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Abstract – Triangulation with active beacons is widely used 

in the absolute localization of mobile robots. The original 
Generalized Geometric Triangulation algorithm suffers only 
from the restrictions that are common to all algorithms that 
perform self-localization through triangulation. But it is unable 
to compute position and orientation when the robot is over the 
segment of the line that goes by beacons 1 and 2 whose origin is 
beacon 1 and does not contain beacon 2. An improved version of 
the algorithm allows self-localization even when the robot is 
over that line segment. Simulations results suggest that a robot 
is able to localize itself, with small position and orientation 
errors, over a wide region of the plane, if measurement 
uncertainty is small enough.  

I. INTRODUCTION 

Localization is the process of finding both position and 
orientation of a vehicle in a given referential system [1], [2], 
[3], [4], [5], [6], [7], [8], [9], [10] Triangulation with active 
beacons is a robust, accurate, flexible and widely used 
method of absolute localization [2], [11]. 

 
Self-localization through triangulation is based on the 

measurement of the bearings of the robot relatively to 
beacons placed in known positions. When navigating on a 
plane, three distinguishable beacons are required - and 
usually enough - for the robot to localize itself. In Fig.1, λ12 
is the oriented angle “seen” by the robot between beacons 1 
and 2. It defines an arc between these beacons, which is a set 
of possible positions of the robot [12]. An additional arc 
between beacons 1 and 3 is defined by λ31. The robot is in 
the intersection of the two arcs. Several algorithms of self-
localization through triangulation are described in [1], [2], 
[3], [6], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22] 
and [23]. 

 

λ12 λ12

λ31 λ31

 

Fig. 1.  Self-localization through triangulation. 

Two restrictions are common to all algorithms that 
perform self-localization through triangulation [2], [3]: 
1. The robot must “see” at least three distinguishable 

beacons to localize itself in a plane. All areas of the 
plane with less than three visible beacons are unsuitable 
for robot localization; 

2. Localization is not possible if the robot is over the 
circumference defined by three non-collinear beacons 
(the intersection of the arcs shown in Fig.1 is another 
arc, not a point) or over the line defined by three 
collinear beacons. 

 
The Geometric Triangulation algorithm described in [18] 

uses three distinguishable beacons that must be ordered in a 
particular way. According to the authors of that paper, “the 
algorithm works consistently only when the robot is within 
the triangle formed by the three landmarks1.” 

 
The Generalized Geometric Triangulation algorithm [3] 

does not require beacon ordering and suffers only from the 
two restrictions that are common to all algorithms that 
perform self-localization through triangulation. But it is 
unable to compute position and orientation when the robot is 
over the segment of the line that goes by beacons 1 and 2 
whose origin is beacon 1 and does not contain beacon 2. It 
was assumed that, when a beacon becomes between the robot 
and another beacon, the closest beacon hides the farther one 
or else the goniometer is not able of simultaneously detecting 
more than one beacon. Any of those situations prevents self-
localization. However, the impediment is due to the 
technology used, not triangulation itself. 

 
Section II describes briefly an improved version of 

Generalized Geometric Triangulation algorithm [1], [2]. It 
works over the segment of the line that goes by beacons 1 
and 2 whose origin is beacon 1 and does not contain beacon 
2. Position and orientation errors are defined on Section III. 
On Section IV, simulation results obtained with different 

                                                 
1 Beacons are also called landmarks by some authors. 
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measurement uncertainties show the distribution of errors 
through the navigation plane. Conclusions are presented in 
Section V. 
 

II. THE IMPROVED GENERALIZED GEOMETRIC 
TRIANGULATION ALGORITHM 

The Generalized Geometric Triangulation algorithm uses 
(Fig.2) three distinguishable beacons, randomly labeled 1, 2 
and 3, with known positions (x1, y1), (x2, y2) and (x3, y3).  

 
L12 is the distance between beacons 1 and 2. L31 is the 

distance between beacons 1 and 3. L1 is the distance between 
the robot and beacon 1. In order to determine its position (xR, 
yR) and orientation θR, the robot measures – in 
counterclockwise fashion – the angles λ1, λ2 and λ3, which 
are the beacon orientations relative to the robot heading. 

 
Line 14 of the algorithm was not present in the original 

version of the algorithm. It is required only when the robot is 
over the segment of the line that goes by beacons 1 and 2 
whose origin is beacon 1 and does not contain beacon 2. 
 

III. POSITION AND ORIENTATION ERRORS 

In general, the computed position does not coincide with 
the true position2 of the robot and the computed orientation 
also does not coincide with its true orientation. There are a 
position error and an orientation error, which – in this paper 
– have the following definitions: 
• the position error ∆PR (Fig.3) is the distance between 

the computed position PRc and the true position PR;  
• the orientation error ∆θR is the modulus of the 

difference between the computed orientation θRc and the 
true orientation. 

 
Measurement errors constitute the main source of position 

and orientation errors, which magnitude also depends on the 
position of the robot relatively to the beacons. 

 
Self-localization through triangulation is not possible when 

the robot is over the circumference defined by three non-
collinear beacons or the line defined by three collinear 
beacons. 

 
In the Generalized Geometric Triangulation algorithm, this 

restriction appears as an impossibility to compute τ due to a 
0/0 indetermination in the expression 
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where 
 31λ−σ=γ . (2) 

                                                 
2 The position of a robot with non-negligible dimensions is the position of 

one of its points. 
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Generalized Geometric Triangulation algorithm: 

1. If there are less than three visible beacons available, then 
return a warning message and stop. 

2. 1212 λ−λ=λ  
3. If 21 λ>λ  then ( )1212 º360 λ−λ+=λ   
4. 3131 λ−λ=λ  

5. If 13 λ>λ  then ( )3131 º360 λ−λ+=λ   

6. Compute L12 from known positions of beacons 1 and 2. 
7. Compute L31 from known positions of beacons 1 and 3. 
8. Let φ be an oriented angle such that -180º < φ ≤ 180º. Its 

origin side is the image of the positive x semi-axis that 
results from the translation associated with the vector which 
origin is (0, 0) and ends on beacon 1. The extremity side is 
the part of the straight line defined by beacons 1 and 2 
which origin is beacon 1 and does not go by beacon 2. 

9. Let σ be an oriented angle such that -180º < σ ≤ 180º. Its 
origin side is the straight line segment that joins beacons 1 
and 3. The extremity side is the part of the straight line 
defined by beacons 1 and 2 which origin is beacon 1 and 
does not go by beacon 2.  

10. 31λσγ −=  
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15. If  3112 nsinsi λ>λ  then ( )
12

1212
1 sinλ

λτsin +⋅
=

LL  

16.   else ( )
31

3131
1 sinλ

λστsin −+⋅
=

LL  

17. ( )τcos11R +φ⋅−= Lxx   
18. ( )τsin11R +φ⋅−= Lyy   
19. 1R λτφθ −+=  
20. If 180ºθR −≤  then 360ºθθ RR +=  
21. If 180ºθR >  then 360ºθθ RR −=  

Fig. 2.  Generalized Geometric Triangulation. 
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Fig. 3.  Position error and orientation error. 

 
The two arcs that form the circumference shown in Fig.4 

correspond to supplementary λ12 angles [24]. Applying this 
to both λ12 and λ31 over the circumference defined by three 
non-collinear beacons ordered in counter-clockwise fashion 
results in the angles shown in Fig.5, inside gray boxes. Fig.5 
also shows that 
 )sin(sin 3112 δ−σ⋅=δ⋅ LL . (3) 

The three possible sets of λ12 and λ31 occurring over the 
circumference, used together with (3), lead to the same 
result, which causes a 0/0 indetermination in (1): 

 

( )[ ]
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=λ⋅λ⋅−λ−σ⋅λ⋅
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0sincoscossin
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311212311231
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 (4) 

An analogous analysis made to non-collinear beacons 
ordered in clockwise fashion leads to the same conclusion. If 
the robot is over the line defined by three collinear beacons, 
each of the angles λ12 and λ31 has a value of 0º or 180º. So, 
sinλ12 and sinλ31 are both zero, which leads to a 0/0 
indetermination in (1). 

 
Even if computing errors are negligible, due to errors on 

angle measurements this indetermination may not happen. 
However, it is expectable that errors on the computed value 
of τ cause large position and orientation errors when the 
robot is over the circumference defined by three non-
collinear beacons or the line defined by three collinear 
beacons. 

λ α12= +180º

λ α12=

 

Fig. 4.  λ12 over a circumference that goes by beacons 1 and 2. 
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Fig. 5.  λ12 and λ31 over the circumference defined by three non-collinear 

beacons ordered in counter-clockwise fashion. 
 

IV. SIMULATIONS RESULTS 

In order to verify the distribution of position and 
orientation errors through the navigation plane, two sets of 
tests were performed in a simulation environment. The code 
was written in Java 2. It was used the Java 2 SDK, Standard 
Edition (version 1.3 for Windows), upgraded with Java 3D 
(version 1.2.1 Beta, for Win32/DirectX), on a personal 
computer equipped with a Intel Pentium III (995MHz) 
processor and running Windows XP (version 5.1.2600). 
Graphics were plotted with Matlab (version 5.2). 

 
Simulations are performed in a square shaped area of the 

navigation plane. Results from the first set of tests (Fig.6) 
show position and orientation errors occurring close to the 
beacons, which are about half the length of the square side 
away from each other. Results from the second set of tests  
(Fig.7) show position and orientation errors occurring far 
from the beacons. All beacons are now close to the center of 
the square and the distance between them is about 1/100 of 
the square side length. 

 
In each test, three beacons labeled 1, 2 and 3 are placed in 

known positions of a Cartesian plane. Beacon positions are 
printed close to the results of each test. A robot is placed at 
the origin of the referential system. Its orientation is 
arbitrarily set to a value between -180º and 180º. Then, a 
four-step sequence is performed: 
I. Angles λ1, λ2 and λ3 are computed from a priori known 

beacons and robot positions; 
II. Angles λ1, λ2 and λ3 are rounded to 2, 1 or 0 decimal 

places, simulating the outputs of a digital angle-
measuring device with resolution ρ equal to 0,01º, 0,1º 
or 1º, respectively (measurement uncertainty ±∆λ equal 
to ±0,005º, ±0,05º or ±0,5, respectively). 

III. A priori known beacons positions and the rounded 
values of λ1, λ2 and λ3 are used as inputs of the 
Generalized Geometric Triangulation algorithm, which 
computes both position and orientation of the robot. 

IV. Position and orientation errors are computed from a 
priori known robot position and orientation and their 
computed values. 
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The four steps are repeated for robot positions covering a 
100 x 100 square. Position increments of 0.1 are made in 
both x and y directions. In each point, robot orientation is 
arbitrarily set to a value between -180º and 180º. Position 
and orientation errors obtained in each position are plotted in 
2D and 3D graphics (Fig.6 and Fig.7). The z-axes of 3D 
position error graphics are labeled in the same length units 

used in x-axes and y-axes. The z-axes of 3D orientation error 
graphics are labeled in degrees. In order to emphasize the 
smallest errors occurring in the analyzed square, upper limits 
to the visualized errors are set in both 2D and 3D views. 
Only position and orientation errors in regions very close to 
the circumference defined by the three beacons are too large 
to be plotted. 
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Fig. 6.  Position and orientation errors close to the beacons. 
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Some properties of the obtained position and orientation 
errors are the following:  
• They agree with the analysis made in Section III; 
• They are small inside the triangle formed by three non-

collinear beacons; 
• They increase significantly as the robot approaches the 

circumference defined by three non-collinear beacons; 

• They decay abruptly as the robot drives away from this 
circumference in a radial direction and remain small in 
its surroundings; 

• They grow again, more slowly, as the robot drives away 
from the beacons; 

• They increase about ten times each time ∆λ is multiplied 
by ten. 
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Fig. 7.  Position and orientation errors far from the beacons. 
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An important issue is to make sure that computations are 
performed with enough significant digits to avoid 
deterioration of the results due to round-off errors. To 
accomplish this, simulations were performed using double 
precision (64 bits) in all four steps. Then, they were repeated 
but, this time, using single precision (32 bits) on step III. For 
∆λ ranging from 0.01º to 1º it is not possible to distinguish 
the results obtained in the two sets of simulations. This 
shows that position and orientation errors are due only to the 
errors added to input angles in step II, not to round-off errors 
in computations. Graphics shown in this paper result from 
simulations entirely performed using double precision. 

V. CONCLUSIONS 

An improved version of Generalized Geometric 
Triangulation algorithm was used in two sets of tests, 
performed in a simulation environment in order to verify the 
distribution of position and orientation errors through the 
navigation plane. 

 
Simulations results show that measurement errors and the 

position of the robot relatively to the beacons affect strongly 
the magnitude of position and orientation errors. These errors 
have the following properties: 
• They agree with the analysis previously made; 
• They are small inside the triangle formed by three non-

collinear beacons; 
• They increase significantly as the robot approaches the 

circumference defined by three non-collinear beacons; 
• They decay abruptly as the robot drives away from this 

circumference in a radial direction and remain small in 
its surroundings; 

• They grow again, more slowly, as the robot drives away 
from the beacons; 

• They increase about ten times each time ∆λ is multiplied 
by ten. 

 
Results suggest that, if ∆λ is small enough, the robot is 

able to localize itself, with small position and orientation 
uncertainties, over a wide region of the plane. They also 
suggest the need to provide the algorithm with a way of 
detecting points of the navigation plane that are unsuitable 
for robot localization due to inability of the algorithm to 
compute a solution or excessive position and orientation 
uncertainties. 
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