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Abstract. The correct assessment of meat quality (i.e., to fulfill the consumer’s
needs) is crucial element within the meat industry. Although there are several factors
that affect the perception of taste, tenderness is considered the most important
characteristic. In this paper, a Feature Selection procedure, based on a Sensitivity
Analysis, is combined with a Support Vector Machine, in order to predict lamb meat
tenderness. This real-world problem is defined in terms of two difficult regression
tasks, by modeling objective (e.g. Warner-Bratzler Shear force) and subjective (e.g.
human taste panel) measurements. In both cases, the proposed solution is compet-
itive when compared with other neural (e.g. Multilayer Perceptron) and Multiple
Regression approaches.
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1. Introduction

A top priority factor in the success of meat industry relies on the ability
to deliver specialties that satisfy the consumer’s taste requirements.
In particular, assessing the quality of an item is important for lamb
meat firms, specially if they want to move into niche markets by dif-
ferentiating their products. Therefore, meat and animal scientists have
dedicated high efforts in finding reliable quality estimators. Among the
several factors that influence meat quality (e.g. juiciness, appearance
or aroma), tenderness is considered the most important attribute [11].
In effect, consumers are willing to pay premium prices for tender meat.

The ideal method for measuring tenderness should be accurate,
fast, automated and noninvasive. In the past, two major approaches
have been proposed [1]: instrumental and sensory analysis. The former
is based in an objective test, such as the Instron instrument, which
measures the Warner-Bratzler Shear (WBS) force and it is the most
commonly used device. On the other hand, sensory methods are based
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in subjective information, usually given by a human taste panel. Both
approaches are invasive, expensive and time demanding, since they
require laboratory work. For instance, the WBS values can only be ob-
tained 72 hours after slaughtering, while the preparation and execution
of consumer taste panel may take several days.

An alternative is to use cheap and non invasive carcass measure-
ments that can be collected within the first 24 hours after slaughtering
(e.g. pH and color). Under this scenario, the classic animal science ap-
proach is based on Multiple Regression models [1], using meat features
as independent (or input) variables and the WBS or sensory measures
as the depended (or output) ones. However, the linear models will fail
when nonlinear relationships are present. In such cases, a better option
is to use techniques such as Neural Networks (NNs) [9] or Support
Vector Machines (SVMs) [20]. Indeed, these methods are gaining an
attention within the Data Mining field, due to their performance in
terms of predictive knowledge [16][8]. It should be stressed that SVMs
present theoretical advantages over NNs, such as the absence of local
minima in the model optimization phase.

In Data Mining applications, besides obtaining a high predictive
performance, it is often useful to provide explanatory knowledge. In
particular, the measure of input importance is relevant within this
domain. Since carcass features are often highly correlated, Principal
Component Analysis has been proposed to reduce the input dimen-
sionality [1]. Yet, the principal components are compressed variables
and they do not represent a direct meaning for the meat user. An
alternative, is to use a Sensitivity Analysis procedure, which has out-
performed other input selection techniques (e.g. Forward Selection and
Genetic Algorithms) [12].

In the last few years, several authors have proposed nonlinear meth-
ods to assess meat quality (e.g. beef, pork, poultry or sausages) [1].
In the majority of these studies, the Multilayer Perceptron neural ar-
chitecture is the most common approach. However, regarding tender-
ness prediction, the literature seems scarce and it is primarily oriented
towards beef. For example, in the work of Li et al. [15], Multilayer
Perceptrons outperformed a Multiple Regression when mapping beef
texture images with sensory tenderness scores. In another study, Hill
et al. [10] have applied Multilayer Perceptrons to predict the Instron
force, obtaining better results than the Multiple Regression method.
More recently, Diez et el. [6] adapted a SVM with a polynomial kernel
of degree 2 to model beef tenderness preferences, surpassing linear and
cubic regression methods.

In this work, the combination of a feature selection procedure, based
on a Sensitivity Analysis, with a gaussian kernel SVM is proposed to
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predict lamb meat tenderness. This real-world problem will be modeled
in terms of two regression tasks, using both instrumental and sensory
measurements. The devised strategy will be tested on animal data and
compared with other NN and Multiple Regression approaches.

The paper is organized as follows. First, a description is given on the
datasets used (Section 2.1). Then, the learning models are presented
(Section 2.2). In Section 3, the experiments performed are described
and the results analyzed. Finally, closing conclusions are drawn (Section
4).

2. Materials and Methods

2.1. Lamb Meat Data

This study considered lamb animals with the Protected Designation of
Origin certificate, from the Trás-os-Montes northeast region of Por-
tugal. The database was collected from November/2002 until Novem-
ber/2003, with each instance denoting the readings obtained from a
slaughtered animal. With a total of 81 examples, the database is quite
small. However, it should be noted that each animal presents consid-
erable costs, around 6 euros per kilogram plus laboratory work. Table
I presents a synopsis of the data attributes. The HCW is obtained
one hour after slaughter, exfoliation and evisceration. The former two
attributes (Breed and Sex) are also registered at slaughterhouse, while
the others are measured in laboratory. Due to their visual nature, the
color attributes (a*, b*, dE, dL and dB*) have a high impact in
consumer’s perception. In most of the situations, these are the only
attributes that the consumer can judge.

*** Insert Table I around here ***

The WBS force is the major index for measuring meat tenderness.
It can only be obtained in laboratory, no sooner than 72 hours after
slaughter, by using an invasive device called Instron. The WBS regis-
ters the force (in kg) required to crush a meat sample with a thickness
of 1cm. Low values suggest tender meat while high readings suggest
toughness. On the other hand, a more elaborated scheme was devised
to obtain the sensory values (STP). A panel of 12 trained individu-
als, from the Bragança Polytechnic Institute, was selected. Then, meat
samples from the longissinus thoracis muscle were collected and defrost
at 4◦C in a refrigerator. Next, each sample was randomly encoded
with a 3 digit number, wrapped in an aluminum sheet and heated at
100◦C. Then, each panel member was set in an individual compartment,
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performing a taste proof, under similar conditions, of random selected
samples. Between different tastes, mouths were cleaned by using water
and by eating small golden apple pieces. Each sample was ranked from
0 (the most tender) to 10 (the most tough). Finally, the STP attribute
was measured as the average of the grades from the panel.

Since the original data contained missing values (2 for the WBS

and 10 for the STP), two new datasets were created by discarding
these entries. The first contains 79 rows (for the WBS task), while the
second has 71 examples (STP). Figure 1 shows the histograms of the
target variables.

*** Insert Figure 1 around here ***

2.2. Learning Models

A regression dataset D is made up of k ∈ {1, ..., N} examples, each
mapping an input vector (xk

1 , . . . , x
k
I ) to a given target yk. The error

is given by: ek = yk − ŷk, where ŷk represents the predicted value for
the k input pattern. The overall performance is computed by a global
metric, namely the Mean Absolute Deviation (MAD) and Relative Mean
Absolute Deviation (RMAD), which can be computed as [6]:

MAD = 1/N × ∑N
i=1

|yi − ŷi|
RMAD = 1/N × MAD/

∑N
i=1

|yi − yi| × 100 (%)
(1)

In both metrics, lower values result in better predictive models. The
RMAD statistic is scale independent, where 100% denotes an error
similar to the naive average predictor (y).

The Multiple Regression (MR) model is defined by the equation [8]:

ŷ = w0 +
I∑

i=1

wixi (2)

where (x1, . . . , xI) denotes the input vector and {w0, . . . , wI} the pa-
rameters to be adjusted. This model is easy to interpret and has been
widely used in regression applications.

This study will consider the Multilayer Perceptron [9], the most
popular Neural Network (NN) architecture. The base network will use
biases, one hidden layer of H hidden nodes and logistic activation
functions and one output node with a linear function [8]. Thus, each
regression task (WBS and STP) will be modeled by a different NN.
The overall model is given by the equation:

ŷ = wo,0 +
o−1∑

j=I+1

f(
I∑

i=1

xiwj,i + wj,0)wo,i (3)
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where wi,j denotes the weight of the connection from node j to i, o the
output node and f the logistic function ( 1

1+e−x
).

The NN performance will be sensitive to the topology choice. To
solve this issue, a common practice is to use a large number of hidden
nodes (H) and train the NN with a regularization method. Thus, a
weight decay procedure will be adopted, where the hyperparameter λ
will control the network complexity [8].

All attributes are standardized to a zero mean and one standard
deviation. Then, the initial neural weights are randomly set within the
range [−0.7,+0.7]. Next, the training algorithm is applied and stopped
when the error slope approaches zero or after a maximum of E epochs.
Since the NN cost function is nonconvex (with multiple minima), R
runs will be applied to each neural configuration, being selected the
NN with the lowest penalized error.

In Support Vector Machine (SVM) regression, the input x ∈ <I

is transformed into a high m-dimensional feature space, by using a
nonlinear mapping. Then, the SVM finds the best linear separating
hyperplane in the feature space:

ŷ = w0 +
m∑

i=1

wiφi(x) (4)

where φi(x) represents a nonlinear transformation, according to the
kernel function K(x, x′) =

∑m
i=1

φi(x)φi(x
′).

To estimate the best SVM, the ε-insensitive loss function (Figure
2) is often used [18]. The Radial Basis Function kernel, which presents
less hyperparameters and numerical difficulties than other kernels (e.g.
polynomial or sigmoid), will also be adopted [4]:

K(x, x′) = exp(−γ||x − x′||2), γ > 0 (5)

Under this setup, the performance is affected by three parameters:
C, a trade-off between the model complexity and the amount up to
which deviations larger than ε are tolerated; ε, the width of the ε-
insensitive zone; and γ, the parameter of the kernel. Since the search
space for the three parameters is high, the C and ε values will be set
using the heuristics proposed in [5]:

C = 3σy, if y = 0

σ̂ = 1.5/N × ∑N
i=1

(yi − ŷi)
2

ε = σ̂/
√

N

(6)

where σy denotes the standard deviation of the output (y) and ŷ is the
value predicted by the 3-nearest neighbor algorithm. Since all variables
were standardized to a zero mean, the y = 0 condition is met.
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*** Insert Figure 2 around here ***

The hyperparameters (λ and γ) will be tuned by a two level grid-
search. The first level will search the best value (λ1 or γ1) within the
ranges λ ∈ {0.00, 0.01, . . . , 0.20} or γ ∈ {2−15, 2−13, ..., 23}, as advised
in [8, 4]. The second level proceeds with a fine tune within the range
λ2 ∈ {λ1 − 0.005, . . . , λ1 − 0.001, λ1 + 0.001, . . . , λ1 + 0.004} ∧ λ2 ≥
0 or γ2 ∈ {2s1−1.75, . . . , 2s1−0.25, 2s1+0.25, . . . , 2s1+1.25} ∧γ2 ≥ 0. The
prediction accuracy (MAD) in the grid-search is estimated by adopting
a 10-fold cross-validation [13]. After obtaining the best parameter, the
final model is optimized using the whole training data.

2.3. Feature Selection

Nonlinear models such as NNs and SVMs are sensitive to the curse of
dimensionality [8][2], i.e., the number of samples should grow exponen-
tially as number of inputs increases. Hence, when small datasets are
available, feature selection is expected to reduce the prediction error.
Moreover, measurement requirements are reduced and simpler models,
which are easier to interpret by the final user, are produced.

In this work, a Sensitivity Analysis procedure will be used to guide
the feature selection search. The Sensitivity Analysis is performed after
model estimation and it is measured by the variance (Va) produced in
the output (ŷ) when the input attribute (a) is moved through its entire
range [12]:

Va =
∑L

i=1
(ŷi − ŷ)/(L − 1)

Ra = Va/
∑I

j=1
Vj × 100 (%)

(7)

where I denotes the number of input attributes and Ra the relative
importance of the a attribute. The ŷi output is obtained by holding
all input variables at their average values. The exception is xa, which
varies through its entire range with L levels.

The proposed feature selection will work as an iterative backward
method, using all inputs at the beginning. In each iteration, a 10-fold
cross-validation is performed over the training data. The intention is
to get a robust estimation of the quality of the inputs. Thus, the input
importance values (Ra) are averaged over the 10-fold trainings and
the least important attribute (Rmin) is discarded. Due to the com-
putational effort, only one hyperparameter, set to the middle of the
first level search range (λ = 0.1 or γ = 2−7), is tested during this
phase. The algorithm is stopped after T iterations. Then, the second
level cross-validation grid search is executed, in order to fine tune the
hyperparameter. Finally, the best model is trained using the whole
training data.
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3. Results

All experiments were conducted with a Pentium IV processor, under
the Linux operating system. The simulations were programmed in the
R environment [17], an open source and high-level programming lan-
guage that provides powerful tools for statistical analysis. The NNs
were trained with the BFGS algorithm from the family of quasi-Newton
methods, as implemented in the R nnet library. The R kernlab package
was adopted for the SVM fitting, which uses the Sequential Minimal
Optimization algorithm that is implemented by the LIBSVM tool [4].

After preliminary experiments, the maximum number of NN training
epochs was set to E = 10. Further values increased the computational
effort with no improvement in performance. The number of hidden
nodes was fixed to H = 12 and the number of runs was set to R = 3.
Regarding the SVMs, the tolerance of termination criterion was set to
the default value (0.001). Finally, the sensitivity parameters were set
to L = 2 for the binary attributes and L = 5 for the continuous inputs,
while the termination criterion was set to T = 6. This last value was
set after monitoring the validation error progress in some of the initial
experiments.

In order to compare the learning models, 30 runs of a leave-one-
out procedure [13] (computed over all available data) were executed
(in a total of 30 × N experiments). The results are shown in Table
II, in terms of the average of the test errors, with the correspon-
dent t-student 95% confidence intervals [7]. Column Time denotes the
required computation for each method (in seconds).

*** Insert Table II around here ***

First, the analysis will be given for the models what use all twelve
inputs. The Multiple Regression (MR) results are the worst for the
WBS task. This scenario changes for the sensory panel, where the MR
is the second best method, outperforming the NN method. Regarding
the nonlinear methods, the SVM is the best method for both datasets,
outperforming (with statistical significance) the NN and MR models.
In addition, the computational effort also favors the SVM, since the
NN demands a computational increase around a factor of 2.5. Overall,
the RMAD values suggest that the second task is more difficult than
the first one.

While only using half the inputs, the Feature Selection (FS) based
approaches (FSNN and FSSVM) give rise to better/slightly better per-
formances. In terms of the average RMAD values and for the WBS

output, there is an improvement of 0.6% (not statisticaly significant)
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for the FSNN and 2.0% (statistically significant) for the FSSVM model.
Turning to the second task, the average RMAD decrease is 7.3% (sta-
tistically significant) for the FSNN and 0.2% (not statistically signifi-
cant) for the FSSVM. In terms of the final comparison, FSSVM is the
advised method, since it presents a lower mean and confidence interval
values, when compared with the other models.

Table III shows the average relative importance (Equation 7) of the
input variables for the best methods. To simplify the analysis, the less
important attributes (Ra ≤ 1%) were removed from the table (Sex,
C and b*). It should also be noted that the table contains more than
six attributes, since in each simulation different sets of features can be
selected. The Sex attribute is the least relevant factor (Ra ≤ 0.1%),
which contrasts with the knowledge that gender affects tenderness.
Since female meat often present a higher weight and fatness, the sex
information could be indirectly represented in the HCW and STF2

variables. However, additional experiments where these attributes were
replaced by the Sex input and the models retrained did not provide
evidence for this claim.

*** Insert Table III around here ***

In general, the results are similar for both NN and SVM based
methods. For the WBS task, the red color (a*) is the highest im-
portant attribute. Turning to the STP problem, the most relevant
features are the Breed and red index (a*). The differences obtained
between the two tasks may be explained by psychological factors. For
instance, the Breed importance increased from 0.4/0.3% (WBS) to
35.3/41.3% (STP). This is a surprising result, since it contradicts the
animal science theory.

As an example, the left of Figure 3 shows the scatter plots (pre-
dicted versus the observed values) for the WBS task. In the figure,
the diagonal line denotes the perfect forecast. The Regression Error
Characteristic (REC) curves [3] are also shown (right of the figure) for
the FSSVM, MR and Average Predictor methods. The REC curve is
used to compare regression models and it plots the error tolerance (x-
axis), given in terms of the absolute deviation, versus the percentage of
points predicted within the tolerance (y-axis). In the figure, the FSSVM
line is above the other curves for the majority of the x values. Overall,
it presents an higher area, denoting a better fit.

*** Insert Figure 3 around here ***
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4. Conclusions

In this work, a Feature Selection (FS) procedure, based on a Sensitivity
Analysis, is combined with a Support Vector Machine (SVM), aiming
at the prediction of lamb meat tenderness. This real-world problem was
addressed by two distinct regression tasks by using instrumental and
sensory measurements. The former is based in the Warner-Bratzler
Shear (WBS) force, which is an objective measure obtained from a
special device called Instron. The latter involves the use of subjective
information, requiring the execution of a human Sensory Taste Panel
(STP). In both cases, the FSSVM combination outperformed other
Neural Network (NN) and Multiple Regression configurations.

The final solution is much simpler, requiring only half the number of
inputs (6 instead of 12). Moreover, the proposed method is noninvasive,
much cheaper than the WBS or STP procedures, and can be computed
just 1 (STP) or 24 hours (WBS) after slaughter. This opens the room
for the development of automatic tools for decision support [19].

One drawback may be the obtained accuracy, which is only 18%
(WBS) and 12% (STP) better than the simple average predictor. How-
ever, it should be stressed that the tested datasets are very small. As
argued by Lavrǎc et al. [14], there are important Data Mining appli-
cations where the data is scarce and more research is needed towards
methods that can deal with such datasets. This work backs this claim.
Furthermore, Dı́ez et al. [6] considered the modeling of sensory prefer-
ences a very difficult regression task. To our knowledge, this is the first
time lamb meat quality is approached by SVMs and further exploratory
research needs to be performed.

Another relevant point regards the input importance. Some results,
such as the gender null impact and breed relevance (for the STP task),
seem to contradict the animal science theory. Regarding the breed
importance, the results were discussed with the experts, which then
discovered that the Mirandesa lambs were considered less stringy and
more odor intense, which may be due to animal stress during slaughter.
Nevertheless, further research is needed towards this issue.

In future work, the proposed approach will be tested in a real en-
vironment, by attaching computer systems with friendly human inter-
faces into meat laboratories and/or slaughterhouses. This will allow us
to obtain, after some time, a valuable feedback from the meat users,
and also to enrich the datasets by gathering more meat samples.
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Figure 1. The histograms for the instrumental and sensory output variables
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Figure 2. Example of a linear Support Vector Machine regression and the
ε-insensitive loss function (adapted from [18])
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Figure 3. The predicted (x-axis) versus observed (y-axis) values for FSSVM (left)
and the REC curves (right) for the WBS task

Table I. The dataset main attributes

Attribute Description Domain

Breed Breed type {Bragançana, Mirandesa}

Sex Lamb sex {Male, Female}

HCW Hot carcass weight (kg) [4.1, 14.8]

STF2 Sternal fat thickness [6.0, 27.8]

C Subcutaneous fat depth [0.3, 5.1]

pH1 pH 1 hour after slaughtering [5.5, 6.8]

pH24 pH 24 hours after slaughtering [5.5, 5.9]

a* Red color index [11.5, 22.2]

b* Yellow color index [6.5, 12.5]

dE Total color difference [46.5, 60.9]

dL Luminosity differential [−56,−39]

dB* Yellow differential [15.3, 22.5]

WBS Warner-Bratzler Shear force [9.5, 57.0]

STP Sensory Taste Panel [0.7, 7.1]
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Table II. The regression results

Task Model Inputs Time MAD RMAD

WBS

MR 12 53 6.22±0.00 91.42±0.00

NN 12 69869 6.17±0.09 90.56±1.27

SVM? 12 28202 5.73±0.04 84.16±0.52

FSNN 6 72698 6.12±0.06 89.94±0.81

FSSVM†♦ 6 60554 5.60±0.02 82.18±0.33

STP

MR 12 46 1.24±0.00 90.31±0.00

NN 12 60512 1.35±0.02 98.21±1.19

SVM? 12 24536 1.22±0.01 88.48±0.83

FSNN† 6 63345 1.25±0.02 90.91±1.16

FSSVM♦ 6 52952 1.21±0.01 88.28±0.40

? - Statistically significant (p-value< 0.05) under pairwise comparisons with

the previous MR and NN models

† - Statistically significant under a pairwise comparison with the same model

without the FS procedure

♦ - Statistically significant under a pairwise comparison with FSNN

Table III. The relative importance of the input variables (in %)

Task Model
Attribute

Bre. HCW STF2 pH1 pH24 a* dE dL dB*

WBS
FSNN 0.4 7.4 5.2 0.3 1.3 58.4 20.2 2.9 3.6

FSSVM 0.3 – 25.4 0.4 7.1 32.4 – 19.2 14.9

STP
FSNN 35.3 2.7 4.6 12.9 – 25.1 17.5 0.3 0.3

FSSVM 41.3 7.8 0.7 16.0 – 26.3 – 0.3 6.9
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