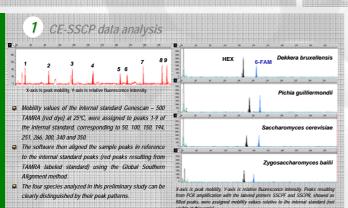
brought to you by D CORE ersidade do Minho: Repo

Identification of Wine Related Yeast Species by Capillary Electrophoresis Single Strand Conformation Polymorphism Analysis (CE-SSCP) of the 26S rRNA Gene

B. Dellinger, M. Silva Graça, M. Casal and D. Schuller

Departamento / Centro de Biologia, Universidade do Minho, Braga, Portugal


Dorit Schuller Centro de Biologia, Campus de Gualtar Universidade do Minho 4710-057 Braga, Portugal Tel: 253 - 60 40 10/17

Universidade do Minho

Introduction

industry yeast spoilage presents a severe problem related to great economic loss. Dekkera bruxellensis is described as the most serious spollage yeast, due to its ability to produce high amounts of volatile phenols which cause off-flavours [2]. Pichia guilliermondii has the ability to produce the same phenols with efficiencies as high as those found in D. bruxellensis [3]. Besides its beneficial effect in wine fermentation Saccharomyces cerevisiae is also able to cause spoilage after fermentation as it resists high ethanol concentrations [4]. Yeasts of the genus Zygosaccharomyces also cause spoilage in wines and among them Zygosaccharomyces bailii is considered one of the most dangerous and frequently found yeasts in spoiled food and beverages [].

It is important to detect spoilage yeasts quickly to allow wineries to intervene rapidly and effectively. In recent ars there has been a great effort to develop rapid identification techniques. In comparison to traditional culture dependent methods, these new PCR-based methods allow faster detection and identification, CE-SSCP presents a powerful analysis technique that separates DNA fragments of the same length according to their sequence [6]. It is based on the heat denaturation of PCR amplified DNA where single stranded fragments are formed. These fragments are subjected to capillary electrophoresis under non denaturing conditions, where they form folded conformations due to their sequence. In this study, a CE-SSCP assay was developed based on a 164 bp fragment of the D1/D2 domain of the 26S rRNA gene in order to distinguish between various wind yeasts

Intraspecific variation and influence 2 of electrophoresis temperature on the mobility values

			9/12 C 21111			31195357 AM	7,81,07118
Species	Strain	HEX	6-FAM	HEX	6-FAM	HEX	6-FAN
Dekkera bruxellensis	ISA 1600	155,44	190,60	158,60	189,79	161,48	188,70
	ISA 1649	155,25	190,91	158,74	189,80	161,36	188,98
	ISA 1791	155,10	190,91	158,61	189,95	161,43	188,72
	ISA 2104	155,05	190,74	158,54	189,81	161,58	188,58
Intraspecific variation	average						188,75
	SD (+/-)	0,18	0,15	0,08	0,08	0,09	0,17
	ISA 2105	187,07	197,26	180,83	197,70	174,99	197,28
Pichia quilliermondii	ISA 2126	187,04	197,69	180,83	197,72	174,89	197,38
Picilia guillerillonuli	ISA 2131	186,69	197,42	181,19	198,20	174,62	197,20
	ISA 2145	186,36	197,30	180,72	197,57	174,98	197,2
Intraspecific variation	average						197,30
	SD (+/-)	0,33	0,19	0,20	0,28	0,17	0,0
	L169	176,20	193,36	174,92	193,88	168,74	194,7
Saccharomyces cerevisiae	L170	175,98	193,22	174,96	194,06	168,68	194,60
Saccharomyces cerevisiae	L 196	177,78	192,66	174,66	193,60	168,49	194,60
	PYCC 4455T	176,87	193,00	174,85	194,06	168,72	194,7;
Intraspecific variation	average		193,06	174,85	193,90	168,66	194,6
	SD (+/-)	0,81	0,31	0,13	0,22	0,11	0,0
Zygosaccharomyces ballii	ISA 1149	161,10	189,26	159,18	185,88	162,28	182,69
	ISA 1214	160,11	191,26	158,67	188,41	161,68	184,10
	ISA 1265	161,48	188,73	159,14	185,74	162,19	182,8
	PYCC 5167T	160,87	189,06	159,25	186,15	162,33	182,80
Intraspecific variation	average	160,89	189,58	159,06	186,55		183,12
Indaspecine valiation							

The influence of electrophoresis temperature on the mobility values CE-SSCP analysis was evaluated at (35, 30 and 25 °C). A single DNA isolation, PCR amplification and CE-SSCP analysis was performed for each strain of the 4 species

The standard deviation decreased with the temperature and showed values of 0.05 – 0.30 at 25 °C, compared to 0.15 – 1.14 at 30°C. The intraspecific variation showed standard deviations of less than 1 mobility value between strains belonging to the same species. An exception is 2: ballii, that presented higher variation in the 6-FAM labeled strand at 35 and 30 °C. This was due to strain ISA1214, that differed in mobility values from the other strains. Sequencing of the D1/D2 domain of these strains revealed that strain ISA1214 has one base pair difference in comparison to the other strains.

Subsequent analysis were always performed at 25 °C.

Conclusions

We identified a 164 bp fragment inside the D1/D2 domain of the 26S rDNA, that shows sufficient nucleotide divergence among species and can be used for the distinction of wine related yeast species based on their CE-SSCP mobility values.

The range of mobility values (156 - 187 for primer SSCPF and 158 - 202 for primer SSCPR) creates a sufficiently high number of combinations for the unequivocal distinction of 16 from 22 wine related yeast species. However, three pairs of species (Dekkera anomala and Candida vini; Sacchromyces cerevisiae and Saccharomyces paradoxus; Zygosaccharomyces bailii and Zygosaccharomyces bisporus) were not distinguishable.

Intraspecific standard deviations increased with the capillary electrophoresis temperature. At 25°C, standard deviations associated to run-to-run variations, evaluated for 8 strains, were less than 0.7 mobility values, showing that CE-SSCP is a reproducible and portable method for wine yeast identification.

Materials and Methods

Yeast strains

Genomic DNA of 22 wine related yeast species was used. The Stains were obtained: from the instituto Superior de Agronomia, Portugal (ISA), the Portuguese Yeast Culture Collection, Portuga (PYCC), the American Type Culture Collection, USA (ATCC), the

Primers and PCR amplification on sequence polymorphisms of the D1/D2 domain of the 26 primers were designed for the amplification of a 164 bp nt (SSCPF and SSCPR). The 5 ends of the forward and primer were labelled with the fluorescent dyes HEX and 6-

Contraction of the Context of the Contract of the Second of t

Fax: 253 – 60 40 10,17 Fax: 253 – 67 89 80 dschuller@bio.uminho.pt

CE-SSCP data acquisition

CL SOCIAL BACKS BACKST AND CONTRACT AND CONT

(c) Fourier constructions: (CFSSCP analysis was performed using an ABI Prism 310 genetic analyses (CFSSCP analysis was performed using an ABI Prism 310 genetic analyses (FE Applied Boosystems) with a 47 cm length; 50 µm inner diameter capiliary. The non-denshuring polymer used conststed of 3 % (who) genetic polymers (DFE Applied Biosystems) and 10 % (who) glycard As electrophores subtractive tr. 188: containing 10 % glycard was used. The hypicfion time and voltage wave set to 5 sec and 15 KV respectively, while electrophores subtractive tr. 188: containing 10 % glycard was sould. The hypicfion time and voltage wave set to 5 sec and 15 KV respectively, while electrophores with any ans 12 AV. The syring port time was 200 sec. and data collection was performed during 25 min As the electrophoresis temperature has a great influence on the mobility volues, analysis was carried out al three different constant temperatures (B, B) and 25 KQ. In order to compare the results. A mathir file was created following the wandcature's instructions to accent the special overes of the various fluencescent molecules. To obtain comparable results, Gine Sam Analysis fluorescent molecules. To obtain comparable results, Gene Scan Analys. Software 3.5 (PE Applied Biosystems) was used.

Reproducibility - Determination of run to run variation 3

	Strain	Average (SD)		
Species	Strain	HEX	6-FAM	
	ISA 1600	162.08 (0.23)	187.60 (0.42)	
D. bruxellensis				
	ISA 2105	174.55 (0.67)	196.73 (0.27)	
P. guilliermondii				
	L 169	167.86 (0.49)	194.39 (0.14)	
S. cerevisiae				
Z. bailii	ISA 1265	162.38 (0.21)	182.39 (0.41)	
Z. Dallii	PYCC 4531	162.36 (0.29)	182.48 (0.30)	

A single DNA extraction and quantification was performed for two s of each of the four species mentioned in the Table. Duplicate PCR amplifications per strain were carried out and from each PCR product two CE-SSCP samples were prepared and analyzed in three CE-SSCP runs at 25 °C. Average and standard deviation were calculated between the results of the resulting 12 runs for each strain

Standard deviations were less than 1 mobility value.

Analysis of other wine related yeast species

Species	Strain	HEX	6-FAM	Species	Strain	HEX	6-FAM
Candida cantarelli	PYCC 3073	166.21	190.06		ISA 2105	174,63	197,09
Candida famata	PYCC 3056	161.00	189.34	Pichia guilliermondii	ISA 2126		197,08
		170.59			ISA 2145		197,07
Candida stellata	CBS 157	161.45	192.63	Rhodotorula mucilaginosa	ISA 2286		197,09
		177 52	197.55		IGC 5166		193,48
Candida vanderwaltii	PYCC 3671		193.72		IGC 4456 Type/CBS 380		195,48
Candida veronae	PYCC 3664		189,15		IGC 4565/CBS 378		195,63
Candida vini	ISA 1007		192.61		IGC 4569/CBS 425		195,48
	PYCC 2597		192.61		IGC 4568/CBS 424		195,94
Dekkera anomala	ISA 1652 Type		193.86	Saccharomyces cerevisiae	IGC 4455 Type/CBS 1171 IGC 2608/CBS 1782	168,07	194,29
	IGC 5133		193.59		IGC 2608/CBS 1782		193,86
	ISA 1600		188.70		IGC 3983		194,00
Dekkera bruxellensis	ISA 1700		187.82	Saccharomyces ludwigii	ISA 1089		193.05
	ISA 1700		187.70		ISA 1089		193,18
	ISA 2117		187.71		IGC 4570 Type		194.88
Hanseniaspora uvarum	ISA 1189/CBS 276		193,32		IGC 4576/CBS 406		195.04
	MT1/BG/10		193,32		IGC 4578/CBS 5829		194.88
	IGC 3886 Type/CBS 712		186.37		IGC 4656	166.63	194,89
Kluyveromyces marxianus	ATCC 10022/CBS 6432		186.63		ISA 1083		190,44
	IGC 3286		186,65		IGC 5167 Type/ISA 1149	Г162,16	182,71
	IGC 2200		186,53	Zygosaccharomyces bailii	ISA 1022/IGC 4267	162,66	182,19
					IGC 4806	162,35	182,90
Lodderomyces elongisporus	ISA 1421 ISA 1308		202,23		CBS 2856		182,32
Metschnikowia pulcherrima			202,09	Zygosaccharomyces bisporus	IGC 5335 Type		182,75
	PYCC 5625		158,72		IGC 5336		182,79
	IGC 4384		157,57		IGC 5337		182,78
Pichia anomala	IGC 4121 Type/CBS 5759				IGC 5381		182,78
	IGC 2495		190,51		PYCC 5276 Type		189,15
	IGC 3294		190,49	Zygosaccharomyces rouxii	IGC 3693/CBS 5714		189,09
	IGC 4380	156,04	190,64		IGC 3694/CBS 5717	163,39	189,17

- Distinct strains of 22 wine related yeast species were analyzed. Due to the high reproducibility of the method a single DNA isolation, PCR amplification and CE-SSCP run were performed.
- It was possible to separate yeast species based on their mobility values of both strands. However, some species showed very simila mobility values: Dekkera anomala and Candida vini; Sacchromyces cerevisiae and Saccharomyces paradoxus; Zygosaccharomyces balli and Zygosaccharomyces bisporus.
- Within the Saccharomyces sensu stricto complex it was possible to distinguish S. bayanus from S. cerevisiae and S. paradoxus, show a difference of 3 mobility values in the HEX labeled strain.
- Candida famata, Candida stellata, Issatchenkia orientalis and Schizosaccharomyces pombe strains showed a more complex peak pa
- consisting of several peaks. This might be due to several stable single strand conformations for both strands.

 Metschnikowia pulcherrima was the only species where the HEX labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand showed higher mobility values than the 6-FAM labeled strand strand showed higher mobility values than the 6-FAM labeled strand stran strand.

Espinar M.T.

References

- [1] López V., Querol A., Ramón D., and Fernández-01. Int J Food Microbiol 68:75-81
- P. Chatonnet, D. Dubourdieu, J. Boldron, M. Pons. 1992. J Science Food [2] Agriculture 60: 165-178
- L. Dias, S. Dias, T. Sancho, H. Stender, A. Querol, M. Malfeito-Ferre Loureiro. 2003. Int J Food Microbiol 20: 567-574
- P. Martorell, A. Querol, M. T. Fernández-Espinar. 2005. Appl Envirol [4] rohiol 71. 6823.6830
- B. Esteve-Zardoso, T. Zorman, C. Belloch, A. Querol. 2003. Systematic and
- Applied Microbiology 26: 404 411. [6] C. C. Tebbe, A. Schmalenberger, S. Peters, F. Schw Environmental Molecular Microbiology, UK, 161-175

Acknowledgements

This study was financially supported by the programs POCI 2010 (FEDER/FC) POCI/AGR/56102/2004, POCI/AGR/56771/2004), and AGRO (ENOSAFE, № 762)

This poster is available at http://repositorium.sdum.uminho.pt