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Abstract

Modeling studies have shown that recurrent interactions within neural networks are
capable of self-sustaining non-uniform activity profiles. These patterns are thought
to be the neural basis of working memory. However, the lack of robustness chal-
lenge this view as already small deviations from the assumed interaction symmetry
destroy the attractor state. Here we analyze attractor states of a neural field model
composed of bistable neurons. We show the existence of self-stabilized patterns that
robustly represent the cue position in the presence of a substantial asymmetry in the
connection profile. Using approximation techniques we derive an explicit expression
for a threshold value describing the transition to a traveling activity wave.
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1 Introduction

Many models of stimulus-selective persistent activity in the brain are based
on recurrent networks with ’continuous attractors’. The connectivity in these
models supports the existence of self-stabilized activity profiles to represent
any value along a continuous physical dimension such as direction or position
[1,9,4]. A transient external input acts as a switch between a uniform rest state
and one of the stable active states encoding a particular position or direction.
Typically, the connections are organized in a Mexican-hat pattern with strong
excitation between cells with similar preferred feature flanked by a strong “sur-
round” inhibition. However, the continuity of the attractor states requires a
perfect spatial symmetry in the connection profile (for review see [3]). Already
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small deviations cause a drift in the spatial position of the activity pattern.
To serve as a biologically plausible model for short term memory, the network
must be sufficiently robust to imprecise components. On the other hand, it
has been hypothesized in the context of head direction cells in rats that an
asymmetry induced drift mechanism may be actively controlled by the bio-
logical system for an updating of spatial representations during self-motion.
Vestibular or proprioceptive input, for instance, may have a modulatory effect
on the synapses of the head direction cell network [9,?].
The main result of the present study is that the proposed model shows the
required robustness but likewise allows implementing the dynamic updating
mechanism. Concretely, our analytical and numerical results reveal: 1) the ex-
istence of a threshold for the asymmetry in the weight distribution below which
static activity profiles exist, 2) that these activity patterns depend to some
extent on the external input, and 3) that for larger asymmetries a transition
to a traveling wave occurs.

2 Model description

We study a one-dimensional field model composed of bistable neurons with
a non-symmetric, homogeneous connectivity of lateral inhibition type. As a
concrete example we consider a field with periodic boundary conditions rep-
resenting the circular space of heading direction. The time evolution of the
network is governed by the equation:

τ
∂u(x, t)

∂t
= f(u(x, t)) +

360∫

0

w(x− y)u(y, t)dy + h, (1)

where τ > 0, h < 0 are constants defining the time scale and the resting level
of the dynamics, respectively. The cubic like shaped non-linearity f describes
the bistable behavior of each neuron with a stable resting and a stable excited
state. To simplify the analysis we chose a piece-wise linear function given by
(Fig. 1):

f(u) =





a
2
u ⇐ u ≤ k/2

−a
2

k
1−k

(u− 1/2) ⇐ k/2 < u ≤ 1− k/2

a
2
(u− 1) ⇐ u > 1− k/2

(2)

where 0 ≤ k ≤ 1 and a < 0.
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The synaptic weight distribution function w is chosen as a rectangular profile
w(y) = b1(H(y+d2)−H(y−d1))− b2, where H is the Heaviside step function
(H(x) = 1 if x > 0 and is 0 otherwise) and b1 > 0, b2 > 0 are constants. The
spatial range of the excitatory interactions to the “right” and to the “left” are
described by d1 ≥ 0 and d2 ≥ 0, respectively, while the inhibition extends over
the whole field. We assume d2 ≤ d1 and set A = b1(d1+d2) and w0 = A−b2360.
The level of asymmetry of the connection profile w is defined as the difference
d1 − d2 relative to the total excitatory range d1 + d2, that is ASY = d1−d2

d1+d2
,

hence 0 ≤ ASY ≤ 1. It is important to stress that the specific choice of the
interaction profile w and the non-linearity f is motivated to allow for a more
rigorous analysis of the steady state solutions. Numerical simulations show
that smooth functions for f and w could have been chosen as well without
qualitatively changing the results presented here.

3 Results

Because of the bistability of the neurons, a localized activity pattern triggered
by a transient input appears to be discontinuous with a jump in the activation
level occurring at positions represented by neurons x1 and x2 at the left and the
right side, respectively (compare Fig. 2). We apply an approximation technique
similar to [8] to derive explicit formulas for three parameters which describe
the activity profile: the amplitude r, the width l, and the resting state ub. As
depicted in Fig. 2A, we use a piecewise linear function to approximate the
neuronal pattern below and above the jump discontinuity. This allows us to
directly evaluate the equilibrium solution of equation 1 for a neuron xr at
resting level, a fully excited neuron xt and the two “transition neurons” x1

and x2. We obtain the following set of equations:





0 = a
2
ub + w0ub − b2lr + h

0 = a
2
u1 + 2d2b1(u1 − ub) + b1d2 + w0ub − b2lr + h

0 = a
2
ub + a

2
r − a

2
+ rA + w0ub − b2lr + h

0 = a
2
u2 + 2d2b1(u2 − ub) + b1d2 + (d1 − d2)r + w0ub − b2lr + h.

Solving this system gives algebraic expressions for r, l and ub,





r = a
2A+a

ub = u1 + b1d2

2d2b1+a/2

l = (a+2A)(w0+a/2)
ab2

u1 + a+2A
−ab2

(−(w0+a/2)b1d2

2d2b1+a/2
− h

)
,

(3)
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and also for the difference in the activation level of the two transition neurons,
u1 = u(x1) and u2 = u(x2): ∆u ≡ u2− u1 = −(d1−d2)rb1

(2d2b1+a/2)
. Note that the specific

choice of d1 = d2 represents the limit case of a symmetric weight distribution
w and corresponds to ∆u = 0. The dotted line in Fig. 2B illustrates for a
concrete simulation example that the obtained values describe very well the
static profile of the full model (solid line).

Two main properties of the neuronal patterns follow from previous expressions
and from the observation that u1 and u2 must, because of the cubic shape of f ,
be in the range [−k/2, k/2]. First, we note that there is still a degree of freedom
corresponding to the unspecified value of the left transition level u1 in the
expressions for l and ub. Thus, each value of u1 in the interval [−k/2, k/2−∆u]
corresponds to a different localized equilibrium solution. While the height of
the profile is completely determined by the network parameters, its width
also depends, to some extent, on the external stimulation: using localized
inputs with different spatial extent (e.g., gaussian functions, compare Fig. 3)
allows a change in the width of the activity pattern between a minimum and a
maximum value defined by the network parameters. Note that the interval of
admissible widths of the profile decreases with increasing asymmetry (Fig. 4A,
top).

Secondly, as illustrated in Fig. 3, static profiles do exist also in the presence of
an asymmetric weight distribution w (dashed line). Shifting w to some extent
to one side, that is choosing for instance d1 > d2, results in a non-uniform
profile with an asymmetric shape. The condition ∆u ≤ k for the existence of
a static profile allows us to derive an analytic expression which describes the
maximum level of asymmetry as a function of the network parameters:

ASYh =
k

2A

(a + 2A)2

a(k − 1) + 2kA
(4)

For ASY > ASYh the limit value for u1 is reached and the profile starts to
travel. As shown in Fig. 4A (bottom), the velocity of this form-stable traveling
wave solution increases roughly linearly with ASY .

4 Discussion

In neural field models of lateral-inhibition type the cue position of a transient
input is stored in the form of a continuum of network activity profiles. A major
challenge we have addressed in the present work concerns the maintenance
of activity in the presence of noise in the system. In a biological context,
the memory function should work well even under the condition of damage
or irregular training of the synaptic weights. We have shown that cellular
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bistability in individual neurons drastically enhances robustness to imprecise
components. In our modeling example, the integration of excitation from field
neighbors at one side may exceed the summed excitation from the other side
by as much as 56% of the total excitation. A similar impact (albeit smaller in
absolute value) of cellular bistability on robustness in construction has been
recently reported for networks encoding the cue by a rate code continuum [6].
Our results complement findings of previous simulation studies which reported
that bistable neurons may render working memory robust against additive
noise and distraction [4].

Reading out an asymmetric profile in the sense of a population code [5] re-
sults in a parameter value which does not represent the actual cue position.
However, the bias in the direction of the asymmetry is significant only if the
input appears to be extremely localized (Fig. 3B). For realistic population
representations which cover an area of about 100 degrees or more (compare
[9,4]) the bias can be neglected (Fig. 3A).

As suggested first by Zhang (1996), the self-stabilized traveling wave solution
obtained with a sufficiently strong asymmetry may be used to update spatial
representations during self-motion. A Hebbian learning scheme for establish-
ing, during practice, the modulatory effect of additional information sources
(e.g., vestibular or proprioceptive input) on the connection weights has been
recently proposed by Stringer and colleagues [7].

In conclusion, the present framework offers new perspectives for applying and
learning continuous attractor networks without biologically unrealistic con-
straints such as symmetric spatial interactions.

In future work we will generalize our analysis to two-dimensional fields. We
expect that the gap in self-sustained activity profiles caused by the neuronal
bistability will increase their robustness in a similar way as described here.
From the viewpoint of a realistic cortical modelling, another important ex-
tension is to relax also the assumption about the homogeneity of the spatial
interactions. It is known that even a weak heterogeneity may affect the exis-
tence and stability of patterns [2].
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Figure captions:

Figure 1: Sketch of the non-linear function f(u) for different values of k.
Figure 2: A) Piecewise linear approximation (solid line) for the activity pro-

file below and above the jump discontinuity (dashed line). B) Plot of a
self-sustained activity profile in response to a transient input centered at
x = 0 (solid line). The dashed line indicates the values for l, r and ub

obtained analytically by solving system 3.
Figure 3: Stable activity profiles in response to transient gaussian inputs

(dashed-dotted lines) with different standard deviation σ centered at x = 0
for a symmetric (solid line) and an asymmetric field connectivity (dashed
line).

Figure 4: A) On top, the maximum (dotted line) and the minimum (solid
line) possible width of the profile are shown as a function of the asymmetry
ASY . At ASY = 0.56 the transition to a traveling wave occurs the speed
of which increases roughly linearly with increasing asymmetry (bottom). B)
Evolution of a traveling wave in response to a transient input (ASY = 0.6).
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