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ABSTRACT 

The understanding of other individuals’ actions is a fundamental cognitive skill for all species 

living in social groups. Recent neurophysiological evidence suggests that an observer may 

achieve the understanding by mapping visual information onto his own motor repertoire to 

reproduce the action effect. However, due to differences in embodiment, environmental 

constraints or motor skills this mapping very often cannot be direct. In this paper we present a 

dynamic network model which represents in its layers the functionality of neurons in different 

interconnected brain areas known to be involved in action observation/execution tasks. The 

model aims at substantiating the idea that action understanding is a continuous process which 

combines sensory evidence, prior task knowledge and a goal-directed matching of action 

observation and action execution. The model is tested in variations of an imitation task in which 

an observer with dissimilar embodiment tries to reproduce the perceived or inferred end-state of a 

grasping-placing sequence. We also propose and test a biologically plausible learning scheme 

which allows establishing during practice a goal-directed organization of the distributed network. 

The modeling results are discussed with respect to recent experimental findings in action 

observation/execution studies. 

 

Theme: Neural basis of behavior 

Topic: Cognition 

Keywords: Action sequence; Mirror circuit; Grasping; Placing; Hebbian learning;  

                   Learning by imitation  
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1 INTRODUCTION 

Humans and other primates are very good in recognizing and understanding goal-directed 

actions of conspecifics. This cognitive capacity is crucial for any social interaction because it 

enables the observer to adjust responses accordingly. The advantages of being able to predict 

consequences of an ongoing action of another individual are obvious in cooperative and 

competitive situations defining the social life of groups. What are the brain mechanisms 

underlying the capacity to recognize and understand actions displayed by others? Recent 

behavioral and neurophysiological evidence suggest that the neuronal structures involved in 

action production are to a large extent also activated during action observation. Action 

understanding might thus be based on a direct matching to the motor commands that an 

individual may use to reproduce observed actions and their consequences. Rizzolatti and 

colleagues have forwarded this “direct matching hypothesis” based on their finding of mirror 

neurons in premotor and parietal areas of monkeys ([19, 49]; for a recent review see [50]). Mirror 

neurons respond either when the animal produces a given action or observes the experimenter or 

another monkey performing a comparable action. Importantly, the actions able to trigger mirror 

neurons must involve goal-directed behavior such as, for instance, the grasping or placing of an 

object. Mirror neurons thus seem not to code for the movement per se but for the purpose of the 

movement. During the past decade neurophysiological evidence has been accumulated which 

support the existence of a mirror system matching action observation and action execution also in 

humans. Moreover, the findings of several brain imaging studies have been taken as evidence that 

the circuit active during action observation roughly corresponds to the homologues circuit of 

mirror neurons in the monkeys [36, 50]. 

As pointed out by Rizzolatti and colleagues, the suggested functionality of the mirror 

system provides a natural link between action understanding and imitation. In imitation the motor 

description of, for instance, an observed grasping-placing behavior may be turned into an overt 

action when the response is allowed. Understanding the significance of the action (“placing an 

object at a new position”) is important since otherwise the reproduced action would represent for 

the imitator nothing more than a series of meaningless gestures. A lack of understanding limits of 

course the capacity to apply or adapt the reproduced behavior in a new context. 

There are, however, several findings indicating that an explanation of action understanding 

purely based on a simple and direct resonance phenomenon of the motor system is likely to be 

incomplete. Humans and also monkeys are able to infer action goals without a full visual 
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description of the action (due to occluding surfaces for instance) by combining partial visual and 

additional contextual information (e.g., [7, 29, 55]). Similarly, it has been shown that infants at 

the age of 18 month are already able to act on a goal that they had to infer because the 

demonstrator “accidentally” failed to achieve the end-state of the action [42]. Obviously, in both 

the hidden condition and the error condition a direct mapping from perception to action is not 

sufficient to explain the goal-directed behavior of the imitator. Experiments with adults as models 

and children as imitators challenge in general the direct mapping hypothesis. Very often, a mere 

copy of the surface behavior displayed by the adult may not be appropriate or may even be 

impossible due to very different limb and body sizes. Children may nevertheless show their 

understanding of the task by reproducing the end-state using their own means. In a series of 

imitation tasks involving hand actions of different complexity, Bekkering and colleagues 

systematically investigated how the goal of an action (such as touching a dot on a table) affects 

the mapping from perception to action [9, 59]. The fundamental finding was that children 

primarily focus on reproducing the goal of the action and not on reproducing the means used. 

However, when the children were explicitly asked to pay attention to how the demonstrator 

achieved the goal (e.g., left or right hand) they were able to adopt the model’s strategy. 

Altogether, these findings suggest that beside the mirror system the neural circuit for action 

understanding and imitation involves representations, which combine visual cues and contextual 

information to organize the means needed to achieve an intentional goal. The prefrontal cortex 

(PFC) has long been thought to be centrally involved in this process ([46, 47]; for a review see 

[43]). The activity clusters reported in a recent positron emission tomography (PET) study using a 

goal-directed imitation paradigm fit nicely to this view [15]. In particular, it was shown that the 

observation and later reproduction of only the means of a known action sequence (i.e., only the 

grasping but not the placing of a particular object was shown) lead to a strong activation pattern 

in PFC (see also [12]). The authors interpret this finding as evidence for a neural processing 

representing an “automatic” retrieval of the goal underlying the observed action. 

Here we present a dynamic model, which aims at substantiating the idea of a distributed 

neuronal network in which action understanding and goal-directed imitation occurs within a 

continuous dynamic process. In its architecture, the model reflects the basic functionality of 

neuronal population of distinct but anatomically connected areas in the frontal, temporal and 

parietal cortex, which are known to be involved in action observation and action execution. 

Contextual information, action means and action goals are explicitly represented as dynamic 

activity patterns of local pools of neurons. 



 5

Specifically, we apply an imitation paradigm consisting of a grasping-placing sequence to 

show how the mapping from perception to action may contribute to the inference of the action 

goal. We also simulate how the knowledge about the action goal can be used to flexibly change 

between different means to reproduce the witnessed action effect. A second objective of the 

present modeling study is to illustrate how learning within the network can be exploited for skill 

growth. Here we focus on changes in environmental constraints and on observed means not in the 

motor repertoire of the imitator. 

To directly illustrate the functionality of the dynamic model we apply a simulator for a 

many degrees of freedom robot arm. The model implements a cognitive “decision module” which 

decides about the means the artifact uses to reproduce the observed or inferred action effect. 

Since we focus on the goal of the action and do not assume that demonstrator and imitator share 

the same embodiment, the implementation may be seen as a contribution to solving the 

correspondence problem that is now considered a major challenge for robot imitation ([1],  for a 

detailed discussion see also [17]).  

We proceed as follows: In Section 2 we   present the experimental paradigm and the overall 

model architecture. We also introduce the dynamic model and explain the underlying processing 

principles. Model predictions for variations of the basic experimental paradigm are described in 

Section 3. We close the article with a critical discussion of a number of conceptual implications 

of our dynamic model (Section 4). 

 

2 MATERIALS AND METHODS 

2.1 Experimental paradigm 

For our modeling study we adopt a paradigm, which has been developed to further 

investigate in experiments with humans the idea that actions are organized in a  goal-directed 

manner (van Schie & Bekkering, in preparation). The paradigm contains an object that must be 

grasped and then placed at one of two laterally presented targets that differ in height. The possible 

hand trajectories are constraint by the fact that an obstacle in form of bridge has to be avoided 

(Fig. 1). The task differs in two important aspects from typical paradigms, which have been used 

in the past to investigate the impact of action observation on action execution. In studies leading 
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to the discovery of the mirror system in non-human primates the action goal was defined as a 

simple hand-object interaction whereas in the present task the goal is defined as the end-state of 

the action sequence, that is, the placing of an object at a particular position. The bridge paradigm 

differs also from recently used grasping-placing tasks with human subjects [15, 59] in that the 

ultimate goal impose strong restrictions on how to grasp and transport the object. Depending on 

the height of the bridge, the lower target may only be reached by grasping the object from the 

side and transporting it below the bridge. Placing the object at the higher target, on the other 

hand, may require combining a grasping from above and a hand trajectory above the bridge. 

We use this experimental design for imitation tasks in which the observer (e.g., a robot) has 

to reproduce the visually perceived or inferred effect of an action sequence displayed by a model 

with different embodiment (e.g., a human). A detailed modeling of the visual pathway goes 

beyond the scope of this article. We therefore assume that an appropriate input triggers the 

neuronal  populations in model layers representing  the grip type and the goal (but see [26] for a 

model  application in a real robot-human task).  

   ---- Figure 1 about here ---- 

 

2.2 Model architecture 

In the following we summarize experimental findings, which constrain the choice of the 

model architecture and the nature of the internal representations used to model imitative, goal-

directed behavior. 

An important characteristic of mirror neurons is that they code for hand-object interactions 

irrespective of the precise physical aspects of the movement. Some mirror neurons generalize 

even across the end-effector used [49]. This coded level of abstraction has been conceptualized 

by introducing the notion of a vocabulary of motor primitives [51] or motor schema [4]. 

Subpopulations of neurons in the premotor area F5 are thought to represent distinct goal-directed 

motor acts such as for instance grasping, holding or placing an object. Perrett and colleagues 

described neurons with strikingly similar firing characteristics with respect to hand-object 

interactions in the superior temporal sulcus (STS) of macaque (for a review see [14]). The major 

difference to the mirror neurons in F5 is that the goal-related neurons in STS do not discharge 

during active movements. With respect to the direct matching hypothesis this suggests that 



 7

neuronal populations in STS may provide a visual description of a goal-directed action, which is 

then mapped onto a similar motor representation in F5. For the modeling we adopt the idea of 

separate action observation and action execution layers in which neuronal populations encode 

abstract motor primitives. Concretely for our bridge paradigm, we distinguish for each of the two 

parts of the action sequence two possible response alternatives. The direct hand-object interaction 

may be accomplished by grasping the object from above or from the side (in the following 

referred to as AG-grip or SG-grip, respectively). The transporting-placing phase of the sequence 

is characterized by the strategy how the obstacle is avoided. We assume that distinct sub-

populations of neurons encode either the trajectory above or the trajectory below the bridge (in 

the following termed AT-trajectory and BT-trajectory, respectively). Areas F5 and STS are only 

indirectly connected through anatomical projections to areas PF/PFG (termed PF hereafter) in the 

inferior parietal lobule (IPL). Area PF also contains mirror neurons [50] and may thus be seen as 

an intermediate stage of the observation/execution matching circuit. The STS-PF and the PF-F5 

connections are reciprocal allowing for a flow of information from action observation to action 

execution and vice versa. Figure 2 gives a schematic view of the model architecture with the 

mirror circuit as one part. 

   ---- Figure 2 about here ---- 

Important for the emphasized goal-directedness of imitation is the fact that IPL has strong 

anatomical connections with the prefrontral cortex (for review see [52]) which is believed to 

subserve the organization of means for goal-directed behavior in other brain areas [46, 47, 43]. 

This planning function suggests that a goal representation in PFC may bias the processing in area 

PF toward the selection of a sequence of motor primitives appropriate for the achievement of that 

intentional goal. Direct evidence for  a goal-directed organization of actions in area PF have been 

gained in a recent monkey study. Using a grasping-placing paradigm, Fogassi and colleagues [30] 

described a population of grasping neurons in PF which showed a selective response in 

dependence of the final goal of the action (eating vs. placing). Adapted to the bridge paradigm 

this finding suggests that neuronal representations of the action goals should be directly 

connected with sub-populations in layer PF encoding specific combinations of movement 

primitives (i.e. AG/AT, AG/BT, SG/AT or SG/BT). 

Beside its role in the organization of forthcoming actions it is commonly believed that PFC 

plays a crucial role in the integration of goal-relevant information. There is striking evidence 

from neurophysiological studies that associative relationships between anatomically segregated 
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neuronal populations in PFC allow to integrate prior task knowledge, knowledge about 

environmental constraints and sensory cues (for review see [43]). In the model architecture we 

represent this integrative role of PFC by assuming 1) that the visual cue (e.g., a hand moving 

away from the placed object) processed in connected association areas of the visual pathway 

triggers the representation of the desired goal, and 2) that in a second layer prior task knowledge 

(i.e., the identity of all possible targets in terms of their height) is stored (Fig. 2). The functional 

role of this task layer is to provide a constant input to the system resulting in a “priming” of all 

possible goals and their associated means. This reflects the fact that in a known task setting the 

imitator can engage in partial (motor) preparation even before the observation of the model. 

It is important to stress that the assumed mapping from cue to goal mirrors the task 

contingencies of an imitation paradigm. The target chosen by the demonstrator defines the desired 

end-state. A different task, which might emphasize, for instance, the importance of a 

complementary behavior would require a mapping to the target not chosen by the model. 

The existence of the bridge as an environmental constraint does not directly affect the 

action goal but strongly the means that can be chosen. This impact of the environmental 

constraint is reflected in the model by how the goals are parameterized. We assume sub-

populations that encode the height of the placing targets relative to the height of the bridge. 

Depending on the spatial gap between bridge and target particular means may be excluded from 

use (e.g., a trajectory below the bridge in case of very similar heights) and consequently no 

associations to their representations in area PF are learned. 

When attempting to reproduce the observed action effect, the abstract motor representations 

in F5 have to be translated in lower motor structures into a movement plan generating the right 

kinematics. As discussed in detail below (see the learning section), this planning stage is also 

assumed to provide a feedback signal for establishing the goal-directed organization of synaptic 

links in the network. 

In line with findings of recent behavioral and neurophysiological studies [53, 33] we assume that 

planning takes place in posture space. A collision-free path for the robot arm is generated from 

the initial posture to the postures representing the grasping and subsequently the placing of the 

object. Importantly, the abstract representations in the mirror system are directly linked to the 

planning stage since the movement primitives in F5 serve to pre-select relevant parts of the 

posture space. This makes a real-time planning in the high-dimensional space feasible. The 
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selection of goal postures prior to the movement requires that during development and practice 

associations have been formed between the visual image of the arm in a large number of 

configurations and the corresponding joint angles. It has been suggested that the spontaneous 

arm-waving and simultaneous watching of newborn babies may be essentially a mechanism for 

learning these associations [56]. 

Ideas from the field of dynamic programming have inspired the concrete path-planning 

algorithm including the obstacle avoidance. The details are mainly determined by the need to 

allow for the control of a robot arm in real time (compare [26] and Supplementary Note 

(Appendix B) online for further details). 

 

2.3 Model details 

Our modeling approach is constrained by two basic hypotheses. First, it is assumed that the 

task relevant information in each model layer of the distributed network is encoded by means of 

sustained activity in local pools of neurons. Stabilizing and maintaining goal-related information 

is an essential capacity whenever the persistence toward a goal in noisy environments with 

distracting events is required. Such actively maintained representations are also thought to 

underlie the formation of associations between events that are separated in time ([34]; for review 

see [11]). 

Neuronal activity, which persists after cessation of an inducing event, is observed in many 

brain areas including parietal cortex, prefrontal cortex, premotor and motor cortex (for an 

overview see [21]). Types of neurons involve “memory cells” for sensory cues or abstract rules in 

PFC [43] but also mirror neurons in areas PF and F5. Typically, grasping or placing neurons 

continue firing at an elevated rate for an extended period subsequent to the defining event [50]. 

In many network models persistent activity arises from reverberatory excitation within 

local populations of neurons, which is effectively counterbalanced by inhibitory feedback loops 

(for reviews see [57, 21]). In addition, it is frequently assumed that the interactions are spatially 

structured with excitation dominating at small distances and inhibition in the surround. Such a 

spatially organized interaction scheme has been originally proposed to explain localized 

activation patterns in small pieces of neuronal tissue [58, 2]. It has later been applied to model 

various functionalities in the perceptual and the motor domain (e.g., [41, 10, 61, 37, 39]). For the 
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present modeling work, we adopt for each network layer a center-surround organization of 

recurrent interactions as a well studied mechanism underlying persistent activity patterns. In 

addition, sub-populations coding for different categorical choices (e.g., AG-grip and SG-grip) are 

assumed to interact purely inhibitory with each other leading to a competition between response 

alternatives. 

As a second hypothesis constraining the modeling work, we assume that the specification 

of goals and means is a continuous process that is sensitive to a host of behaviorally relevant 

factors such as sensory evidence, general task information and prior probabilities. The 

accumulation of information is thought to take place over a limited time period after which a 

decision for one of the possible alternatives is made [32, 24]. To model this process we assume 

that the various local networks are bi-stable. In this dynamic regime, a stable state in which all 

neurons fire at a rate close to resting level coexists with the state of a self-sustained activity 

pattern [2, 24, 12, 16]. Functionally, this allows pre-activating local populations close to the 

threshold for the ignition of an active response by means of weak external inputs. Despite the 

relatively small change in activation, this “preshaping” mechanism may have a drastic effect on 

the time course of the specification process in a local network [23, 25]. This in turn may affect the 

decision processes in connected layers of the distributed network (compare Section 3). 

In Figure 3, we exemplify the integration-decision process by showing the evolution of a 

self-stabilized activation peak in the goal layer representing the selection of the higher target 

parameterized by the smaller spatial gap (Fig. 1). Note that the constant task input has already 

preshaped the representation at the time t = 0 of the onset of the specifying visual input. The 

network dynamics in each layer is governed by a “standard” firing rate model representing the 

average level of activity in a population of excitatory and inhibitory neurons ([18], see  Appendix 

A1 for details).  

    ---- Figure 3 about here ---- 

The learning of synaptic connections between neuronal populations in any two layers of the 

model network is based on Hebbian learning (for review see [11]; for discussion of theoretical 

aspects see [18]). Recently, Keysers and Perrett have suggested that a correlation-based learning 

rule within the STS-PF-F5 circuit may explain how mirror properties may evolve [40]. In 

addition, we propose that also the synaptic links of area PF to the goal representations in PFC 

may develop using such biologically plausible rules.  
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A basic assumption is that the time scale of the synaptic modification is small compared to 

the time scale of the neuronal dynamics. The synaptic efficiency can thus be treated as constant 

on the fast time scale of the pattern formation. When the network has relaxed to a stable state, a 

Hebb rule is applied during a developmental period defined by an internal reinforcement signal 

(for details see Appendix A2).  Note that the transient phase of the dynamics could have been 

included in the learning process as well without qualitatively changing the results presented here. 

Figure  4 sketches   the connections a(x,y) between neurons in two distinct  network layers which 

are modified during practice. The synaptic connections w(x,x’)  between any two neurons within 

the same layer remain fixed and are chosen to guarantee the bi-stable behavior of the layer 

dynamics. 

    ---- Figure 4 about here ---- 

3 RESULTS 

3.1 Choice of means and goal inference in an imitation task 

In the first simulation example shown in Figure 5 we illustrate the behavior of the dynamic 

model for an experiment in which the imitator comes up with its own way of reproducing the 

observed action effect. The demonstrator has placed the object at the higher target combining a 

grip from the side (SG) and a trajectory above the bridge (AT). In the dynamic model, this 

information is encoded by localized activation patterns in the goal layer of PFC and in layer STS, 

respectively. The demonstrated action differs from the imitator’s preferred strategy in the 

grasping behavior (AG). Since the learned associations to the goal representation dominate the 

selection process for the sequence in layer PF, the representation of the combination AG/AT 

becomes suprathreshold. It ultimately suppresses via the inhibitory recurrent connections the 

SG/AT representation driven by the STS input and simultaneously triggers via the excitatory 

connections to layer F5 the evolution of the associated motor primitives, AG and AT (compare 

Supplementary Material (videoF5) online for a video sequence). 

    ---- Figure 5 about here ----- 

Now imagine that the embodiment of the imitator allows, in principle, to adopt the 

demonstrator’s strategy to achieve the end-state. This may be the case for instance when the 

obstacle is sufficiently low. We therefore assume that during training and practice also synaptic 

links between the particular goal representation and the observed strategy have been learned. The 
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connections are, however, weaker compared to the links to the preferred action sequence. If the 

imitator is explicitly asked to pay attention to how the demonstrator achieves the goal, the 

observed means should dominate the decision processes in the mirror circuit. The intentional 

change in motor behavior can be achieved by weakening the task input to the goal layer. As 

shown in Figure 6, a weaker “expectation” about potential targets results in a slower specification 

of the goal. This in turn also delays the positive input to the associated sequence of means.  

   ---- Figure 6 about here ---- 

As illustrated in Figure 7, the stable state of the network dynamics now represents a direct 

matching between action observation and action execution. To illustrate that the decision 

processes in area F5 directly affect the planning in posture space we compare in Figure 8 the 

overt behavior of the robot arm when the preferred primitives have been selected (left column) 

with the situation when a direct matching of primitives occurs (right column) (see Supplementary 

Material (videoF8l, videoF8r) online for video sequences) . 

      ---- Figures 7 and 8 about here ---- 

The proposed purely temporal mechanism for adapting the means is not restricted to the 

first part of the sequence. It works equally well when both the grasping and the transporting 

behavior have to be adapted. In Figure 9A we compare the temporal evolution of the maximum 

excited PF-neuron for an observed placing at the higher target. With weak preshaping of the goal 

representations, this neuron represents the demonstrator’s sequence SG/BT (dashed line) whereas 

with strong prior expectation the maximum excited neuron encodes the preferred sequence 

AG/AT (solid line). In both cases, the evolving pattern in the goal layer represents the perceived 

goal (Figure 9B). For the adaptation case, however, a conflict is introduced since the 

demonstrated sequence SG/BT represents the observer’s preferred strategy associated with the 

other placing target. The resulting competition between neuronal populations is predicted to 

further delay the processing in PFC compared to the example shown in Figure 6. 

          ---- Figure 10 about here ---- 

A second set of simulations shall illustrate the dynamics of the model in an experimental 

condition in which the goal state is not directly observable and can only be inferred from 

additional information sources. Recently, Umiltà and colleagues [55] have shown that a 

population of mirror neurons in F5 may encode a goal-directed action also when the crucial part 
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defining that action is hidden from view. The information sufficient to trigger grasping neurons 

was a hand disappearing behind an occluding surface combined with the knowledge that there is 

also a graspable object behind that occluder. 

The dynamic model offers an explanation of how the integration of partial visual cues, task 

information and motor knowledge may lead to the inference of the goal. For this purpose we 

adapt the occluder paradigm for the bridge task by assuming that only the grasping can be 

identified and will be represented in layer STS. The visual information about the trajectory and 

the action goal is missing. The crucial role of the task information is reflected by increasing its 

relative strength. This constant input brings neuronal populations representing the possible goals 

and their associated means closer to the threshold necessary to trigger an active response. In 

Figure 10 we show snapshots of a model simulation for an inference task in which only the 

demonstrator’s SG-grip was observable (see Supplementary Material (videoF10) online for a 

video sequence). The dynamics has relaxed in each model layer to a stable activation peak (solid 

line). For the preshaped system, the evolving grip representation in STS alone is sufficient to 

trigger the population in PF encoding the SG/BT sequence. As illustrated by the snapshot of the 

transient phase of the dynamics (dashed line), this is followed by the evolution of the associated 

goal representation in PFC. Moreover, due to the reciprocal connections from the frontoparietal 

circuit to area STS the model also predicts the evolution of a full visual description of the action 

including the unobservable trajectory below the bridge. This prediction is in line with findings of 

a recent fMRI-study using finger movement in an observation/execution task [35]. The authors 

report an increased activity in the visual motion area STS also in trials in which the movement 

was triggered by an abstract, static cue. They interpret this pattern as a reflection of motor-related 

activity during action execution (but see [40] for a different interpretation). 

To illustrate the overt imitative behavior in this task, snapshots of the robot arm moving 

toward the inferred target are shown in Figure 11. The grasping of the object and the movement 

trajectory reflect the primitives selected in the action layer F5.  

Note that for the inference mechanism to work the grip displayed by the demonstrator must 

coincide with the grip of the imitator’s preferred strategy. Otherwise, we would have to assume 

the learning of an incongruent mapping from a SG-grip onto an AT-grip (see below). 

    ---- Figure 11 about here ---- 
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3.2 Skill growth through correlation based learning 

Like other authors before, we suggest that the observation/execution matching system 

evolves during development through the generalization from a description of self-generated 

actions to the description of similar actions made by other individuals [52, 45, 40]. Thus, in a first 

learning phase the repeated observation of our own hand action is assumed to establish a link 

between motor primitives and the high-level visual descriptions. Because of the perfect 

synchrony between action observation and action execution the learned associations will 

represent a congruent mapping. This congruency naturally becomes broader when the mapping is 

also applied to goal-directed actions of others. For instance, the other individual might use a 

different grip type or even another effector when grasping an object. This difference in the means 

should of course not disturb the understanding of the meaning of the witnessed action. The 

observation of classes of mirror neurons with a broader congruency, independent of effector or 

grip type [50], may be seen as experimental evidence supporting the existence of an abstract, 

goal-directed matching mechanism. 

Even more direct evidence comes from a recent study by Fogassi and colleagues [28] in which 

grasping neurons in F5 were described which fired when the monkey observed actions performed 

with a tool. Given the potential role of these “tool-responding mirror neurons” in understanding 

actions not strictly in the motor repertoire of the observer, the question is how such high-level 

motor representations may evolve during development and practice. The following model 

simulation shall illustrate under which experimental conditions a biologically plausible Hebbian 

learning rule may establish the abstract mirror properties. Concretely, we suppose that the 

demonstrator uses a tool unknown to the observer to first grasp and then place the object at one of 

the goals in the Bridge paradigm. 

The first condition for learning the mirror properties is that repeatedly witnessing the tool-

use leads to a new classification of the action in terms of the type of grasping. The trajectory, on 

the other hand, may still be categorized as either above or below the bridge. A detailed 

description of methods for classifying hand motion goes beyond the scope of this article. Several 

learning algorithms which exploit statistical regularities have been proposed over the last couple 

of years (for a recent review see [48]). In the model, we simply assume that a sub-population of 

neurons in layer STS specifically encodes through a self-stabilized activity pattern the new grip 

type “IG”. Using excitatory neurons with Hebbian plasticity, Amit and Brunel [3] have shown 
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that the structured neuronal connectivity necessary to guarantee for the coexistence of a persistent 

local activation pattern and a stable resting state may develop during stimulus learning. 

The second condition for learning the abstract mirror properties is that not only the tool-use 

but also the end-state of the action sequence should be observable. The imitator may then acquire 

a meaning of the observed hand-tool motion in the sense of a goal directed action by covertly 

using his/her own motor representations for achieving the observed end-state. In the model, the 

activation peak in PFC representing the goal triggers the associated representation of means in 

PF. Subsequently, synaptic links are established with the tool-use representation in STS through 

the correlation based learning rule (see Appendix A2). To guarantee that the resulting matching 

between action observation and action execution is indeed goal-directed, the learning epochs are 

defined by an internally generated reinforcement signal representing the successful planning of a 

posture sequence toward the desired goal posture (see [44] for a discussion of physiological 

mechanisms underlying such a permissive gating). 

In Figure 12, the result of the learning is shown in a simulation of an inference task in 

which only the grasping with the tool is directly observable. Through the reinforced STS-PF 

connections, the visual description of the hand-tool motion can be understood as functionally 

congruent to the AG-grip normally used by the observer to place the object at the higher target. 

The conditions under which learning in the model takes place may also explain that in 

previous monkey studies tool-use mirror neurons have not been described ([49]; but see [5]). The 

experiments may have simply lacked the multiplicity of similar observations necessary to 

represent the new motor act in area STS. In addition and very important for our goal-directed 

theory of imitation, the observed end-state of the tool-use most likely had no specific meaning for 

the monkey and could thus not be associated with any behavior in the motor repertoire. 

Consistent with this view, Fogassi and colleagues [28] reported that during the new experiments 

the tool was also used to give food to the monkey. 

   ---- Figure 12 about here ----- 

Of course, this form of learning does not imply that the observer is also able to reproduce 

the tool-use. Our basic assumption that the agents do not necessarily share the same morphology 

explicitly excludes the possibility for a matching on the movement level which is the basis of 

many approaches for motor learning though imitation [54]. However, it has been suggested that 

more abstract knowledge may be acquired through observation by copying not the surface 
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behavior but the organizational structure of the witnessed action [13]. Imagine, for instance, that 

the height of the bridge or the height of one of the goals is changed. The observer still can 

identify the goal but does not know what combination of means can be chosen to reproduce it. 

One possible strategy could be trying to copy the sequence of means used by the demonstrator. 

This can be achieved through a direct matching with congruent movement primitives in PF and 

F5 which in turn will bias the trajectory planning toward the desired goal postures. If the planning 

turns out to be successful, the observed response strategy can be associated with the goal by the 

learning procedure described above. If not, the trajectory planning has to be repeated in a much 

larger state-action space (see Supplementary Material (Figure13) online for a model simulation) . 

It is important to note that this kind of learning through observation on the level of 

primitives is not restricted to the simplified case with only two categorical choices for grip and 

trajectory. Other grasping behaviors (e.g., a precision grip) and hand trajectories (e.g., a trajectory 

circumventing the obstacle at one side) not used before in the bridge paradigm could be copied as 

well whenever the respective movement primitives are already in the motor repertoire of the 

observer. 

 

4 Discussion 

When observing others in action with the intention to imitate the actions, we most likely 

don’t encode the full detail of their motions but our interpretation of those motions in terms of the 

demonstrators’ goal. The experimental literature reviewed in this article suggest the existence of a 

distributed representational system which allows one to “construct” the meaning of actions 

combining sensory evidence about environmental changes, situational context, prior task 

knowledge, and a matching between the observation and execution of action. The main objective 

of the present study was to formalize a dynamic model of this distributed representational system 

and to test it in several variations of a basic grasping-placing task. 

4.1 Goal-directed imitation 

In the goal-directed theory of imitation proposed by Bekkering and colleagues imitative behavior 

can be considered successful whenever the end-state of the observed action is reproduced. The 

means, on the other hand, may or not coincide with the observed ones. There is a need for some 

cognitive control whenever an automatic imitation of the means would lead, for instance, to a 
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collision with an obstacle. But also in the case that a direct, congruent matching would be in 

principle possible, the imitator should not automatically adapt a response strategy which has been 

successfully associated with the goal in previous trials. In the proposed dynamic model, the 

primacy of the goals over the means is implemented by assuming that the goal representations in 

PFC evolve faster compared to the representations in the observation layer STS (Fig. 6). As a 

consequence, the selection of means in the areas PF of the inferior parietal lobule is biased by the 

goal representations. However, this temporal advantage manifests only if the observer is familiar 

with the task and thus has prior expectations about how the goals and their associated means 

could look like. Experimental paradigms which directly manipulate the prior task information are 

therefore expected to reveal further insights about the relative timing of processing in STS, PF 

and PFC. To explain reaction time data in pointing tasks, we have recently used a conceptually 

related model in which the preshaping of target representations varied dynamically in accordance 

with the probability of target occurrence [25]. For a more complex grasping-placing task the 

dynamic model for goal-directed imitation predicts that for rare goals the imitator will copy a 

change in the observed means (e.g., the demonstrator adapts the grasping behavior from one trial 

to another) with higher probability compared to more frequently experienced goals. 

In dynamic and cluttered environments, very often sensory information about the crucial 

final part of an action sequence displayed by another agent may not be available. As the model 

simulations of the bridge paradigm show, a goal-directed organization of action means in IPL 

together with the integration of prior task knowledge may allow inferring the demonstrator’s 

action goal when only the grasping part of the action is directly observable. The only crucial 

assumption is that  the observed grasping  triggers the same sequence of primitives which is also 

activated during the execution of the complete goal-directed action. The recent discovery of 

mirror neurons for grasping in area PF/PFG [30], which discharge according to the final goal of 

the action, strongly supports the biological plausibility of the model architecture. 

The functional role of the action organization in IPL may be phrased within the framework of 

internal forward models for predicting the sensory consequences of a motor act. Wolpert, Doya 

and Kawato [60] have recently suggested to extent the concept of internal models to a more 

abstract level somewhat independent of specific movement trajectories. The key idea behind the 

proposed computational scheme (HMOSAIC model) is to include hierarchically higher levels of 

motor control in the simulation loop for action understanding. On this view, the goal-directed 

mirror neurons in IPL may be seen as being part of an abstract forward model for interpreting an 

ongoing action. 
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Since the pathway for inference involves the additional mappings from STS to PF and 

subsequently to the goal representations in PFC, the model predicts a delayed path planning 

compared to the case when the goal representation is directly triggered by visual input. This 

prediction could be tested in reaction time studies of an imitation task in which either the action 

goal (e.g., a hand moving away from a placed object) or an action means (e.g., the grasping of the 

object with a specific grip) is given as a cue.  

In the model, the goal-directed selection of means in areas PF is translated via congruent 

mappings to the premotor area F5. There, the representations of the motor primitives serve to 

constrain the motor planning toward the goal postures by selecting areas in posture space 

compatible with these primitives. In visually guided grasping of objects other pathways not 

included in the present model may provide area F5 with more detailed information to further 

constrain the planning. In particular, the projections from area AIP in parietal cortex are believed 

to transmit information about object shape and size needed for hand shaping (for review [52]; for 

a neuro-computational approach see the FARS model [27]). 

 

4.2 Neuronal population representations 

In each model layer, instances of a particular category are represented by localized activation 

patterns. This is consistent with the idea of population coding. Individual neurons of a certain 

sub-population represent task specific information to a greater or lesser degree depending on the 

functional distance to the instance coded by them. The notion of similarity implicitly assumes that 

the internal representation space is endowed with metric structure. For high-dimensional, abstract 

spaces defining categories like for instance grip type or trajectory type the metric distance 

between any two instances is not directly observable [22]. However, it may still be defined 

operationally by the degree of overlap of their neuronal representations. The bridge paradigm 

with its need to choose specific grasping and transporting behaviors to achieve a certain goal 

suggests disjoint representations of the means in each layer of the mirror circuit. For a more 

general paradigm, it would be interesting to directly test on the neuronal level the metric structure 

of the motor vocabulary. 

Interestingly, Fogassi and colleagues [28] described in their recent tool-use study, firing patterns 

of mirror neurons in F5 consistent with the competition process implemented in the model. Tool-

responding mirror neurons appeared to be inhibited when the monkey observed the experimenter 
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grasping with the hand. This response pattern may be explained by assuming inhibitory 

interactions with a subpopulation of classical hand-responding mirror neurons.  

In line with the notion of preshaping of neuronal representations, recent neurophysiological 

findings reveal that neurons involved in the planning of goal-directed hand or eye movements 

may selectively change their activity in relation to prior task information (e.g., [8, 24, 20], for an 

overview see [32]). Moreover, Asaad and colleagues [6] described cell populations in PFC which 

showed modulations in the baseline firing rates in dependence of which task had to be performed. 

The authors speculate that this modulation may provide the means to bias decision processes in 

other brain areas. In line with this hypothesis, our modeling results suggest that the preshaping of 

populations in PFC may implement a simple temporal mechanism for an intentional control of the 

direct matching pathway. 

 

4.3 Learning the goal-directed matching 

Oztop and Arbib [45] have recently extended the FARS model [27] representing circuitry for a 

visually guided grasping of objects to include also pathways for action recognition. The authors 

hypothesize that the basic functionality of the F5 mirror system is to provide the appropriate 

feedback for the grasping. In their model, a neural network was trained to map the “hand state” 

representing hand configuration parameters and parameters relating hand and object onto motor 

neurons coding for the respective grip type. Since the hand-state input may be generalized from 

one’s own hand to the hand of others this learned mirror pathway may be used to recognize 

grasping acts performed by a demonstrator. Also in our model we assume that first a congruent 

mapping between the visual and the motor description of a particular action is learned during self-

observation. This congruent mapping is then generalized to the movements of others. The 

proposed model thus covers more common action observation/execution paradigms  in which a 

direct matching between congruent motor primitives is possible (e.g., a grasping-placing 

sequence without obstacle).  However, in contrast to the model of Oztop and Arbib the learning 

signal is not the motor program associated with a particular primitive but a motor planning signal 

representing whether or not selected primitives can be used to achieve the desired goal. The 

feedback from this “simulation stage” gates the correlation based learning of synaptic links. The 

resulting goal-directed matching in the mirror circuit allows developing an understanding of an 

action also in cases where a congruent mapping is not possible due to differences in embodiment, 
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in task constraints or in motor skills. There is no doubt that for humans incongruence in 

movement and effector does not impair the capacity of inferring goals. The discovery of the tool-

use mirror neurons strongly suggests that under appropriate experimental conditions also 

monkeys may develop the abstract motor representations necessary for this capacity. 

The emphasis on goal-directed matching does of course not exclude that for other purposes (e.g., 

motor learning) a matching on the level of kinematics may be crucial. In the context of robotics 

research, Dautenhahn and colleagues [1]  proposed a theoretical framework for solving the 

“correspondence problem” between model and imitator. In their application, the authors used 

different metrics to measure successful imitation with different granularity ranging from the 

movement level to the goal level. 

In a shared common context an imitator may benefit from an experienced model by 

copying  the observed sequence of means which, however,  has to be “confirmed” using the 

proper planning in posture space. If successful the specific action means are linked via Hebbian 

learning to the goal representation in the prefrontal cortex. Since the planning requires an 

anticipated goal posture, this form of learning by imitation explicitly requires an interpretation of 

the observed motor pattern as a goal-directed behavior. Consistent with this model prediction, an 

interaction between the mirror circuit and area 46 of PFC has been described in a recent fMRI 

study of imitation learning [12].  

The following experimental test could nicely illustrate that the learned link to the goal is crucial. 

Assume that the bridge obstacle is removed for the model but not for the imitator. Now the 

demonstrator may grasp the object from the side. For the imitator, an automatic copy of the SG-

grip would result in a collision with the bridge [26]. 

Findings in a recent monkey study have been interpreted as evidence for a purely 

perceptual basis of action understanding. Perrett and colleagues [38] described cell populations in 

STS which seem to encode not only the action per se but also the intentionality of that action 

(e.g., grasping the object on the right and not the object on the left). The firing patterns are 

consistent with the notion that in a known task setting pure visual cues like for instance the 

direction of hand movement may be sufficient to predict the consequence of an ongoing action. 

However, we argue here that an observer may develop such high-level visual representations only 

after the action is understood, that is, the relation between goal and means has been established 

using the own motor repertoire. Subsequently, direct links between the high-level visual 
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representations in STS and the goal representations in PFC may be learned to allow for 

anticipating the action consequences before the action is completed. This prediction is in line with 

experimental findings showing that certain cell populations in PFC, which first are triggered by a 

goal (reward), tend to become activated with experience by cues that predict that goal [43]. 

 

 

Outlook 

For the present modeling study, we have chosen a paradigm in which the action goal is a simple 

physical end-state. However, the model architecture may be extended to include also the 

activation of higher intentional goals by observed gestures. For instance, when you observe 

someone grasping a glass of water you may use your own behavioral repertoire to infer not only 

the mouth as the physical end-state of the action but also that the person is thirsty. Indeed, it has 

been suggested that the basic processing principles implemented in our dynamic model represent 

a precursor for a more general social-understanding ability [31]. 

 

Appendix A 

A1. Mathematical details of the firing rate model 

In each network layer the activity u(x, t) of a neuron x at time t is described by the 

following equation: 

( ) ( ) ( )( ) ( ) ( )( ) ( )( )
( )
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where the constants 0τ >  and  0h <  define the time scale and the resting level of the dynamics, 

respectively. The firing rate f(u) is taken as a non-linear function of  sigmoid shape 
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with threshold uf  and slope parameter β. The excitatory connections, ( ), ( ')w x x w x x′ = − , 

between nearby neurons are modeled as a Gaussian profile with standard deviation σ and 

amplitude A 
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The feedback inhibition depends on the overall activity level in the network and is controlled by 

the constant inhibw .The gating signal g(u) is modeled by a sigmoidal function with threshold 

g fu u> [37]. This choice ensures that the recurrent interactions dominate the processing only if 

the connected neurons are sufficiently activated above resting level by external inputs. The values 

of the diverse model parameters are chosen to ensure the bi-stability of the dynamics [2]. For 

simplicity, the identical set is used for all layers of the network. 

Finally, the term ( ),i
i

S x t∑ describes the summed input from other model layers and sources 

external to the network. Since an explicit modeling of the visual pathway goes beyond the scope 

of the present study, Gaussian functions of appropriate strength are used for simplicity as visual 

inputs triggering the population representations in the goal layer and in layer STS. These 

Gaussian inputs are kept fixed for all model simulations shown in this paper. 

 

A2. Synaptic modification rule 

The equation for the correlation-based synaptic modification between neuron x in layer 1 

and neuron y in layer 2 is given by (compare Fig. 4): 

( ) ( ) ( )( ) ( )( )1 2, , , ,s a x y t a x y t f u x f u y
t

δτ η
δ

= − +      (1) 
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where 1u  and 2u denote the equilibrium solutions of the relaxation phase in layer 1 and layer 2, 

respectively, η defines a scaling parameter,  sτ τ  the time scale and f  is the sigmoidal 

threshold function. Note that the activity patterns coding for the distinct, categorical choices in 

each network layer are assumed to be non-overlapping such that the strength a(x,y,t) is not 

affected by the representation of alternative means or goals. The time window for the learning is 

defined by an internally generated reinforcement signal representing a successful path planning. 

Technically we implement the monitoring process by multiplying the right hand side of equation 

1 with a function that takes on for simplicity the value 1 during the learning period and the value 

0 otherwise. At the end of the learning process, the synaptic strength a(x,y,t) becomes the time-

independent A(x,y): 

( ) ( )( ) ( )( )1 2,A x y f u x f u yη=     (3) 

Since the self-stabilized activity patterns  1u  and 2u  are symmetric and bell-shaped, also the 

evolving connection profile is symmetric with maximum connection strength to the maximum 

excited neuron in the other layer. The equilibrium solution in layer 1 (equivalently for layer 2) is 

then given by: 

( ) ( ) ( )( ) ( )1 1 2u x w x x f u x dx h S x′ ′ ′= − + +∫      (4) 

with the input from layer 2 

( ) ( ) ( )( )2 2,S x A x y f u y dy′ ′ ′= ∫  

For the model simulations, the strength of the learned synaptic connections between layers is 

adjusted using the parameter η. Depending on whether or not an existing activation pattern 

should drive the evolution of suprathreshold activity in a subsequent layer or should only 

preshape neuronal representations, its effective input strength is chosen above or slightly below 

the threshold ATH for the ignition of an active response [25]. 
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Figure Captions: 

Figure 1: 

Sketch of the experimental paradigm with a cylindrical object to be grasped, the obstacle in form 

of a bridge, and the two possible placing targets of different height. The artificial arm/hand 

system has to imitate the action effect of a grasping-placing sequence demonstrated by a model 

with different embodiment (e.g., a human). The gasping and transporting behavior is constraint 

by the magnitude of the spatial gap between placing target and bridge.  

 

Figure 2: 

Schematic view of the model architecture. The core part consists of the STS-PF-F5 circuit for a 

matching of action observation and action execution which is reciprocally connected with a layer 

in prefrontal cortex. This “goal layer” encodes the intentional action goal parameterized by its 

spatial gap relative to the bridge. The demonstrated means, the selected goal, and the selected grip 

and trajectory type are represented within the network by self-stabilized activity patterns of local 

pools of neurons. The bimodal activity distribution in the “task layer” of PFC reflects the 

memorized information about the two (equally likely) placing targets characterized by their 

height. Layer F5 is directly connected with the planning system which provides the goal-directed 

posture sequence for the arm/hand system. The path planning also provides an internal feedback 

signal for the learning of the goal-directed associations in the mirror system (see the learning 

section below). 

 

Figure 3: 

The evolution of a self-stabilized activation pattern in the goal layer of PFC is shown. The pattern 

represents the selection of the higher target (i.e. small gap) as the action goal. Time t = 0 defines 

the onset of the visual input. Note that at that time the system appears to be already preshaped by 

the constant input from the task layer. The zero activation level defines the threshold for the 

ignition of the self-stabilized population response. 
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Figure 4: 

Sketch of the connectivity within layers, w(x,x’),  and between layers, a(x,y),  of the model 

network.  

Figure 5: 

The dynamics has relaxed in each network layer to a stable state representing the demonstrated 

means, the selected goal, the associated action sequence and the corresponding action primitives. 

The imitator has selected a grip (AG) different to the grip displayed by the demonstrator (SG) to 

place the object at the higher target. 

 

Figure 6: 

Comparison of the time course of the maximum excited neuron in the goal layer of PFC as a 

function of the relative strength of the task input. With weak preshaping (dashed line) the 

processing slows down compared to case of strong expectations about possible targets (solid 

line). The dotted line indicates the typical time course in layer STS. For simplicity, we have 

chosen for the simulations the identical temporal evolution for the representations of the 

demonstrated grip and trajectory. The time t = 0 represents the onset of the visual stimulation in 

PFC. 

 

Figure 7: 

Stable states of the network dynamics are shown for the imitation task used in Fig. 5. But now the 

imitator was forced to copy also the grip type, SG, displayed by the demonstrator. The adaptation 

in the response strategy is based on the temporal mechanism illustrated in Fig. 6. 

 

Figure 8: 

The overt behavior of the imitator is shown using a robot simulator. Each column represents two 

snapshots of postures generated by the path planning system. The column on the left illustrates 

the imitator’s preferred strategy (compare Fig. 5), the column on the right the case when the 

imitator made a decision to copy also the grip type displayed by the demonstrator (compare Fig. 

7). 
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Figure 9: 

The time course of the maximum activated neuron in PF (A) and PFC (B) is shown as a function 

of the relative strength of the task input. The imitator’s means differ from the demonstrated action 

sequence in both the grip type and the trajectory type. Like in the example shown in Fig. 7, a 

slowing down of the processing in PFC due to a weaker task input lead in PF to the selection of 

the demonstrated sequence of means (dashed line). For the faster processing with stronger task 

input (solid lines), the PF neuron represents the preferred response strategy associated with the 

perceived goal. To allow for direct comparison, the time course of the representations in STS is 

plotted in (B). In both figures, time t = 0 represents the onset of the visual stimulation in PFC. 

 

Figure 10: 

Two snapshots of the network dynamics in an inference task are shown. The solid line indicates a 

relaxed, stable state of the model dynamics whereas the dotted line represents the state of the 

system in the transient phase. The only visual information available was the grasping behavior, 

SG, displayed by the demonstrator. The increase of activation in PF (representing the SG/BT 

sequence) is followed by the evolution of the associated representation of the lower target. The 

reciprocal connections from PF to STS ensure that finally also the hidden information about the 

trajectory used by the demonstrator is encoded in the visual area STS. 

 

Figure 11: 

To illustrate the overt behavior in the inference task of Fig. 10, two snapshots of the robot 

simulator are shown. 

 

 

Figure 12: 

Learning to understand an action sequence with a tool grip which is not in the motor repertoire of 

the observer. In each layer, the dynamics has relaxed to a stable activation pattern. The tool grip 

displayed by the demonstrator is assumed to be visually classified and represented as a new grip 

type IG in area STS. An association is then learned between this new category and the action 
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sequence AG/AT usually used by the demonstrator to reproduce the action effect. As a result of 

the learning, the IG-representation may directly drive neurons encoding the goal-directed 

sequence of primitives. 
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