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The nonlinear problem of two membranes

LISA SANTOS

Abstract: The problem of finding the position of two membranes, one constrained
by the other, attached to rigid supports, subjected to external forces, is considered. It is
proved existence of solution, if we assume a compatibility condition relating the mean
curvature of the boundary of the set where the problem is defined and the given data.
It is also proved the W 2,p regularity of the solution, for 1 ≤ p < +∞.

1 – Introduction

The linearized problem of finding the position of N membranes, constrained
each one by another, subjected to external forces, was studied by Chipot and
Vergara-Caffarelli (see [4]). They proved existence of solution and obtained the
W 2,p regularity of the solutions, for 2 ≤ p < +∞. Vergara-Caffarelli (see [11])
also studied the problem of finding two surfaces of constant mean curvature,
one constrained by the other and with given boundary conditions. This is a
nonlinear problem and existence is established only if a compatibility condition
between the boundary of the set where the solutions are defined and the given
mean curvatures is verified. Vergara-Caffarelli also proved existence of solution
for the nonlinear problem of two membranes, but for the case when the data
have compact support and a small Lp norm, depending on the domain and on
the given forces (see [10]). Related papers are [5], [6] and [7].

Recently, Azevedo, Rodrigues and Santos ([1] and [2]) considered the N-
membranes problem with a general linear operator and with the p-laplacian op-
erator. They proved existence of solution, the Lewi-Stampacchia inequalities, the
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W 2,p regularity of the solutions in the linear case, for certain p, 1 < p < +∞,
the C1,α regularity of the solutions in the p-laplacian case, 0 < α < 1, and
they also studied the stability of the coincidence sets. Also recently, Carillo,
Chipot and Vergara-Caffarelli studied the N-membrane problem for a linear op-
erator with soft constraints (see [3]), where the membranes, (u1, . . . , uN ) satisfy∫
Ω

u1 ≥ . . . ≥
∫
Ω

uN .
In this paper we consider the problem of finding the position of two mem-

branes, one constrained by the other and both fixed to rigid supports, equally
stretched in all directions, and loaded by uniformly distributed forces. The op-
erator considered here is the operator of minimal surfaces. The fact that it is an
operator only locally coercive brings some difficulties to the problem. Namely,
we were not able to consider the general case with N membranes. It is possible
to obtain a uniform a priori gradient bound of the solutions on the boundary, if
N = 2, but the general case is open.

The second section of this paper is divided in two subsections: the first
one is dedicated to the definition of the problem; in the second one it is proved
existence, regularity and uniqueness of solution.

2 – The problem of two membranes

In this section, we are concerned, in the first subsection, with the definition
of the mathematical problem. In the second one, imposing some assumptions, we
establish existence of solution for this problem and we obtain the W 2,p regularity
of the solution, 1 < p < +∞.

2.1 – The mathematical problem

We assume that two homogeneous membranes, occupying a bounded domain
Ω of IRn, n ∈ IN, are equally stretched in all directions, and loaded by uniformly
distributed forces f and g. We also assume that each membrane is constrained
by the other and that their displacements are prescribed at ∂Ω.

We assume that

∂Ω is of class C2,α, 0 < α < 1 ,

f, g ∈ C1(Ω) ,(1)

ϕ, ψ ∈ C2,α(Ω), ϕ|∂Ω ≥ ψ|∂Ω .

Here, f and g are the vertical forces applied on each membrane and ϕ|∂Ω and
ψ|∂Ω are the given displacements of the membranes at the boundary in the
perpendicular direction (in IRn+1).
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Let u = u(x), v = v(x) represent the displacement in the perpendicular
direction of each membrane, x ∈ Ω. Since the membranes are constrained one
by the other, we must have

u(x) ≥ v(x) ∀x ∈ Ω.

We assume that the potential energy of the deformed membranes is propor-
tional to the increase in the area of its surface, so the total potential energy is

E(u, v) = λ

∫
Ω

√
1 + |∇u|2 + λ

∫
Ω

√
1 + |∇v|2 −

∫
Ω

fu −
∫

Ω

gv

and, for simplicity, we assume λ = 1 (see [9], pages 1-4).
Let IK be the following closed convex subset of [H1(Ω)]2:

(2) IK = {(ξ, η) ∈ H1(Ω) × H1(Ω) : ξ ≥ η, ξ|∂Ω = ϕ, η|∂Ω = ψ} .

The mathematical problem is defined as follows:

(3)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

To find (u, v) ∈ IK :∫
Ω

∇u .∇(ξ − u)√
1 + |∇u|2

+
∫

Ω

∇v .∇(η − v)√
1 + |∇v|2

≥
∫

Ω

f(ξ − u) +
∫

Ω

g(η − v), ∀ (ξ, η) ∈ IK .

The formulation above has also a geometric interpretation. We can look at this
problem as the problem of finding two surfaces of prescribed mean curvatures f
and g, one constrained by the other and with nonzero boundary data (see [9],
page 240 and following).

2.2 – Existence of solution

In this subsection, we intend to prove existence of solution of the problem (3)
as well as the

[
W 2,p(Ω)

]2 regularity of the solution, 1 < p < +∞.
The operator involved in the definition of this problem is

(4)

A : H1(Ω) −→ H−1(Ω)

u 	−→ ∇ .

(
∇u√

1 + |∇u|2

)
.

This operator is only locally coercive. It is well known that, even for f and ϕ
smooth, the problem −Au = f , u|∂Ω = ϕ, is not always solvable. Some assump-
tions, relating the mean curvature of ∂Ω and the given data have to be imposed,
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to guarantee existence. These assumptions are, in a certain sense, necessary and
sufficient conditions for the solvability of this problem and they ensure a priori
estimates on the solution. For details, we refer [8], pages 407-409. See also [5], [6]
and [9], pages 241-242.

In order to prove existence of solution of the variational inequality (3), we
must impose similar assumptions on the data (here H(x) denotes the mean
curvature of ∂Ω at the point x) (see [5] or [9], page 241):

(5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃ ε0 > 0 ∀G measurable ⊂ Ω max
{∣∣∣∣

∫
G

fdx

∣∣∣∣ ,

∣∣∣∣
∫

G

gdx

∣∣∣∣
}
≤(1 − ε0)P (G),

(where P (G)=
∫
|∇χG|denotes de perimeter of G in the sense of De Giorgi)

∀x ∈ ∂Ω (n − 1)H(x) ≥ max {|f(x)| , |g(x)|} .

Using a well known technique, we are going to approximate the variational in-
equality problem by a family of penalized systems of equations, depending on a
parameter ε.

Let β : IR −→ IR be a C1 nondecreasing function such that

(6) β(t)

⎧⎪⎨
⎪⎩

= 0 if t ≥ 0 ,

∈ ]t, 0[ if t ∈ ] − 1, 0[ ,
= t if t ≤ −1 ,

and β′ ≤ 2. Let βε(t) = β
(

t
ε

)
. Define the following penalized problem

(7)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−A(uε) + βε(uε − vε) = f in Ω ,

−A(vε) − βε(uε − vε) = g in Ω ,

uε = ϕ, on ∂Ω
vε = ψ, on ∂Ω,

and consider the following two auxiliary problems

(8)
{ −Az = f in Ω ,

z = ϕ on ∂Ω ,

and

(9)
{ −Aw = g in Ω ,

w = ψ on ∂Ω .

Proposition 2.1. Suppose that (1) and (5) are verified. Then, prob-
lem (8) and problem (9) have, respectively, a unique solution z and w belonging
to C2,α(Ω).
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Proof. See [5] or [8], page 408.

Theorem 2.2. Suppose that (1) and (5) are verified. Then problem (7) has
a unique solution (uε, vε) ∈ C2,α(Ω) × C2,α(Ω) which is bounded independently
of ε in C1,α(Ω) × C1,α(Ω).

To prove this theorem we will use the Leray-Schauder fixed point theorem.
Firstly, we are going to obtain an a priori uniform gradient bound for the solution
(uε, vε) of the problem (7). For this purpose we are going to prove some auxiliary
propositions.

Define:

(10)

z = z, where z is the solution of the problem (8) ,

w is the unique solution of the problem⎧⎨
⎩

w ∈ IK = {v ∈ H1(Ω) : v ≤ z, v|∂Ω = ψ} ,∫
Ω

∇w .∇(v − w)√
1 + |∇w|2

≥
∫

Ω

g(v − w), ∀ v ∈ IK ,

and

(11)

w = w, where w is the solution of the problem (9) ,

z is the unique solution of the problem⎧⎨
⎩

z ∈ IK = {v ∈ H1(Ω) : v ≥ w, v|∂Ω = ϕ}∫
Ω

∇z .∇(v − z)√
1 + |∇z|2

≥
∫

Ω

f(v − z), ∀ v ∈ IK .

Proposition 2.3. If (1) and (5) are verified then problems (10) and (11)
have, respectively, unique solutions z and w, belonging to W 1,∞(Ω).

Proof. This result is well known. A proof can be found, for instance, in [9],
page 241.

Proposition 2.4. Suppose that (1) and (5) are verified. Then, if the
penalized problem (7) has a solution (uε, vε) ∈ C2,α(Ω)×C2,α(Ω), it is uniformly
bounded in L∞(Ω) (independently of ε).
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Proof. Recall that βε ≤ 0. Then{ −A(uε) ≥ f = −Az in Ω ,

uε = ϕ = z on ∂Ω ,{ −A(vε) ≤ g = −Aw in Ω
vε = ψ = w on ∂Ω .

Since A is monotone and uε and vε are respectively a supersolution of problem (8)
and a subsolution of problem (9), we have

(12) z ≤ uε, vε ≤ w a.e. in Ω .

Recall the definitions of z and w given in (11) and (10). Since z ∈ IK then
z ≥ w. On the other hand, since w ≥ vε by (12), we have β(z − vε) = 0 and⎧⎪⎪⎨

⎪⎪⎩
−A(uε) + βε(uε − vε) = f in Ω ,∫

Ω

∇z .∇(uε − z)+

(1 + |∇z|2) 1
2

≥
∫

Ω

f(uε − z)+ in Ω ,

uε = z on ∂Ω ,

and consequently,∫
Ω

[−A(uε) + A(z)] (uε − z)+ + [βε(uε − vε) − βε(z − vε)] (uε − z)+ ≤ 0 ,

and, using the fact that βε is monotone, we have∫
Ω

[−A(uε) + A(z)] (uε − z)+ ≤ 0 ,

or equivalently,∫
Ω

( ∇uε

(1 + |∇uε|2) 1
2
− ∇z

(1 + |∇z|2) 1
2

)
.∇(uε − z)+ ≤ 0 .

Once more due to the monotonicity of the operator A, we have uε ≤ z a.e. in
Ω. So, in fact,

(13) z ≤ uε ≤ z, a.e. in Ω, uε
|∂Ω = z|∂Ω = z|∂Ω = ϕ|∂Ω .

Since z and z belong to L∞(Ω), we conclude that uε ∈ L∞(Ω) and, besides that

(14) ‖uε‖L∞(Ω) ≤ C, C constant independent of ε .

Recalling the definitions of w and w given in (10) and (11) and reasoning as
above, we prove that

(15) w ≤ vε ≤ w, a.e. in Ω, vε
|∂Ω = w|∂Ω = w|∂Ω = ψ|∂Ω .

So, in particular,

(16) ‖vε‖L∞(Ω) ≤ C, C constant independent of ε .
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Proposition 2.5. Suppose that (1) and (5) are verified. Then, if prob-
lem (7) has a solution (uε, vε) ∈ C2,α(Ω) × C2,α(Ω), we have

(17) ∃N > 0 ∀ ε ∈ ]0, 1[
{

uε(x) ≥ vε(x) − Nε for a.e. x ∈ Ω
−N ≤ βε(uε − vε) ≤ 0 .

In particular, ‖βε(uε − vε)‖L∞(Ω) is uniformly bounded independently of ε.

Proof. By definition, βε(uε − vε) ≤ 0. Define wε = vε −Nε, N ≥ 1. Then

−Awε + βε(wε − vε) = −Avε + βε(−Nε) = (g + βε(uε − vε)) − N ≤ f

as long as we chose N ≥ ‖g‖∞ + ‖f‖∞.
So, since −Awε + βε(wε − vε) ≤ f = −Auε + βε(uε − vε) and wε

|∂Ω =
ψ|∂Ω − Nε < uε

|∂Ω, we have wε ≤ uε and consequently uε ≥ vε − Nε a.e. in Ω
and, due to the monotonicity of βε,

βε(uε − vε) ≥ βε(−Nε) = −N .

Proposition 2.6. Suppose that (1) and (5) are verified. Then, if prob-
lem (7) has a solution (uε, vε) ∈ C2,α(Ω) × C2,α(Ω), it satisfies

∃C > 0 ∀ ε ∈ ]0, 1[ ∀x ∈ ∂Ω |∇uε(x)| ≤ C |∇vε(x)| ≤ C ,

C constant independent of ε.

Proof. Since uε and vε are C1 functions up to the boundary and (13)
and (15) are verified, we have

|∇uε(x)| ≤ max{|∇z(x)|, |∇z(x)|}, x ∈ ∂Ω ,

|∇vε(x)| ≤ max{|∇w(x)|, |∇w(x)|}, x ∈ ∂Ω .

Since z, z, w, w are bounded in W 1,∞(Ω) (independently of ε), the conclusion
follows.

Theorem 2.7. Suppose that (1) and (5) are verified. Then, if problem (7)
has a solution (uε, vε) ∈ C2,α(Ω) × C2,α(Ω), it satisfies

(18) ∃C > 0 ∀ ε ∈ ]0, 1[ ∀x ∈ Ω |∇uε(x)| ≤ C |∇vε(x)| ≤ C ,

being C a constant depending on |Ω|, ‖f‖W 1,∞ , ‖g‖W 1,∞ and not on ε.
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Proof. We rewrite problem (7) as follows, where B1(x) = f(x)−βε(uε(x)−
vε(x)) and B2(x) = g(x) + βε(uε(x) − vε(x)),

(19)

⎧⎪⎨
⎪⎩

aij(∇uε)uε
xixj

+ B1(1 + |∇uε|2) 1
2 = 0 in Ω ,

aij(∇vε)vε
xixj

+ B2(1 + |∇vε|2) 1
2 = 0 in Ω ,

uε = ϕ, vε = Ψ, on ∂Ω,

being

aij(ξ) = δij −
ξiξj

1 + |ξ|2 .

We are now going to follow the same reasoning used to estimate the uniform
bound of the gradient of the solution for the problem of minimal surfaces (see,
for instance, [8]), being careful with the fact that here we have a system, not an
equation, and with the additional term in each equation, correspondent to the
penalization, which is dependent on ε.

Differentiate each of the two equations of problem (19) in order to xk, mul-
tiply the first one by uε

xk
, the second one by vε

xk
and sum each one over k.

Let

m ≤ min{min
Ω

{uε},min
Ω

{vε}}, M ≥ max{max
Ω

{uε},max
Ω

{vε}} ,

be chosen independently of ε and let Ψ be an one-to-one function (to be chosen
later) of class C3.

Define

u = ψ−1(uε), z = |∇uε|2, z = |∇u|2 ,

v = ψ−1(vε), w = |∇vε|2, w = |∇v|2 .

We are going to use, for the left hand side of the equalities in (19), the calculations
presented in [8], pages 362-369 (see, in particular, pages 364 and 365 and the
calculations in page 367 and 368 for the prescribed mean curvature equation).
These calculations are done in [8] for more general operators and we do not
present them here. The particularization for the mean curvature operator is
showed below in the system (20). The main idea consists in, after changing
the variables as described above, to apply to the first equation obtained from
the system (19), the operator ∂u

∂xk

∂
∂xk

and to the second equation obtained from
the same system, the operator ∂v

∂xk

∂
∂xk

(we are adopting the convention of the
summation of indexes). The referred calculations led us, in the case of the mean
curvature operator, to the following system of inequalities:

(20)

⎧⎪⎨
⎪⎩

aij(∇uε)zxixj
+ Bi(x,∇uε)zxi

+ 2G(x,∇uε)E(∇uε)z ≥ 0 ,

aij(∇vε)wxixj + Ci(x,∇vε)wxi + 2H(x,∇vε)E(∇vε)w ≥ 0 ,

z|∂Ω ≤ C, w|∂Ω ≤ C ,
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where C is a constant independent of ε (by Proposition 2.6) and

aij(ξ) = δij +
1
2

[ξicj(ξ) + ξjci(ξ)] , cj(ξ) = − ξj

1 + |ξ|2 ,

E(ξ) = aij(ξ)ξiξj =
|ξ|2

1 + |ξ|2 , δ = ξi
∂

∂ξi
, ζ(x) =

Ψ′′(x)
[Ψ′(x)]2

,

Bi =Ψ′
(

∂ajk

∂ξi
uxjxk

−cjuxixj

)
+z

[
ζδ +1

]
ci +

(f−βε(uε−vε))ξi√
1 + |ξ|2

+ 2ζ
ξi

(1+|ξ|2)2 ,

Ci =Ψ′
(

∂ajk

∂ξi
vxjxk

−cjvxixj

)
+w

[
ζδ +1

]
ci +

(g+βε(uε−vε))ξi√
1 + |ξ|2

+ 2ζ
ξi

(1+|ξ|2)2 ,

α = −1 +
2

|ξ|2 + 1
, β =

− (f − βε(uε − vε))
√

1 + |ξ|2
|ξ|2 ,

γ1 =
ξifxi

√
(1 + |ξ|2)3

|ξ|4 , γ2 = −ξi [βε(uε − vε)]xi

√
(1 + |ξ|2)3

|ξ|4

G =
ζ ′ ◦ Ψ−1

Ψ′ ◦ Ψ−1
+ α(ζ ◦ Ψ−1)2 + β(ζ ◦ Ψ−1) + γ1 + γ2 ,

α̃ = α, β̃ =
− (g + βε(uε − vε))

√
1 + |ξ|2

|ξ|2 ,

γ̃1 =
ξigxi

√
(1 + |ξ|2)3

|ξ|4 , γ̃2 = ξi [βε(uε − vε)]xi

√
(1 + |ξ|2)3

|ξ|4

H =
ζ ′ ◦ Ψ−1

Ψ′ ◦ Ψ−1
+ α̃(ζ ◦ Ψ−1)2 + β̃(ζ ◦ Ψ−1) + γ̃1 + γ̃2 .

Let

a, b, c = lim
|ξ|→+∞

sup
Ω×[m,M ]

α, β, γ1 ,(21)

ã, b̃, c̃ = lim
|ξ|→+∞

sup
Ω×[m,M ]

α̃, β̃, γ̃1 .(22)

So, a = ã = −1, b = b̃ = 0, c = ‖∇f‖∞, c̃ = ‖∇g‖∞.
Notice that

γ2(x,∇uε)=−β′
ε(u

ε(x) − vε(x))∇uε(x) . (∇uε(x) −∇vε(x))

√
(1 + |∇uε(x)|2)3
|∇uε(x)|4

and recalling that z = |∇uε|2, w = |∇vε|2, the Cauchy-Schwarz inequality and
the fact that β′

ε ≥ 0, we obtain

γ2(x,∇uε) ≤ −β′
ε(u

ε − vε)(z
1
2 − w

1
2 )

[
1 + z

z

] 3
2

.
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Analogously,

γ̃2(x,∇uε) ≤ −β′
ε(u

ε − vε)(w
1
2 − z

1
2 )

[
1 + w

w

] 3
2

.

If (uε, vε) is a solution of problem (19) of class C2,α(Ω) × C2,α(Ω), 0 < α < 1,
then (z, w) satisfies (20) and (z, w) ∈ C1,α(Ω) × C1,α(Ω), 0 < α < 1.

Let
Aε = max{max

x∈Ω
{z(x)},max

x∈Ω
{w(x)}} .

This maximum is attained at a point x0 ∈ Ω and we are going to consider several
situations, in order to prove that it does not depend, in fact, on ε.

But, firstly, we are going to fix the function Ψ, up to two constants k and
A (k > 0, A ≤ m). Define

Ψ : IR+
0 −→ IR ,

t 	→ 1
k

log(kt + 1) + A .

Notice that

Ψ′(t) =
1

kt + 1
> 0, Ψ′′(t) = − k

(kt + 1)2
,

Ψ−1(t) =
1
k

[
ek(t−A) − 1

]
, t ∈ IR ,

Ψ′(Ψ−1(t)) = e−k(t−A) ≤ 1, ∀ t ∈ [A,+∞[ ,

ζ(t) =
Ψ′′(t)

(Ψ′)2 (t)
= −k.

The first situation we consider is when

1. Aε = z(x0), and we divide it in two cases:

i) x0 ∈ ∂Ω; we have already an upper bound of |∇uε| and of |∇vε|, indepen-
dent of ε, by Proposition 2.6.

ii) x0 ∈ Ω; for our choice of Ψ we have

γ2(x0,∇uε(x0)) ≤
≤ −β′

ε(u
ε(x0) − vε(x0))×

×
(
Ψ′(Ψ−1(uε(x0))z(x0)

1
2 − Ψ′(Ψ−1(vε(x0))w(x0)

1
2

) [
1 + z(x0)

z(x0)

] 3
2

≤

≤ 0.
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In fact

• if uε(x0) ≥ vε(x0) then β′
ε(u

ε(x0)−vε(x0)) = 0 and so γ2(x0,∇uε(x0)) = 0;
• if uε(x0)< vε(x0), since Ψ is an increasing function and Ψ′ is decreasing, and

since z(x0)
1
2≥w(x0)

1
2, we have Ψ′(Ψ−1(uε(x0))z(x0)

1
2≥Ψ′(Ψ−1(vε(x0))w(x0)

1
2.

Since β′
ε ≥ 0, then γ2(x0,∇uε(x0)) ≤ 0.

Calling χ(s) = ζ ◦ Ψ−1(s) we notice that

G =
ζ ′ ◦ Ψ−1

Ψ′ ◦ Ψ−1
+ α(ζ ◦Ψ−1)2 + β(ζ ◦Ψ−1) + γ1 + γ2 = χ′ + αχ2 + βχ + γ1 + γ2 .

Since χ(s) = ζ(Ψ−1(s)) = Ψ′′(Ψ−1(s))

[Ψ′(Ψ−1(s))]2
, we already know that χ(s) = −k. So,

G(x, z, p) = α k2 − β k + γ1 + γ2

and letting |p| −→ +∞, (x, z) ∈ Ω× [m, M ], by (21) and the calculations above,
we conclude that

∃S > 0 ∀ ε > 0 ∀ p ∈ IRn : |p| > S ∀ (x, z) ∈ Ω × [m, M ]
G(x, z, p) < −k2 + ‖f‖∞ + 1 .

If we choose k ≥
√

1 + ‖f‖∞ then

∃S > 0 ∀ ε > 0 ∀ p ∈ IRn : |p| > S ∀(x, z) ∈ Ω × [m, M ] G(x, z, p) < 0

(notice that we have not chosen A yet, we will choose it only in the situation
Aε = w(x0), x0 ∈ Ω).

Since Ω is an open set and x0 is a maximum point of z, we have zxi(x0) = 0,
i = 1, . . . , n, and the matrix

(
zxixj (x0)

)
i,j=1,... ,n

is non-positive.
So,

aijzxixj
(x0) + Bizxi

(x0) = aijzxixj
(x0) ≤ 0

and, if |∇uε(x0)| > S, we conclude that

aijzxixj (x0) + Bizxi(x0) + G(x0,∇uε(x0)E(∇uε)z < 0

and this fact is a contradiction with (20). So |∇uε(x0)| ≤ S.
Since z(x0) = max{maxx∈Ω{z(x)},maxx∈Ω{w(x)}}, we have

∀x ∈ Ω z(x) ≤ z(x0)

and noticing that z(x) = 1
[Ψ′(Ψ−1(uε(x)]2

z(x), we have

∀x ∈ Ω z(x) = |∇uε(x)|2 1
[Ψ′(Ψ−1(uε(x)]2

≤ 1
[Ψ′(Ψ−1(uε(x0))]

2 |∇uε(x0)|2 .
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Recalling that |∇uε(x0)| ≤ S, S constant independent of ε, we have

∀x ∈ Ω |∇uε(x)|2 ≤
[
Ψ′(Ψ−1(uε(x))

]2
[Ψ′(Ψ−1(uε(x0))]

2 S2 =
[

e−k(uε(x)−A)

e−k(uε(x0)−A)

]2

S2 =

= e2k(uε(x0)−uε(x))S2 ≤ C ,

where C is a constant independent of ε, since uε is uniformly bounded in L∞(Ω).
Analogously

∀x ∈ Ω w(x) ≤ z(x0)

and we also obtain

∀x ∈ Ω |∇vε(x)|2 ≤
[
Ψ′(Ψ−1(vε(x)

]2
[Ψ′(Ψ−1(uε(x0))]

2 S2 =
[

e−k(vε(x)−A)

e−k(uε(x0)−A)

]2

S2 =

= e2k(uε(x0)−vε(x))S2 ≤ C ,

where C is a constant independent of ε since vε is uniformly bounded in L∞(Ω).
The second situation we consider is when

2. Aε = w(x0), and it is also divided in two cases:

i) x0 ∈ ∂Ω; we have already an upper bound of |∇uε| and of |∇vε|, indepen-
dent of ε, by Proposition 2.6.

ii) x0 ∈ Ω; in this case we have

γ̃2(x0,∇uε(x0)) ≤
≤

{
−β′

ε(u
ε(x0) − vε(x0))

[
Ψ′(Ψ−1(vε(x0)) − Ψ′(Ψ−1(uε(x0))

]
w(x0)

1
2 +

− β′
ε(u

ε(x0)−vε(x0))Ψ′(Ψ−1(uε(x0))
[
w(x0)

1
2 −z(x0)

1
2

] } [
1 + w(x0)

w(x0)

] 3
2

.

Clearly, −β′
ε(u

ε(x0)−vε(x0))Ψ′(Ψ−1(uε(x0))
[
w(x0)

1
2 − z(x0)

1
2

] [
1+w(x0)

w(x0)

] 3
2

≤ 0. In fact, β′
ε ≥ 0, Ψ′ ◦ Ψ−1≥ 0, w(x0) ≥ z(x0).

We remark that

• Ψ′ ◦ Ψ−1(s1) − Ψ′ ◦ Ψ−1(s2) =
(
Ψ′ ◦ Ψ−1

)′ (c) (s1 − s2), with c ∈ ]s1, s2[ or
c ∈ ]s2, s1[,

•
(
Ψ′ ◦ Ψ−1

)′ (t) = −ke−k(t−A), t ∈ IR,
• 0 ≤ β′

ε ≤ 2
ε ,

• if uε(x0) ≥ vε(x0) then β′
ε(u

ε(x0) − vε(x0)) = 0,
• uε(x0) ≥ vε(x0) − Nε,
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• without any loss of generality, we may assume that w(x0)≥1. So,
[

1+w(x0)
w(x0)

] 3
2

≤ 2
3
2 .

Then, there exists ξ ∈ ]uε(x0), vε(x0)[ or ξ ∈ ]vε(x0), uε(x0)[ such that

β′
ε(u

ε(x0)−vε(x0))
[
Ψ′(Ψ−1(vε(x0)) − Ψ′(Ψ−1(uε(x0))

]
w(x0)

1
2

[
1+w(x0)

w(x0)

] 3
2

=

=β′
ε(u

ε(x0)−vε(x0))(Ψ′ ◦ Ψ−1)′(ξ)(vε(x0)−uε(x0))w(x0)
1
2

[
1+w(x0)

w(x0)

] 3
2

≥

≥ −2
ε

Nε
k

ek(ξ−A)
w(x0)

1
2

[
1 + w(x0)

w(x0)

] 3
2

,

and so
γ̃2(x0,∇uε(x0)) ≤

2
ε

Nε
k

ek(m−A)

√
Aε 2

3
2 ≤ k ,

if we choose A such that ek(m−A) ≥ 2
5
2 N

√
Aε (notice that, obviously, A < m).

We remark that A depends on ε and on k, but k will depend only on the given
data and the dependence of A on ε has no consequences.

Recalling that χ(s) = ζ ◦ Ψ−1(s) we notice that

H =
ζ ′ ◦ Ψ−1

Ψ′ ◦ Ψ−1
+ α̃(ζ ◦ Ψ−1)2 + β̃(ζ ◦ Ψ−1) + γ̃1 + γ̃2 = α̃χ2 + β̃χ + γ̃1 + γ̃2 .

So,
H(x, z, p) = α̃ k2 − β̃ k + γ̃1 + γ̃2

and letting |p| −→ +∞, (x, z) ∈ Ω× [m, M ], by (21) and the calculations above,
we conclude that

∃ S̃ > 0 ∀ ε > 0 ∀ p ∈ IRn : |p| > S̃ ∀ (x, z) ∈ Ω × [m, M ]
H(x, z, p) < −k2 + ‖g‖∞ + 1 + k

and, choosing k ≥ 1+
√

1+4(‖g‖∞+1)

2 , we conclude that, for |p| ≥ S̃, H(x, z, p) < 0
and, as in the case 1., that the gradient of vε and uε are bounded independently
of ε.

So, choosing k=max
{√

1+‖f‖∞,
1+

√
5+‖g‖∞
2

}
and A such that ek(m−A) ≥

2
5
2 N

√
Aε, we have the conclusion.

Proof of Theorem 2.2. Notice that, fixed ξ∈ IRn, if aij(ξ)=δij− ξiξj

1+|ξ|2 ,
then

∀ ζ ∈ IRn |ξ|2
1 + |ξ|2 |ζ|

2 ≤ aij(ξ)ζiζj ≤ |ζ|2 .
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Let us fix γ ∈ ]0, 1[ and define

(23)
T : C1,γ(Ω) × C1,γ(Ω) −→ C1,γ(Ω) × C1,γ(Ω)

(ρ, η) 	→ (uε, vε) ,

being uε the unique solution of the linear uniformly elliptic problem

(24)
{

aij(∇ρ)uε
xixj

= βε(ρ − η)
√

1 + |∇ρ|2 − f
√

1 + |∇ρ|2 in Ω ,

uε
|∂Ω = ϕ

and vε the unique solution of linear uniformly elliptic problem

(25)
{

aij(∇η)vε
xixj

= −βε(ρ − η)
√

1 + |∇η|2 − g
√

1 + |∇η|2 in Ω ,

vε
|∂Ω = ψ .

Obviously, T is a well defined function. Besides that, T is compact, since it
applies the bounded subsets of C1,γ(Ω) × C1,γ(Ω) (which are the subsets con-
tained in the product of bounded subsets of C1,γ(Ω)) into bounded subsets of
C2,γ(Ω) × C2,γ(Ω), by Schauder estimates (see [8], page 98), which, by Arzela’s
theorem, are pre-compact in C2(Ω) × C2(Ω), and also in C1,γ(Ω) × C1,γ(Ω).

And T is continuous. To prove that, let ((ρm, ηm))m be a sequence converg-
ing to (ρ, η) in C1,γ(Ω) × C1,γ(Ω). Since {T (ρm, ηm) : m ∈ IN} is pre-compact
in C2(Ω) × C2(Ω), any its subsequence has a convergent subsequence, denoted
by

(
T (ρα(m), ηα(m))

)
m

and its limit by (u, v). Then, if T1 and T2 are the first
and second components of T , we have⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

aij(∇ρα(m))[T1(ρα(m), ηα(m))]xixj
=

= βε(ρα(m) − ηα(m))
√

1 + |∇ρα(m)|2 − f
√

1 + |∇ρα(m)|2, in Ω
aij(∇ηα(m))[T2(ρα(m), ηα(m))]xixj

=

= −βε(ρα(m) − ηα(m))
√

1 + |∇ηα(m)|2 − g
√

1 + |∇ηα(m)|2, in Ω
T1(ρα(m), ηα(m))|∂Ω = ϕ, T2(ρα(m), ηα(m))|∂Ω = ψ .

Since (24) and (25) have a unique solution, we have then proved that

(u, v) = lim
m

T (ρα(m), ηα(m)) = T (ρ, η)

and so, T is continuous, since limm T (ρm, ηm) = T (ρ, η).
Since C1,γ(Ω)×C1,γ(Ω) is a Banach space and T is continuous and compact,

if we prove that

(26)
∃M > 0 ∀σ ∈ [0, 1] ∀ (u, v) ∈ C1,γ(Ω) × C1,γ(Ω)
(u, v) = σT (u, v) =⇒ ‖(u, v)‖C1,γ(Ω)×C1,γ(Ω) ≤ M ,

applying the Leray-Schauder theorem, we may conclude that T has a fixed point.
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So, we must prove (26). Since the equations (24) and (25) are linear and uni-
formly elliptic, we have, for fixed (ρ, η) ∈ C1,γ(Ω)×C1,γ(Ω) (see [8], pages 239-
240), for p ∈ [1,+∞],

‖uε‖W 2,p(Ω) ≤ C

[
‖uε‖Lp(Ω) +

∥∥∥βε(ρ − η)
√

1 + |∇ρ|2
∥∥∥

Lp(Ω)
+

+
∥∥∥f

√
1 + |∇ρ|2

∥∥∥
Lp(Ω)

+ ‖ϕ‖W 2,p(Ω)

]
,

‖vε‖W 2,p(Ω) ≤ C

[
‖vε‖Lp(Ω) +

∥∥∥βε(ρ − η)
√

1 + |∇ρ|2
∥∥∥

Lp(Ω)
+

+
∥∥∥g

√
1 + |∇ρ|2

∥∥∥
Lp(Ω)

+ ‖ψ‖W 2,p(Ω)

]
,

where this constant C depends on n, p and on the ellipticity constants, so on∥∥∥ |∇ρ|2
1+|∇ρ|2

∥∥∥
∞

and on
∥∥∥ |∇η|2

1+|∇η|2
∥∥∥
∞

.

But, if (u, v) = σT (u, v), it means that (u, v) is solution of the following
problem ⎧⎪⎨

⎪⎩
aij(∇u)uxixj

= σβε(u − v)
√

1 + |∇u|2 − σf
√

1 + |∇u|2 ,

aij(∇v)vxixj
= −σβε(u − v)

√
1 + |∇v|2 − σg

√
1 + |∇v|2 ,

u|∂Ω = σϕ, v|∂Ω = σψ .

By Theorem 2.7, we know that there exists D constant, depending only on
‖σϕ‖L∞ , ‖σψ‖L∞ , ‖σf‖W 1,∞ and ‖σg‖W 1,∞ , such that

‖u‖W 1,∞ ≤ D, ‖v‖W 1,∞ ≤ D .

Besides that, since σ ∈ [0, 1], D may be chosen independent of σ. So, to obtain
the uniform bound of ‖uε‖C1,γ(Ω), ‖vε‖C1,γ(Ω), it is enough to prove that

∃C > 0 (C independent of ε) : ‖βε(uε − vε)‖∞ ≤ C ,

and this fact is an immediate consequence of (17).
So, T has a fixed point, i.e., there exists (uε, vε) ∈ C1,γ(Ω) × C1,γ(Ω) such

that (uε, vε) = T (uε, vε) or, equivalently, (uε, vε) is solution of problem (7). In
fact, we know that (uε, vε) ∈ C2,γ(Ω) × C2,γ(Ω).

Theorem 2.8. Suppose that assumptions (1) and (5) are verified. Then
problem (3) has a unique solution (u, v). This solution belongs to W 2,p(Ω) ×
W 2,p(Ω), for 1 ≤ p < +∞.
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Proof. We know that (7) has a solution. Multiply the first equation of this
problem by ξ − uε and the second by η − vε and sum both, being (ξ, η) ∈ IK.

Recalling that

βε(uε − vε)
(
(ξ − uε) − (η − vε)

)
=

= −
(
βε(uε − vε) − βε(ξ − η)

)(
(uε − vε) − (ξ − η)

)
≤ 0 ,

we obtain then

(27)

∫
Ω

∇uε .∇(ξ − uε)√
1 + |∇uε|2

+
∫

Ω

∇vε .∇(η − vε)√
1 + |∇vε|2

≥

≥
∫

Ω

f(ξ − uε) +
∫

Ω

g(η − vε), ∀ (ξ, η) ∈ IK .

Since uε and vε are uniformly bounded (independently of ε) in W 2,p(Ω), for
any p ∈ [1,+∞[, a subsequence of (uε, vε) converges weakly in

[
W 2,p(Ω)

]2 and
strongly in

[
H1(Ω)

]2 to (u, v), when ε → 0. So, passing to the limit when ε → 0
in (27), we have

(28)

∫
Ω

∇u .∇(ξ − u)√
1 + |∇u|2

+
∫

Ω

∇v .∇(η − v)√
1 + |∇v|2

≥

≥
∫

Ω

f(ξ − u) +
∫

Ω

g(η − v), ∀ (ξ, η) ∈ IK .

Since, by (17) we have
∃N > 0 ∀ ε ∈ ]0, 1[ uε(x) ≥ vε(x) − Nε a.e. in Ω ,

letting ε → 0, we obviously have u ≥ v. Besides that, since uε
|∂Ω

= ϕ and
vε
|∂Ω

= ψ, then u|∂Ω = ϕ and v|∂Ω = ψ, and so (u, v) ∈ IK.
We have then proved that (u, v) solves the variational inequality (3).
Let us see now this solution is unique. Supposing there are two different

solutions (ui, vi), i = 1, 2, for problem (3), we should have∫
Ω

∇ui .∇(ξ − ui)√
1 + |∇ui|2

+
∫

Ω

∇vi .∇(η − vi)√
1 + |∇vi|2

≥

≥
∫

Ω

f(ξ − ui) +
∫

Ω

g(η − vi), ∀ (ξ, η) ∈ IK, i = 1, 2 .

Calling Φ(∇u) = ∇u

(1+|∇u|2)
1
2

(and recalling that Φ is monotone), choosing ξ = u2

and η = v2 in the equation for i = 1 and ξ = u1 and η = v1 in the equation for
i = 2, we obtain∫

Ω

(
Φ(∇u1)−Φ(∇u2)

)
.∇(u1 − u2) +

∫
Ω

(
Φ(∇v1)−Φ(∇v2)

)
.∇(v1 − v2) ≤ 0 ,

which implies, due to the monotonicity of Φ, that u1 = u2 and v1 = v2.
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