: Catalog of rewriting rules. These rules are based on the various

equations and inequations of the calculational data refinement theory presented

in Section 5.1.

Inlining and recursion removal

The rewrite rules for conversion operate on datatypes, not on systems of

named datatype definitions. To avoid needing to perform lookups of datatype

names during transformation, we start by inlining, i.e. replacing all datatype

names by their definitions. This technique leads to the loss of the top level

datatype names, which in some cases are useful. To overcome this problem,

singleton composes are introduced before inlining those types.

Of course, this substitution process would run into cycles if we did not

treat recursive definitions differently. For this reason, the recursion removal

rewrite rule rec-elim is used in combination with inlining. After these rules

have exhaustively been applied, a set of non-recursive, independent datatypes

is obtained that is amenable to further transformation. Exhaustive application

is realized by using the repeat combinator

After the inlining step, our example specification will look as follows:
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types

12.0 BAMS =

.1 AccId : : char∗
m-→ Account : :

.2 H : (AccHolder : : char∗)-set

.3 B : Amount : : Z

Though our example does not contain recursive datatypes, the tree example of

Section 5.1 illustrates recursion removal. More examples are given in [79, 80].

Desugaring

We limit the language of datatype definitions by removing those constructs

for which we have a simple elimination rule: sets, sequences, and optionals.

Sequences of characters are viewed as atomic and excluded from desugaring,

because we want to map them to native SQL strings (varchar). Also, we

rewrite all tuples to VDM-SL’s compose construct. This desugaring step is

performed by applying the rules seq2index, set2fm, and optElim, in a single

traversal.

In the same traversal, we rewrite tuples to VDM-SL compose constructs.

Alternatively, we could have desugared composes to nested tuples, but that

would lead to the loss of names of composes and their fields. Of course, if all

tuples are eliminated in favour of composes, this has the consequence that

all calculation laws involving products should be mapped to rewrite rules

involving composes. This has as additional benefit that various rules, e.g.

(5.13), can be generalized, because composes are n-ary, rather than binary.

After desugaring, our example specification looks as follows:

types

13.0 BAMS =

.1 AccId : : char∗
m-→ Account : :

.2 H : (AccHolder : : char∗) m-→ NIL

.3 B : Amount : : Z
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This expression contains only maps and products (compose), but is not yet

in relational form.

Conversion to relational form

Once the desugared structure is obtained, further transformation rules can

now be applied. At this stage, the rules to apply are unconjoin, unpeither, and

the generalized version of unnjoin. In addition, a rule for flattening nested

composes is needed to bring expressions into the best form to be rewritten

via that generalized rule. These rewrite rules need to be applied exhaustively

throughout the AST. The innermost combinator is suitable for this.

After conversion, our example specification is in the relational normal

form which follows:

types

14.0 BAMS =

.1 compose mapAggr of

.2 AccId : : char∗
m-→ Amount : : Z

.3 tuple : : char∗ char∗
m-→ NIL

.4 end

Resugaring

Finally, sets are reintroduced into the expression, using the dom rule (5.6).

Thus, any occurrence of the form map x to NIL is converted to set of x.

This occurs when further simplification is not possible. This is justified,

because these can be represented directly in SQL. When VDM-SL is targeted

as output language, tuples are reintroduced where binary composes with

anonymous fields occur.

5.2.2 SQL Translation

During transformation, an initial specification is transformed into a rela-

tional normal form. In the translation process these VDM-SL datatypes are

converted to SQL tables and attributes.
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VDM-SL datatype SQL datatype SQL Constraint

bool SMALLINT CHECK (.. IN (0,1))

nat INT CHECK .. >= 0

nat1 INT CHECK .. >= 1

int INT

rat REAL

real REAL

char CHAR ( 1 )

token VARCHAR ( 128 )

seq of char VARCHAR ( 128 )

Table 5.2: Correspondence between VDM-SL and SQL92 datatypes.

The translation of normal forms to SQL is straightforward. The relational

equivalent of a map is a table in which the domain of the map is the primary

key. The relational counterpart of a set is a table with a compound primary

key on all columns to guarantee uniqueness. The elements of maps and sets,

which are products of elementary VDM-SL datatypes, are converted to SQL

column attributes (which are also of elementary types).

Because basic VDM-SL and SQL datatypes are not compatible, a corre-

spondence between them must be made. Table 5.2 shows the correspondence

as implemented in the VooDooM tool, which also shows constraints to be

added to the SQL data model to better preserve the semantics of some

VDM-SL datatypes. Only Standard SQL92 [34] datatypes were chosen, thus

providing a solution that works for all SQL vendor dialects.

The SQL generated for our running BAMS example is as follows:

CREATE TABLE table1 ( CREATE TABLE table2 (

AccId VARCHAR (128) NOT NULL, Attr1 VARCHAR (128) NOT NULL,

Amount INT NOT NULL, Attr2 VARCHAR (128) NOT NULL,

PRIMARY KEY (AccId) PRIMARY KEY (Attr1, Attr2)

) )
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As can be seen, a composite type (the outer compose) with a map and a

set (reintroduced for map ... to NIL) is translated to two tables in SQL.

Because none of the compose elements have tags, they have been automatically

generated as table1 and table2. The fields of the inner composes have been

converted to SQL attribute columns. In case of the map there are two tags:

AccId and Amount. This led to the creation of two attributes with those

names. The primary key of the generated table is AccID because it represents

the domain of the map. In case of the set there are no tags, so attribute

names are automatically generated: Attr1 and Attr2. These two attributes

together form a compound primary key, because combined they represent the

domain of the set.

Thus, table1 uniquely associates an amount to the identifier of each

account in the system, while table2 relates accounts identifiers to account

holders. These two tables implement the original specification in which

account identifiers are mapped to accounts, and each account has a set of

account holders and an amount. The actual retrieve function that witnesses

the abstraction relation between the original VDM-SL specification and this

pair of Sql tables is given in [5].

5.3 Summary

In this chapter we describe a relational calculator which, based on refinement

by calculation, automatically derives from a formal specification an equivalent

relational model which can be translated to SQL.

Theory is introduced by presenting the conversion laws describing the

transformations that can be performed. By applying these rules, a certain

normal form must be reached. This indicates that an equivalent relational

model is successfully obtained and translated to SQL.

The link from theory to practice is described by explaining how the

previously defined transformation laws were implemented in Haskell and

Strafunski and how a formal specification can be translated to SQL.
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We conclude with a test case analysis of a small bank account specification.
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Chapter 6

Conclusions and future work

This chapter presents a brief discussion about the work done carried out

in the project which has led to this dissertation. Section 6.1, provides an

overview about the development method which was strongly based on testing.

For the three main parts of the work (VDM-SL front-end, understanding, and

re-engineering) we will present related work in Section 6.2, contributions in

Section 6.3, and future work in Section 6.4.

Finally, the availability of the tool is discussed in Section 6.5.

6.1 Development Method

It would be ironic that a work about software engineering wouldn’t follow

strong software engineering practices. Hence, all steps of this work were

accompanied by versioning, testing and automatic documentation generation.

Versioning was an important instrument to both development of the

different software components and the dissertation itself. It allowed us not

only to track changes but also it acted as form of documentation. In each

revision, careful attention was paid to supplied comments which would remind

us why certain changes were made.

Testing was applied using two different testing frameworks/tools.

For the development of the VDM-SL grammar (Chapter 3) the parse-
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unit tool was used for both integration and unit testing. We started with

integration tests, using full specifications, to check the completeness of the

grammar. The observation of failure in some tests indicated that the grammar

was not complete due to typos, and missing or incomplete grammar rules.

Since the first version of the grammar was manually transcribed, integration

tests proved to be very valuable in discovering most errors in the grammar.

After all integration tests succeeded (with ambiguities) we incrementally

developed unit tests. Each unit test tried to reproduce exactly one kind

of ambiguity found and, for each of these, a new revision of the grammar

correcting that problem was produced. Testing finished when all reported

ambiguities were solved.

This testing mechanism was possible thanks to the technology used,

generalized LR parsing (GLR), which also allowed us to develop a full near

flawless grammar in short time.

For the implementation of the analysis and the VDM-SL re-engineering,

Sections 4 and 5 respectively, we used a simple but powerful Haskell testing

framework: HUnit [44]. This framework has an extensible API to define

assertions which we enriched with a few functions specifically intended to test

both conversion and translation.

As a rule, for testing a function, we specify the input and the expected

output values. Test observations assert that the values produced from the

input values are equal to the expected output values.

When specifying VDM-SL transformations, the inputs and the outputs

of our tests were VDM-SL AST datatypes. Furthermore, when specifying

VDM-SL to SQL translations, the inputs were VDM-SL AST datatypes and

the expected outputs were SQL AST datatypes.

Every time we wanted to specify a test we had the lengthy and error

prone task of browsing through the AST datatype and selecting the right

types to use. This proved to be a burden, not only because it was difficult to

figure out the correspondence between what we wanted to express and the

correct datatypes but also because of the large number of datatypes envolved
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to expressing even small examples.

Because this was found to be impractical we decided to find a better

alternative to consistently express the tests and, therefore, we decided to

switch to concrete syntax for specifying both input values and expected

results.

This was implemented by parsing code in concrete syntax and subsequent

pass the parsing result to the functions we wanted to test. Both in transfor-

mation and translation this proved to be a success by allowing us to write

faster and far more readable test cases.

Also, using concrete syntax has the additional benefit that even if we

decide to change the AST our tests will resist to that change, i.e., we do

not need to change our unit tests, and consequently, new errors can not be

introduced.

Finally, for automatic documentation generation the Haddock tool [70]

was used to generate API HTML documentation.

6.2 Related Work

In this section we will present a brief overview about the state of art of field

in which our work is related with, namely grammar engineering, program

understanding and re-engineering.

For each of these, we will devote a section to discuss how our work

comparables to other author’s work.

6.2.1 Front-end for VDM-SL

Malloy and Power have applied various software engineering techniques during

the development of a LALR parser for C# [69]. Their techniques include

versioning, testing, and the grammar size, complexity, and structure metrics

that we adopted ([83], see Table 3.1). They do neither measure coverage, nor

unit testing.
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Lämmel et al. have advocated derivation of grammars from language

reference documents through a semi-automatic transformational process [64,

62]. In particular, they have applied their techniques to recover the VS

COBOL II grammar from railroad diagrams in an IBM reference manual.

They use metrication on grammars, though less extensive than we do. No

coverage measurement nor unit tests are reported.

Klint et al. provide a survey over grammar engineering techniques and an

agenda for grammar engineering research [57]. The need for an engineering

approach and tool support for grammar development has also been recognized

in the area of natural language processing [29, 98].

6.2.2 Support for understanding

References [1, 42] report studies where formal specifications were manually

developed from real-world systems, based on interviews, requirements docu-

ments or simulation. Better understanding about those systems was achieved

due to the higher level of abstraction of the formal specifications.

Moreover, IFAD has implemented an automatic Java to VDM++ con-

version in the VDMTools [49] to support reverse engineering of legacy Java

applications to VDM++. Java class files are analyzed and equivalent VDM++

specifications are produced. VDMTools allow for two kinds of specification

generation: stubs only in which only class attributes and functions signature

are defined; and Java code in which automatic transformations to code are

applied.

Both manual and automatic processes provide better understanding of

existent systems by raising the abstraction level of the language.

6.2.3 Support for re-engineering

Most work on formal methods in relational database design is concerned with

formal models of relational data. This interest dates back to (at least) [14],

where a formalization of a relational data model is given using the VDM
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notation.

The formal specification and design of a program implementing simple

update operations on a binary relational database called NDB is described in

[100]. This single level description of NDB is the starting point of [31], where a

case study in the modular structuring of this “flat” specification is presented.

The authors present a second specification which makes use of an n-ary

relation module, and a third one which uses an n-ary relation module with

type and normalization constraints. They demonstrate the reusability of their

modules, and also outline specifications of an n-ary relational database with

normalization constraints, and an n-ary relational database with a two-level

type hierarchy and no normalization constraints. However, their emphasis is

on the modularization techniques adopted to organize VDM specifications

into modules.

Samson and Wakelin [86] present a comprehensive survey about the use of

algebraic methods to specify databases. They compare a number of approaches

according to the features covered and enumerate some features not normally

covered by such methods.

Barros [12] describes an extension to the traditional database design

aimed at formalizing the development of (relational) database applications. A

general method for the specification of relational database applications using

Z [87] is presented. A prototype is built to support the method. It provides for

editing facilities and is targeted at the DBPL database management system.

The purpose of Baluta [11] is to rigorously specify the basic features of

the relational data model version 2 (RM/V2) as defined by Codd [25], using

the Z language.

More recently, Necco [74] exploits aspects of data processing which are

functional in nature and can take advantage of recent developments in the

area of generic functional programming and calculi. Generic Haskell [45, 23]

is used to animate a generic model of a subset of the standard relational

database calculus, written in the style of model-oriented formal specification.
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6.3 Contributions

6.3.1 Front-end for VDM-SL

In accordance with the objectives set in Section 3, the contributions of the work

reported in this dissertation are twofold. On the one hand, we contribute

to the body of grammar engineering knowledge. We show how grammar

testing, grammar metrication, and coverage analysis can be combined in a

systematic grammar development process that can be characterised as a tool-

based methodology for iterative grammar development. We have motivated

the use of these grammar engineering techniques from the larger context of

grammar-centered language tool development, and we have conveyed our

experiences in using them in a specific grammar development project. In

the process, we have extended the collection of metric reference data of [83]

with values for 6 additional grammars of widely used languages, and we have

collected data for additional grammar metrics defined by us in [8].

On the other hand, we document the developed VDM-SL grammar itself

as well as the iterative process that led to its creation. We have monitored the

development process with various grammar metrics, and developed unit tests

to guide the process of its disambiguation and refactorization. The presented

metrics values quantify the size and complexity of the grammar and reveal

the level of continuity during evolution. The documented process establishes

a firm link between the ISO standard (that served as starting point) and the

final, delivered grammar.

Although this grammar was specially developed for this work, we hope it

will be useful to formal method tool initiatives such as the Overture project1.

6.3.2 Support for understanding

In contrast with other projects where understanding was achieved by con-

verting real-world systems knowledge to formal specifications, our primary

1See http://www.overturetool.org/.

http://www.overturetool.org/
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contribution was the application of known program understanding techniques

to extract yet another kind of information from formal specifications.

We have looked to formal specifications as ordinary software artifacts

suffering of all maintainability problematic as discussed in [67] despite their

higher level of abstraction.

Additionally, we developed a framework for formal specifications under-

standing with the functionalities to extract procedure call, type dependency

and procedure-type dependency graphs which, subsequently, were used as

input of program understanding techniques.

Strongly connected components analysis and formal concept analysis as

well as software metrics were introduced to another software engineering field,

formal methods, with the hope they can be used for instance in re-engineering

or other formal methods tools.

6.3.3 Support for re-engineering

Twelve years ago, Barros [12] referred to the derivation of database programs

directly from formal specifications as an unsolved problem. By contrast,

deriving the database structure was regarded as a trivial aspect. However,

his specifications are Z schemata whose internal states are already close to

the relational model (e.g. power-sets of products).

This is in contrast with our approach, in which the source data-model can

be arbitrarily complex (as far as Vdm-sl data constructors are concerned),

including recursive datatypes. Our “derecursivation” law (rec-elim), which

relationally expresses the main result of [99], bears some resemblance (at

least in spirit) with “defunctionalization” [48], a technique which is used in

program transformation and compilation.

On the other hand, our approach shares with [12] the view that database

design should be regarded as special case of data refinement. It is orthogonal

to [12] in the sense that we are not concerned with database dynamics

(transactions, etc).

Another advantage of our approach is the prospect of synthesizing abstrac-
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tion invariants generated by each refinement step, which is still in the to-do

list of the project. These include abstraction or representation functions and

concrete invariants. The former can be used for data-migration between the

original Vdm-sl source and the generated relational model, in a way similar

to [76] and to what is done manually in [5]. Recently, this issue was covered

in [27]. The latter can be (at least in part) incorporated as SQL constraints.

Strategic term rewriting provides a realistic solution to database schema

calculation when compared with previous attempts to animate the same

calculus using genetic algorithm-based term-rewriting techniques [75].

6.4 Concluding remarks and future work

We successfully achieved all the objectives set in Section 1.4. However, there

is still space for improvement.

6.4.1 Front-end for VDM-SL

Lämmel [60] generalized the notion of rule coverage and advocates the uses of

coverage analysis in grammar development. When adopting a transformational

approach to grammar completion and correction, coverage analysis can be used

to improve grammar testing, and test set generation can be used to increase

coverage. SDF tool support for such test set generation and context-dependent

rule coverage analysis has yet to be developed.

We plan to extend the grammar in a modular way to cover other dialects

of the VDM-SL language, such as IFAD VDM and VDM++. VDM++ has

the advantage of the Java to VDM++ converting supported by the VDMTools

which would allow us to have access to a larger specification test cases.

We have already generated Haskell support for VDM processing for the

grammar, and are planning to provide Java support as well. This could enable

other projects to develop tool support for formal methods.

Also, the integration test suite deserves further extension in order to

increase coverage.
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6.4.2 Support for understanding

A basic framework for program understanding was built and, with it, different

kinds of graphs and metrics were produced.

We briefly showed how to interpret these graphs and commented on some

metric results. Within some limitations, both extracted and derived graphs

were successfully used for interpretation. We realized, for instance, that the

results of transitive closure in the presence of many cycles is not useful, as

well as the strongly connected components one, which does not add much

information when no cycles exist.

Since interpretation of the analysis results was not the main focus of the

work, this was not done extensively.

We showed how we could answer specific questions using some kinds of

graphs and to discover more information when combining different kinds of

graphs. The process for discovering information was done in a more or less

informal way. This could be improved by creating, for instance, a catalog

of procedures to follow when answering specific questions. Also, only the

metric values of a single graph of the SAFER specification were reported and

commented. To use metrics results in statistical analysis we must apply them

to a more comprehensive set of systems.

In summary, as future work we should focus on interpretation and study

in which scenarions such analyses could be applied.

Another issue that could be worth of research is the applicability of these

“research data” in re-engineering, aiding transformation or translation. This

would provide a closer link between understanding and re-engineering.

Finally, we could improve our implementation of techniques, such as eg.

the procedure-type flow analysis, and extend these with others known from

the literature [77].

A possible improvement in procedure-type flow analysis is to take into

account the state of a specification. This was not done because, in ISO VDM-

SL, only one state definition can be specified and we assumed that only one

file can be analyzed. If IFAD VDM-SL extensions were used, which support
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modules and a state definition per module, the improvement of this analysis

becomes mandatory to enable to identify which operations manipulate which

state.

Moreover, as possible extensions, we could consider techniques that take

into account the body of functions and operations.

Furthermore, we only applied our analysis to a single test case. To validate

these techniques it is necessary to test different methodologies for applying

these analysis during development and maintenance and to apply them to a

significant number of specifications.

6.4.3 Support for re-engineering

We would like to extend the re-engineering process in several ways. Firstly,

in addition to the conversion of Vdm-sl to SQL, we want to support the

reverse process of obtaining an algebraic set of datatypes from a relational

model, as already suggested by the dashed lines in the architecture overview

in Figure 5.1.

Reversing a database to Vdm-sl is not a novelty. This problem was already

tackled in [76], in which the authors describe an implemented functional

prototype and its application using a real world example.

However that implementation has several drawbacks. The process has to

be assisted manually, the initial relational model must be specified in Vdm-sl,

the transformation rules were coded with explicit recursion, and all traversals

were hard-coded leading to inflexibility in the implementation.

With strategic term rewriting approach, the same problem can be solved

in a more pragmatic way.

Secondly, we intend to offer better support for invariants to the tool. The

transformation and translation processes in both directions lack support for

Vdm-sl invariants. To more accurately preserve semantics, invariants should

be added during the transformation process when a datatype is split in two

or more.

However, invariants pose some difficulties when performing transforma-
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tions since the data definitions which they refer to are changing. Thus,

invariants need also to reflect this change. When the transformations are

simple, rearrangements of data fields can be easy but, since invariants can

be as elaborate as any function mapping the type to a boolean, the general

case is not. Transforming arbitrary functionality in an automated manner

is a challenging subject which would involve research beyond the scope of

this tool. However, we intend to develop some invariant support, namely to

referential integrity constraints, by providing a small subset of Vdm-sl that

can be mapped into SQL constraints in an automated way.

6.5 Availability

The VooDooM tool presented in this work is freely available under the BSD

open-source license from http://voodoom.sourceforge.net/.

From the website it is possible to download both the source code and

binary versions of the VooDooM tool for several operating systems. To ease

the process, third-party software dependencies are also available for download.

In addition to the tool, the ISO VDM-SL grammar in SDF was also made

available as browseable hyperdocument.

http://voodoom.sourceforge.net/
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Appendix A

SAFER specification

This appendix presents the original SAFER specification. The one used in
our work is slightly different to conform to the ISO standard [50].

A.1 SAFER module

The top level state machine model of the controller is presented in the SAFER
module. A transition function describes the effects of the controller’s actions
during a single frame. A 5 msec frame period is assumed (200 Hz sampling
rate).

module SAFER

imports

15.0 from TS all ,

16.0 from AAH all ,

17.0 from AUX all ,

18.0 from HCM all

exports all

definitions

The top level state machine transition function represents one frame of
controller operation (once around the main control loop). A post-condition
is used to express some desired general properties (maximum 4 thrusters
simultaneously and no two selected thrusters should oppose each other).

19.0 state SAFER of
.1 clock : N

115
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.2 init s 4 s = mk-SAFER (0)

.3 end

operations

20.0 ControlCycle : HCM ‘SwitchPositions ×HCM ‘HandGripPosition ×
.1 AUX ‘RotCommand o→ TS ‘ThrusterSet

.2 ControlCycle (mk-HCM ‘SwitchPositions (mode, aah), raw -grip, aah-cmd) 4

.3 let grip-cmd = HCM ‘GripCommand (raw -grip,mode),

.4 thrusters = TS ‘SelectedThrusters (grip-cmd , aah-cmd ,

.5 AAH ‘ActiveAxes (),

.6 AAH ‘IgnoreHcm ()) in

.7 (AAH ‘Transition(aah, grip-cmd , clock) ;

.8 clock := clock + 1;

.9 return thrusters )

.10 post card RESULT 6 4 ∧

.11 ThrusterConsistency (RESULT )

functions

21.0 ThrusterConsistency : TS ‘ThrusterName-set → B

.1 ThrusterConsistency (thrusters) 4

.2 ¬ (2〈B1〉,〈F1〉 ⊆ thrusters) ∧

.3 ¬ (2〈B2〉,〈F2〉 ⊆ thrusters) ∧

.4 ¬ (2〈B3〉,〈F3〉 ⊆ thrusters) ∧

.5 ¬ (2〈B4〉,〈F4〉 ⊆ thrusters) ∧

.6 ¬ (thrusters ∩ 2〈L1R〉,〈L1F〉 6= 2 ∧ thrusters ∩ 2〈R2R〉,〈R2F〉 6= 2) ∧

.7 ¬ (thrusters ∩ 2〈L3R〉,〈L3F〉 6= 2 ∧ thrusters ∩ 2〈R4R〉,〈R4F〉 6= 2) ∧

.8 ¬ (thrusters ∩ 2〈D1R〉,〈D1F〉 6= 2 ∧ thrusters ∩ 2〈U3R〉,〈U3F〉 6= 2) ∧

.9 ¬ (thrusters ∩ 2〈D2R〉,〈D2F〉 6= 2 ∧ thrusters ∩ 2〈U4R〉,〈U4F〉 6= 2)

end SAFER

A.2 AUX module - Auxiliary defintions

In the AUX module various auxiliary value and type definitions for the
SAFER example are provided.

module AUX

exports all

definitions
values
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22.0 arbitrary-value = mk-token (1001);

23.0 axis-command -set : AxisCommand-set = 2〈Neg〉,〈Zero〉,〈Pos〉;

24.0 tran-axis-set : TranAxis-set = 2〈X 〉,〈Y 〉,〈Z 〉;

25.0 rot-axis-set : RotAxis-set = 2〈Roll〉,〈Pitch〉,〈Yaw〉;

26.0 null -tran-command : TranCommand = {a 7→ 〈Zero〉 | a ∈ tran-axis-set};

27.0 null -rot-command : RotCommand = {a 7→ 〈Zero〉 | a ∈ rot-axis-set};

28.0 null -six -dof : SixDofCommand = mk-SixDofCommand (null -tran-command ,
.1 null -rot-command)

types

29.0 AxisCommand = 〈Neg〉 | 〈Zero〉 | 〈Pos〉;

30.0 TranAxis = 〈X 〉 | 〈Y 〉 | 〈Z 〉;

31.0 RotAxis = 〈Roll〉 | 〈Pitch〉 | 〈Yaw〉;

32.0 TranCommand = TranAxis m-→ AxisCommand

.1 inv cmd 4 dom cmd = tran-axis-set ;

33.0 RotCommand = RotAxis m-→ AxisCommand

.1 inv cmd 4 dom cmd = rot-axis-set ;

34.0 SixDofCommand : : tran : TranCommand
.1 rot : RotCommand

end AUX
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A.3 HCM module - Hand controller module

The hand controller module (HCM) consists of a set of switches, a hand
grip controller with integral pushbutton, and a set of crew displays. A six
degree-of-freedom command is derived from four-axis hand grip inputs and
the control mode switch position. It is assumed that switch debouncing
is provided by a low-level hardware or software mechanism so that switch
transitions in this model may be considered clean.

module HCM

imports

35.0 from AUX all

exports all

definitions
types

36.0 SwitchPositions : :mode : ControlModeSwitch
.1 aah : ControlButton;

37.0 ControlModeSwitch = 〈Rot〉 | 〈Tran〉;

38.0 ControlButton = 〈Up〉 | 〈Down〉;

39.0 HandGripPosition : : vert : AUX ‘AxisCommand
.1 horiz : AUX ‘AxisCommand
.2 trans : AUX ‘AxisCommand
.3 twist : AUX ‘AxisCommand

The hand grip provides four axes for command input, which are multi-
plexed by the control mode switch into the required six axes. The four degrees
of freedom on the controller are vertical, horizontal, transverse (along the
shaft), and twist (about the shaft).

functions
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40.0 GripCommand : HandGripPosition×ControlModeSwitch → AUX ‘SixDofCommand

.1 GripCommand (mk-HandGripPosition (vert , horiz , trans, twist),mode) 4

.2 let tran = 〈X 〉 7→ horiz ,

.3 〈Y 〉 7→ if mode = 〈Tran〉

.4 then trans

.5 else 〈Zero〉,

.6 〈Z 〉 7→ if mode = 〈Tran〉

.7 then vert

.8 else 〈Zero〉 ⇀,

.9 rot = 〈Roll〉 7→ if mode = 〈Rot〉

.10 then vert

.11 else 〈Zero〉,

.12 〈Pitch〉 7→ twist ,

.13 〈Yaw〉 7→ if mode = 〈Rot〉

.14 then trans

.15 else 〈Zero〉 ⇀ in

.16 mk-AUX ‘SixDofCommand (tran, rot)

end HCM

A.4 TS module - Thruster selection logic

The truster selection logic of modelled in the TS module. Hand controller
and AAH commands are merged together in accordance with tha various
priority rules, yielding a six degree-of-freedom command. Thruster selection
tables are consulted to convert translational and rotational components to
individual actuator commands for opening suitable thruster valves.

module TS

imports

41.0 from AAH all ,

42.0 from AUX all

exports all

definitions
types

43.0 ThrusterName = 〈B1〉 | 〈B2〉 | 〈B3〉 | 〈B4〉 | 〈F1〉 | 〈F2〉 | 〈F3〉 | 〈F4〉 |
.1 〈L1R〉 | 〈L1F 〉 | 〈R2R〉 | 〈R2F 〉 | 〈L3R〉 | 〈L3F 〉 | 〈R4R〉 |
.2 〈R4F 〉 | 〈D1R〉 | 〈D1F 〉 | 〈D2R〉 | 〈D2F 〉 | 〈U 3R〉 |
.3 〈U 3F 〉 | 〈U 4R〉 | 〈U 4F 〉;

44.0 ThrusterSet = ThrusterName-set

functions
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45.0 RotCmdsPresent : AUX ‘RotCommand → B

.1 RotCmdsPresent (cmd) 4

.2 ∃ a ∈ dom cmd · cmd (a) 6= 〈Zero〉;

46.0 PrioritizedTranCmd : AUX ‘TranCommand → AUX ‘TranCommand

.1 PrioritizedTranCmd (tran) 4

.2 if tran (〈X 〉) 6= 〈Zero〉

.3 then AUX ‘null -tran-command † 〈X 〉 7→ tran (〈X 〉) ⇀

.4 elseif tran (〈Y 〉) 6= 〈Zero〉

.5 then AUX ‘null -tran-command † 〈Y 〉 7→ tran (〈Y 〉) ⇀

.6 elseif tran (〈Z 〉) 6= 〈Zero〉

.7 then AUX ‘null -tran-command † 〈Z 〉 7→ tran (〈Z 〉) ⇀

.8 else AUX ‘null -tran-command ;

47.0 CombinedRotCmds : AUX ‘RotCommand ×AUX ‘RotCommand ×
.1 AUX ‘RotAxis-set → AUX ‘RotCommand

.2 CombinedRotCmds (hcm-rot , aah, ignore-hcm) 4

.3 let aah-axes = ignore-hcm ∪

.4 {a | a ∈ AUX ‘rot-axis-set · hcm-rot (a) = 〈Zero〉} in

.5 {a 7→ aah (a) | a ∈ aah-axes} m
⋃

.6 {a 7→ hcm-rot (a) | a ∈ AUX ‘rot-axis-set \ aah-axes};

48.0 IntegratedCommands : AUX ‘SixDofCommand ×AUX ‘RotCommand ×
.1 AUX ‘RotAxis-set×AUX ‘RotAxis-set → AUX ‘SixDofCommand

.2 IntegratedCommands (mk-AUX ‘SixDofCommand (tran, rot),

.3 aah, active-axes, ignore-hcm) 4

.4 if AAH ‘AllAxesOff (active-axes)

.5 then if RotCmdsPresent (rot)

.6 then mk-AUX ‘SixDofCommand (AUX ‘null -tran-command , rot)

.7 else mk-AUX ‘SixDofCommand (PrioritizedTranCmd (tran),

.8 AUX ‘null -rot-command)

.9 else if RotCmdsPresent (rot)

.10 then mk-AUX ‘SixDofCommand (AUX ‘null -tran-command ,

.11 CombinedRotCmds (rot , aah, ignore-hcm))

.12 else mk-AUX ‘SixDofCommand (PrioritizedTranCmd (tran), aah);

Selection of back and forward thrusters results in a pair of thruster
sets, the first of which gives mandatory thrusters and the second gives
optional thrusters. (Mandatory means always selected while optional means
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conditionally selected.) This function represents the selection table for X,
pitch, and yaw commands.

49.0 BFThrusters : AUX ‘AxisCommand ×AUX ‘AxisCommand ×
.1 AUX ‘AxisCommand → ThrusterSet × ThrusterSet

.2 BFThrusters (A,B ,C ) 4

.3 cases mk- (A,B ,C ) :

.4 mk- (〈Neg〉, 〈Neg〉, 〈Neg〉) → mk- (2〈B4〉, 2〈B2〉,〈B3〉),

.5 mk- (〈Neg〉, 〈Neg〉, 〈Zero〉) → mk- (2〈B3〉,〈B4〉, 2),

.6 mk- (〈Neg〉, 〈Neg〉, 〈Pos〉) → mk- (2〈B3〉, 2〈B1〉,〈B4〉),

.7 mk- (〈Neg〉, 〈Zero〉, 〈Neg〉) → mk- (2〈B2〉,〈B4〉, 2),

.8 mk- (〈Neg〉, 〈Zero〉, 〈Zero〉) → mk- (2〈B1〉,〈B4〉, 2〈B2〉,〈B3〉),

.9 mk- (〈Neg〉, 〈Zero〉, 〈Pos〉) → mk- (2〈B1〉,〈B3〉, 2),

.10 mk- (〈Neg〉, 〈Pos〉, 〈Neg〉) → mk- (2〈B2〉, 2〈B1〉,〈B4〉),

.11 mk- (〈Neg〉, 〈Pos〉, 〈Zero〉) → mk- (2〈B1〉,〈B2〉, 2),

.12 mk- (〈Neg〉, 〈Pos〉, 〈Pos〉) → mk- (2〈B1〉, 2〈B2〉,〈B3〉),

.13 mk- (〈Zero〉, 〈Neg〉, 〈Neg〉) → mk- (2〈B4〉,〈F1〉, 2),

.14 mk- (〈Zero〉, 〈Neg〉, 〈Zero〉) → mk- (2〈B4〉,〈F2〉, 2),

.15 mk- (〈Zero〉, 〈Neg〉, 〈Pos〉) → mk- (2〈B3〉,〈F2〉, 2),

.16 mk- (〈Zero〉, 〈Zero〉, 〈Neg〉) → mk- (2〈B2〉,〈F1〉, 2),

.17 mk- (〈Zero〉, 〈Zero〉, 〈Zero〉) → mk- (2, 2),

.18 mk- (〈Zero〉, 〈Zero〉, 〈Pos〉) → mk- (2〈B3〉,〈F4〉, 2),

.19 mk- (〈Zero〉, 〈Pos〉, 〈Neg〉) → mk- (2〈B2〉,〈F3〉, 2),

.20 mk- (〈Zero〉, 〈Pos〉, 〈Zero〉) → mk- (2〈B1〉,〈F3〉, 2),

.21 mk- (〈Zero〉, 〈Pos〉, 〈Pos〉) → mk- (2〈B1〉,〈F4〉, 2),

.22 mk- (〈Pos〉, 〈Neg〉, 〈Neg〉) → mk- (2〈F1〉, 2〈F2〉,〈F3〉),

.23 mk- (〈Pos〉, 〈Neg〉, 〈Zero〉) → mk- (2〈F1〉,〈F2〉, 2),

.24 mk- (〈Pos〉, 〈Neg〉, 〈Pos〉) → mk- (2〈F2〉, 2〈F1〉,〈F4〉),

.25 mk- (〈Pos〉, 〈Zero〉, 〈Neg〉) → mk- (2〈F1〉,〈F3〉, 2),

.26 mk- (〈Pos〉, 〈Zero〉, 〈Zero〉) → mk- (2〈F2〉,〈F3〉, 2〈F1〉,〈F4〉),

.27 mk- (〈Pos〉, 〈Zero〉, 〈Pos〉) → mk- (2〈F2〉,〈F4〉, 2),

.28 mk- (〈Pos〉, 〈Pos〉, 〈Neg〉) → mk- (2〈F3〉, 2〈F1〉,〈F4〉),

.29 mk- (〈Pos〉, 〈Pos〉, 〈Zero〉) → mk- (2〈F3〉,〈F4〉, 2),

.30 mk- (〈Pos〉, 〈Pos〉, 〈Pos〉) → mk- (2〈F4〉, 2〈F2〉,〈F3〉)

.31 end;

Selection of left, right, up, and down thrusters resulting from Y, Z, and
roll commands.
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50.0 LRUDThrusters : AUX ‘AxisCommand×AUX ‘AxisCommand×AUX ‘AxisCommand
.1 → ThrusterSet × ThrusterSet

.2 LRUDThrusters (A,B ,C ) 4

.3 cases mk- (A,B ,C ) :

.4 mk- (〈Neg〉, 〈Neg〉, 〈Neg〉) → mk- (2, 2),

.5 mk- (〈Neg〉, 〈Neg〉, 〈Zero〉) → mk- (2, 2),

.6 mk- (〈Neg〉, 〈Neg〉, 〈Pos〉) → mk- (2, 2),

.7 mk- (〈Neg〉, 〈Zero〉, 〈Neg〉) → mk- (2〈L1R〉, 2〈L1F〉,〈L3F〉),

.8 mk- (〈Neg〉, 〈Zero〉, 〈Zero〉) → mk- (2〈L1R〉,〈L3R〉, 2〈L1F〉,〈L3F〉),

.9 mk- (〈Neg〉, 〈Zero〉, 〈Pos〉) → mk- (2〈L3R〉, 2〈L1F〉,〈L3F〉),

.10 mk- (〈Neg〉, 〈Pos〉, 〈Neg〉) → mk- (2, 2),

.11 mk- (〈Neg〉, 〈Pos〉, 〈Zero〉) → mk- (2, 2),

.12 mk- (〈Neg〉, 〈Pos〉, 〈Pos〉) → mk- (2, 2),

.13 mk- (〈Zero〉, 〈Neg〉, 〈Neg〉) → mk- (2〈U3R〉, 2〈U3F〉,〈U4F〉),

.14 mk- (〈Zero〉, 〈Neg〉, 〈Zero〉) → mk- (2〈U3R〉,〈U4R〉, 2〈U3F〉,〈U4F〉),

.15 mk- (〈Zero〉, 〈Neg〉, 〈Pos〉) → mk- (2〈U4R〉, 2〈U3F〉,〈U4F〉),

.16 mk- (〈Zero〉, 〈Zero〉, 〈Neg〉) → mk- (2〈L1R〉,〈R4R〉, 2),

.17 mk- (〈Zero〉, 〈Zero〉, 〈Zero〉) → mk- (2, 2),

.18 mk- (〈Zero〉, 〈Zero〉, 〈Pos〉) → mk- (2〈R2R〉,〈L3R〉, 2),

.19 mk- (〈Zero〉, 〈Pos〉, 〈Neg〉) → mk- (2〈D2R〉, 2〈D1F〉,〈D2F〉),

.20 mk- (〈Zero〉, 〈Pos〉, 〈Zero〉) → mk- (2〈D1R〉,〈D2R〉, 2〈D1F〉,〈D2F〉),

.21 mk- (〈Zero〉, 〈Pos〉, 〈Pos〉) → mk- (2〈D1R〉, 2〈D1F〉,〈D2F〉),

.22 mk- (〈Pos〉, 〈Neg〉, 〈Neg〉) → mk- (2, 2),

.23 mk- (〈Pos〉, 〈Neg〉, 〈Zero〉) → mk- (2, 2),

.24 mk- (〈Pos〉, 〈Neg〉, 〈Pos〉) → mk- (2, 2),

.25 mk- (〈Pos〉, 〈Zero〉, 〈Neg〉) → mk- (2〈R4R〉, 2〈R2F〉,〈R4F〉),

.26 mk- (〈Pos〉, 〈Zero〉, 〈Zero〉) → mk- (2〈R2R〉,〈R4R〉, 2〈R2F〉,〈R4F〉),

.27 mk- (〈Pos〉, 〈Zero〉, 〈Pos〉) → mk- (2〈R2R〉, 2〈R2F〉,〈R4F〉),

.28 mk- (〈Pos〉, 〈Pos〉, 〈Neg〉) → mk- (2, 2),

.29 mk- (〈Pos〉, 〈Pos〉, 〈Zero〉) → mk- (2, 2),

.30 mk- (〈Pos〉, 〈Pos〉, 〈Pos〉) → mk- (2, 2)

.31 end;

An integrated six degree-of-freedom command is mapped into a vector
of actuator commands. Selection tables provide lists of thrusters and both
mandatory and optional thrusters are included as appropriate.
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51.0 SelectedThrusters : AUX ‘SixDofCommand ×AUX ‘RotCommand ×
.1 AUX ‘RotAxis-set×AUX ‘RotAxis-set → ThrusterSet

.2 SelectedThrusters (hcm, aah, active-axes, ignore-hcm) 4

.3 let mk-AUX ‘SixDofCommand (tran, rot) =

.4 IntegratedCommands (hcm, aah, active-axes, ignore-hcm),

.5 mk- (bf -mandatory , bf -optional) =

.6 BFThrusters (tran (〈X 〉), rot (〈Pitch〉), rot (〈Yaw〉)),

.7 mk- (lrud -mandatory , lrud -optional) =

.8 LRUDThrusters (tran (〈Y 〉), tran (〈Z 〉), rot (〈Roll〉)),

.9 bf -thr = if rot (〈Roll〉) = 〈Zero〉

.10 then bf -optional ∪ bf -mandatory

.11 else bf -mandatory ,

.12 lrud -thr = if rot (〈Pitch〉) = 〈Zero〉 ∧ rot (〈Yaw〉) = 〈Zero〉

.13 then lrud -optional ∪ lrud -mandatory

.14 else lrud -mandatory in

.15 bf -thr ∪ lrud -thr

end TS

A.5 AAH module - Automatic attitude hold

An automatic attitude hold (AAH) capability may be invoked to maintain
near-zero rotation rates. A pushbutton mounted on the hand grip engages
AAH with a single button click, and disengages with a double click. Internal
state information is maintained to observe the button pushing protocol, and
keep track of status for each axis.

module AAH

imports

52.0 from AUX all ,

53.0 from HCM all

exports all

definitions

54.0 state AAH of
.1 active-axes : AUX ‘RotAxis-set
.2 ignore-hcm : AUX ‘RotAxis-set
.3 toggle : EngageState
.4 timeout : N

.5 init s 4 s = mk-AAH (2, 2, 〈AAH off 〉, 0)

.6 end

types
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55.0 EngageState = 〈AAH off 〉 | 〈AAH started〉 | 〈AAH on〉 | 〈pressed once〉 |
.1 〈AAH closing〉 | 〈pressed twice〉

values

56.0 click -timeout : N = 10

AAH state information is updated in every frame. Key transitions in the
engage-state diagram cause various state components to be updated.

operations

57.0 Transition : HCM ‘ControlButton ×AUX ‘SixDofCommand × N o→ ()

.1 Transition (button-pos, hcm-cmd , clock) 4

.2 let engage = ButtonTransition (toggle, button-pos, active-axes, clock , timeout),

.3 starting = (toggle = 〈AAH off 〉) ∧ (engage = 〈AAH started〉) in

.4 (active-axes := {a | a ∈ AUX ‘rot-axis-set ·

.5 starting ∨

.6 (engage 6= 〈AAH off 〉 ∧ a ∈ active-axes ∧

.7 (hcm-cmd .rot (a) = 〈Zero〉 ∨ a ∈ ignore-hcm))};

.8 ignore-hcm := {a | a ∈ AUX ‘rot-axis-set ·

.9 (starting ∧ hcm-cmd .rot (a) 6= 〈Zero〉) ∨

.10 (¬ starting ∧ a ∈ ignore-hcm)};

.11 timeout := if toggle = 〈AAH on〉 ∧ engage = 〈pressed once〉

.12 then clock + click -timeout

.13 else timeout ;

.14 toggle := engage);

58.0 ActiveAxes : () o→ AUX ‘RotAxis-set

.1 ActiveAxes () 4

.2 return active-axes;

59.0 IgnoreHcm : () o→ AUX ‘RotAxis-set

.1 IgnoreHcm () 4

.2 return ignore-hcm;

60.0 Toggle : () o→ EngageState

.1 Toggle () 4

.2 return toggle
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functions

61.0 AllAxesOff : AUX ‘RotAxis-set → B

.1 AllAxesOff (active) 4

.2 active = 2;

On each frame, the sampled value of the AAH engage button is checked
to determine whether AAH is engaging or disengaging. This function models
the AAH engagement state diagram.

62.0 ButtonTransition : EngageState×HCM ‘ControlButton×AUX ‘RotAxis-set×
.1 N× N → EngageState

.2 ButtonTransition (estate, button, active, clock , timeout) 4

.3 cases mk- (estate, button) :

.4 mk- (〈AAH off 〉, 〈Up〉) → 〈AAH off 〉,

.5 mk- (〈AAH off 〉, 〈Down〉) → 〈AAH started〉,

.6 mk- (〈AAH started〉, 〈Up〉) → 〈AAH on〉,

.7 mk- (〈AAH started〉, 〈Down〉) → 〈AAH started〉,

.8 mk- (〈AAH on〉, 〈Up〉) → if AllAxesOff (active)

.9 then 〈AAH off 〉

.10 else 〈AAH on〉,

.11 mk- (〈AAH on〉, 〈Down〉) → 〈pressed once〉,

.12 mk- (〈pressed once〉, 〈Up〉) → 〈AAH closing〉,

.13 mk- (〈pressed once〉, 〈Down〉) → 〈pressed once〉,

.14 mk- (〈AAH closing〉, 〈Up〉) → if AllAxesOff (active)

.15 then 〈AAH off 〉

.16 elseif clock > timeout

.17 then 〈AAH on〉

.18 else 〈AAH closing〉,

.19 mk- (〈AAH closing〉, 〈Down〉) → 〈pressed twice〉,

.20 mk- (〈pressed twice〉, 〈Up〉) → 〈AAH off 〉,

.21 mk- (〈pressed twice〉, 〈Down〉) → 〈pressed twice〉

.22 end

end AAH
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