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An invariant characterization of double warped space–times is given in terms of
Newman–Penrose formalism and a classification scheme is proposed. A detailed
study of the conformal algebra of these space–times is also carried out and some
remarks are made on certain classes of exact solutions. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1605496#

I. INTRODUCTION

Given two metric manifolds (M1 ,h1) and (M2 ,h2) and given two smooth real function
u1 :M1→R, u2 :M2→R ~warping functions!, one can build a new metric manifold (M ,g) by
settingM5M13M2 and

g5e2u2p1* h1^ e2u1p2* h2 , ~1!

where p1 ,p2 above are the canonical projections ontoM1 and M2 , respectively, and will be
omitted where there is no risk of confusion~thus writing, from now on:g5e2u2h1^ e2u1h2). One
such structure will be calleddouble warped product manifold, and gives rise to the so-calle
warped product manifoldwhenever one of the warping functions is constant, see Refs. 1 an

If dim M11dim M254 andg has Lorentz signature@i.e., one of the manifolds (Mi ,hi) is
Lorentz and the other Riemann#, then (M ,g) will be referred to as adouble warped space–time,
and again, if one of the warping functions is constant, one recovers the definition ofwarped
space–time ~see Refs. 3 and 4!.

In what is to follow and unless otherwise stated, we shall assume that we are dealin
‘‘proper’’ double warped space–times~i.e., neither of the warping functions is constant!; further,
and without loss of generality (M1 ,h1) will be assumed Lorentzian and (M2 ,h2) Riemannian.

The considerations in this work will be mainly local, thus we shall assume that for eap
PM there exists a neighborhoodU of p such that there is a coordinate systemxa, a50,...,3 on
U adaptedto the product structure in the sense that the line element associated withg can be
written as

ds25e2u2(xD)h1 ab~xg!dxa dxb1e2u1(xg)h2 AB~xD!dxA dxB; ~2!

wherexa,b,¯ and xA,B,¯ will designate the coordinates on the submanifoldsM1 and M2 of M
throughp, respectively, whilen1 andn2 denote their respective dimensions; thus, Greek ind
will run from 0 to n121 and capital Latin indices fromn1 to 3. Conversely, if a space–tim
contains an open neighborhoodU on which there exists a coordinate system as the one desc
above, then it will be referred to aslocally double warped space–time.

The aim of the present paper is to deal with double warped space–times in much the
way as warped space–times were dealt with previously~see Refs. 3 and 4 and references cit

a!Electronic mail: mpr@mct.uminho.pt
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therein!; thus their geometrical properties will be deducted and studied starting from those o
lower dimensional factors (Mi ,hi) which are, in general, much easier to deal with.

The paper is structured as follows: in Sec. II an invariant characterization of these s
times is given, including their characterization in terms of the Newman–Penrose formalism,
classification scheme is put forward. Section III contains some results on the curvature struc
such space–times, whereas Secs. IV and V deal with their conformal algebra. Finally, in Se
a few remarks are made on double warped exact solutions.

II. INVARIANT CHARACTERIZATION AND CLASSIFICATION

Starting with the form~2! of the line element, let us re-write it as follows:

ds25e2(u1(xg)1u2(xD))@e22u1(xg)h1 ab~xg!dxa dxb1e22u2(xD)h2 AB~xD!dxA dxB#, ~3!

now, the two termse22u1(xg)h1 ab(xg) ande22u2(xD)h2 AB(xD) are metrics on the submanifold
M1 and M2 , say ĥ1 and ĥ2 . The sum of their associated line elements@that is, the expression
within the square brackets in~3!#, is the line element, say dŝ2 of a decomposable space–tim
(M ,ĝ) with M5M13M2 and ĝ5ĥ1^ ĥ2 ~Again, to be correct one should writeĝ5p1* ĥ1

^ p2* ĥ2 , p1 , p2 being the canonical projections ontoM1 andM2 , but since there is no risk o
confusion, we omit them for the sake of simplicity!, thus we have proven:

Lemma 1: A (locally) double warped space–time is always conformally related to a (locally
decomposable space–time, the conformal factor being separable in the coordinates associ
with the two factor submanifolds.

In what follows, we shall refer to the factor submanifolds in the decomposable space
(M ,ĝ) as (M1 ,ĥ1) and (M2 ,ĥ2), respectively, assuming that (M1 ,ĥ1) is Lorentz and (M2 ,ĥ2)
Riemann; and we shall write the metric of a double warped space–time asg5exp(2u)ĝ in the
understanding thatĝ is the metric of the underlying decomposable space–time andu separates as
the sum of two functionsu1 andu2 on M1 andM2 , respectively.

Now, the space–time (M ,ĝ) is locally decomposable if its holonomy group is nondegen
ately reducible~and globally decomposable if, on top of this, it is simply connected! ~see for
instance Ref. 5, and references therein!, its holonomy type being thenR2 , R3 , R4 , R6 , R7 , R10,
or R13 ~see Ref. 6!; one then has the following possibilities for (M ,ĝ).5

~1! (M ,ĝ) is 113 decomposable if it admits a global, non-null, nowhere zero covaria
constant vector fielduW . One then distinguishes between 113 spacelike~holonomy typeR13) or
113 timelike ~holonomy typesR3 , R6 or R10) depending on the nature of the three-dimensio
submanifold orthogonal to the covariantly constant vector field. In a coordinate system adap
the covariantly constant vector field, sayuW 5]u , the line element dŝ2 then takes the following
forms, respectively:

dŝ252du21ĥAB~xD!dxA dxB

or

dŝ25ĥab~xg!dxa dxb1du2. ~4!

If another non-null covariantly constant vector field exists in the space–time, then (M ,ĝ) decom-
poses further and can be referred to as being 11112 spacelike~type R4) or 11112 timelike
~type R2) in an obvious notation.

~2! (M ,ĝ) is 212 decomposable and then two global, linearly independent recurrent
vector fields exist~holonomy typeR7). This is equivalent to saying that in (M ,ĝ) there exist two
linearly independent covariantly constant tensor fields of rank 2, sayP andQ such that

ĝab5Pab1Qab
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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with

Pab/c5Qab/c50; ~5!

a stroke denoting covariant derivative in (M ,ĝ); the line element reads in this case

dŝ25ĥ1 ab~xg!dxa dxb1ĥ2 AB~xD!dxA dxB, ~6!

whereĥ1 and ĥ2 are two two-dimensional metrics onM1 andM2 , respectively, such thatp1* ĥ1

5P andp2* ĥ25Q.
Going back to the double warped space–time (M ,g) conformally related to (M ,ĝ) via ~3!, it

appears natural to consider the following two classes of double warped space–times.
Class Awhenever the underlying space–time (M ,ĝ) is 113 decomposable. If necessary, a

following the same notation as in the case of warped space–times, we shall distinguish b
classesA1 (113 spacelike! and A2 (113 timelike!. Taking into account~3! and ~4!, we shall
write the canonical form of the line element of these space–times as

ds25e2(u1(u)1u2(xD))@2du21ĥAB~xD!dxA dxB#, ~7!

ds25e2(u1(xg)1u2(u))@ ĥab~xg!dxa dxb1du2#, ~8!

respectively.
Class Bwhenever the underlying space–time (M ,ĝ) is 212 decomposable. The canonic

form of the line element will be in this case

ds25e2(u1(xg)1u2(xD))@ ĥ1 ab~xg!dxa dxb1ĥ2 AB~xD!dxA dxB#. ~9!

In what is to follow and whenever no confusion may arise, we shall putu[u1(xg)1u2(xD) and
write accordingly

gab5e2uĝab ,

and also

ds25e2u dŝ2. ~10!

Also, we shall denote the covariant derivatives in (M ,g) and (M ,ĝ) by ¹ and ¹̂ or a semicolon
~;! and a slash~/!, respectively. Further, reference will be often made to conformal Killing vec
and their properties, hence it is in order at this point to recall their definition and basic prope
thus, given ann-dimensional manifoldV endowed with a metricg of arbitrary signature, a vecto
field XW on V is said to be aconformal Killing vector~CKV! iff LXW g52fg wheref is some
function of the coordinates~conformal factor! andLXW stands for the Lie derivative operator wit
respect to the vector fieldXW . The former equation can also be written in an arbitrary coordin
chart as

Xa;b5fgab1Fab ~11!

and then, from the Bianchi identities, it follows

Fab;c5RabcdX
d2fagbc1fbgac , ~12!

LXW Rab52~n22!fa;b2f ;c
c gab , ~13!

LXW R522fR22~n21!f ;c
c , ~14!
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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LXW Rabcd52fRabcd2fa;cgbd1fa;dgbc2fb;dgac1fb;cgad , ~15!

wherefa[f , a , a semicolon stands for the covariant derivative with respect to the conne
associated with the metric,Fab52Fba is the so-calledconformal bivector, andRabcd, Rab , and
R stand, respectively, for the components in the chosen chart of the Riemann and Ricci tens
the Ricci scalar. The special casesf5constant andf50 correspond, respectively, toXW being a
homothetic vector~HV! and aKilling vector ~KV !, the associated bivector is then said to be
homothetic bivector, or Killing bivector, respectively. A CKV is said to beproper whenever it is
nonhomothetic~i.e., fÞconst); likewise, we shall use ‘‘proper homothetic’’ to designate a
which is not a KV ~i.e., f5constÞ0). A proper CKV is said to be aspecial CKV~SCKV!
whenever its associated conformal factorf satisfiesfa;b50 in any coordinate chart. Further, it i
easy to see that the CKV that (V,g) admits form, under the usual Lie bracket operation, a
algebra of vector fields which we shall designate asCr(V,g), r being its dimension. Similar
statements can be made regarding the SCKV, HV, and KV that (V,g) may admit@Lie algebras
Sr(V,g), Hr(M ,g) andKr(V,g) respectively~note from the above considerations it follows th
in any given space–timeCr$Sm$Hs$Kn , with r>m>s>n)#. We refer the reader to Ref. 7 fo
further details on CKV and their Lie algebra. Going back now to the problem of character
class A and B double warped space–times, we see that this can be carried out by ‘‘translatin
(M ,g) the properties of the preferred vector fields~non-null covariantly constant or null recurren!
that characterize the underlying decomposable space–times (M ,ĝ). Thus we get:

Theorem 1: The necessary and sufficient condition for(M ,g) to be a double warped class A

space–time is that it admits a non-null, nowhere vanishing CKV XW which is hypersurface orthogo

nal and such that the gradient of its associated conformal factorc is parallel to XW .
Proof: Let (M ,g) be a class A double warped space–time, its line element takes then the

~7! and ~8! and it is easy to see thatXW 5]u is a CKV which satisfies the required properties,
particular, its associated conformal factorc is c5u ,u which on account of the form thatu has
~separable inu and the rest of the coordinates! is c5c(u) and thereforec ,a}Xa .

The converse also holds for, assume that (M ,g) admits a non-null, nowhere vanishing CK
XW which is hypersurface orthogonal. SinceXW is nonvanishing and hypersurface orthogonal
coordinate chart exists, say$u,xk%, such that

XW 5]u , ds25ee2U(u,xk)du21hi j ~u,xk!dxi dxj ,

wheree561 ~see for example Ref. 8, p. 168!. Further, the conformal equations forXW above are
simply gab,u52cgab ~with c5c(u,xk)) which in turn implies

c~u,xk!5U ,u~u,xk!, hi j ~u,xk!5e2U(u,xk)ĥi j ~xk!

and the above line element can then be written as

ds25e2U(u,xk)@edu21ĥi j ~xk!dxi dxj #.

Finally, imposing thatc ,a}Xa yields c5c(u) and thereforeU(u,xk)5u1(u)1u2(xk) and the
resulting space–time is then class A double warped. h

The characterization of warped space–times can now be easily recovered as the fol
corollary shows:

Corollary 2: If the CKV XW in theorem 1 is a Killing vector (KV) then the space–time is warped

of class A2 in the classification given in Ref. 3. If XW is a proper (non-KV) gradient CKV (i.e., if the
associated conformal bivector vanishes Fab5Xa;b2Xb;a50) the space–time is class A1 warped
in that classification.

It is worthwhile noticing that Theorem 1 also provides an invariant characterization of sp
times conformal to 113 locally decomposable space–times:
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Corollary 3: The necessary and sufficient condition for(M ,g) to be conformally related to a
113 decomposable space–time (M ,ĝ) is that it admits a non-null, nowhere vanishing conform

Killing vector (CKV) XW which is hypersurface orthogonal.
Theorem 1 can be conveniently rephrased in terms of Newman–Penrose~NP! formalism9

through the two following theorems:
Theorem 4: (M ,g) is a class A1 double warped space–time if and only if there exist a

function U:M→R and a canonical complex null tetrad$ka ,l a ,ma ,m̄a% (kal a52mam̄a521) in
which:

DU5e1 ē, ~16!

nU52~g1ḡ !, ~17!

dU5k1p̄52~t1 n̄ !, ~18!

s1l̄50, ~19!

a1b̄50, ~20!

e1 ē1g1ḡ5r1m̄, ~21!

D~r1m̄ !52F, ~22!

n~r1m̄ !5F, ~23!

d~r1m̄ !5 d̄~r1m̄ !50, ~24!

whereF5F(u) is a real function of the timelike coordinate u.
Proof: With the notation of Theorem 1 we have that for a classA1 double warped space–tim

a coordinate chart$u,xk% exists such that the line element takes the form~7!, XW 5]u is then a
timelike hypersurface orthogonal CKV with associated conformal factorc(u)5u1,u(u), and uW
5e2U]u is a unit timelike vector field parallel toXW where we putU(u,xk)5u1(u)1u2(xk) for
convenience, it is then easy to see that, in the above coordinate chart, one has

ua;b5~U ,cu
c!gab2U ,aub ~25!

and also

c ,a5Fe2Uua , ~26!

whereF5F(u) is a real function of the timelike coordinateu @to be precise:F52u1, uu(u)].
One can define a canonical null tetrad as follows:

ka5
1

&
~ua1xa

1!, l a5
1

&
~ua2xa

1!, ma5
1

&
~xa

21 ixa
3!, ~27!

wherexa
1 , xa

2 , xa
3 are spacelike vectors orthogonal toua . Expressions~16!–~24! are then obtained

by contracting~25! and ~26! with the tetrad~27!.
On the other hand, contracting~16!–~24! with the dual of~27! one recovers expressions~25!

and~26!, which, according to Theorem 1, imply that the space–time is classA1 double warped.h
Theorem 5: (M ,g) is a class A2 double warped space–time if and only if there exist a

function U:M→R and a canonical complex null tetrad$ka ,l a ,ma ,m̄a% (kal a52mam̄a521) in
which one of the following sets of equations holds:
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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DU5e1 ē, ~28!

DU52~g1ḡ !, ~29!

dU52k1p̄5t1 n̄, ~30!

s2l̄50, ~31!

a1b̄50, ~32!

e1 ē2~g1ḡ !5r2m̄, ~33!

D~r2m̄ !5F, ~34!

D~r2m̄ !5F, ~35!

d~r2m̄ !5 d̄~r2m̄ !50, ~36!

DU5s1 r̄, ~37!

DU52~ l̄1m!, ~38!

dU5ā2b, ~39!

dU1 d̄U5p1p̄52~t1 t̄ !, ~40!

k1k̄50, ~41!

n1 n̄50, ~42!

e2 ē50, ~43!

g2ḡ50, ~44!

d~p1p̄ !5 d̄~p1p̄ !5F8, ~45!

D~p1p̄ !5D~p1p̄ !50, ~46!

DU52s1 r̄, ~47!

DU5l̄2m, ~48!

dU5ā2b, ~49!

dU2 d̄U52p1p̄52t1 t̄, ~50!

k2k̄50, ~51!

n2 n̄50, ~52!

e2 ē50, ~53!

g2ḡ50, ~54!
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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2d~p2p̄ !5 d̄~p2p̄ !52F9, ~55!

D~p2p̄ !5D~p2p̄ !50, ~56!

whereF,F8 and F9 are real functions of the spacelike coordinate u.
Proof: The proof follows along the same lines as that of Theorem 4. IfXW 5]u is the hyper-

surface orthogonal spacelike CKV anduW 5e2U]u is the unit spacelike vector field parallel to
whose existence are ensured by theorem 1, then a canonical tetrad can be constructed in o
following ways:

ka5
1

&
~ua1xa

3!, l a5
1

&
~2ua1xa

3!, ma5
1

&
~xa

21ıxa
1!, ~57!

ka5
1

&
~xa

21xa
3!, l a5

1

&
~2xa

21xa
3!, ma5

1

&
~ua1ıxa

1!, ~58!

ka5
1

&
~xa

21xa
3!, l a5

1

&
~2xa

21xa
3!, ma5

1

&
~xa

11ıua!, ~59!

whereua ,xa
1 ,xa

2 are spacelike vectors andxa
3 is a timelike vector.

Equations~28!–~36! are obtained contracting~25! and ~26! with tetrad~57!, ~37!–~46! arise
from contracting~25! and~26! with tetrad~58!, while contraction of~25! and~26! with tetrad~59!
gives rise to~47!–~56!. To recover expressions~25! and~26! one must in turn contract those se
of equations with the corresponding dual tetrad. h

Regarding the characterization of class B double warped space–times, we shall first rec
necessary and sufficient condition for a space–time to be conformally related to a 212 decom-
posable one, as it was given in theorem 3 of Ref. 3, and next give the condition on the con
factor that makes it separable in the two sets of coordinates adapted to the two two-dimen
factor submanifolds. We do this in the following theorem:

Theorem 6: The necessary and sufficient condition for(M ,g) to be conformally related to a
212 decomposable space–time (M ,ĝ) with g5exp(2u)ĝ (u being a real function), is that there

exist null vectors lW and kW ( l aka521) satisfying

l a;b5Ae2ul al b2u ,al b1~u ,cl
c!gab , ka;b52Ae2ukal b2u ,akb1~u ,ck

c!gab ; ~60!

for some function A. Further, (M ,g) is class B doublewarped if and only if

Ha
c~hb

du ,d! ;c12~hb
du ,d!~Ha

cu ,c!50,

where

hab[22k(al b), Hab[gab1hab . ~61!

Proof: The reader is referred to Theorem 3 of Ref. 3 for a proof of the first part of the theo
As for the second part, namely that characterizing double warped space–times within the
class of space–times which are conformal to 212 decomposable ones, notice that Eq.~61! is
nothing but the covariant expression of]a(]Au)50, where$xa% and$xA% are coordinate charts o
the two 2-dimensional submanifoldsM1 andM2 , respectively~see Sec. I!. h

As in the former case, Theorem 6 can be expressed in terms of the NP formalism. To
a complex null tetrad$ka ,l a ,ma ,m̄a%[$za

m% is chosen such thatkW and lW are the vectors in~60!;
i.e., kal a52mam̄a521 all other inner products vanishing.
One then has
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Theorem 7: The necessary and sufficient condition for(M ,g) to be conformally related to a
212 decomposable space–time (M ,ĝ), with g5e2uĝ, is that there exist a functionu:M→R and
a canonical complex null tetrad$ka ,l a ,ma ,m̄a% as described above such that

k5s5l5n5a1b̄5p1 t̄5r1~e1 ē !50,

Ae2u5m1~g1ḡ !, ~62!

r52Du, m5Du, t52du,

where A is the real function appearing in (60). Furthermore, (M ,g) is class B double warped i
and only if

dr522rt, dm522mt, rm50. ~63!

Proof: Equation~60! for lW andnW 5kW becomes in NP formalism

g1mn5bh1mh1n2u ,mh1n1hmnDu, ~64!

g2mn52bh2mh1n2u ,mh2n1hmnDu, ~65!

whereb[Ae2u, m,n,... aretetrad indices and the notation is the same as in Ref. 9. Contra
~64! and ~65! with the tetrad vectors,~62! are easily obtained.

On the other hand, the tetrad version of~61!, together with the information contained in~62!,
yields ~63!.

Conversely,~62! and ~63! contracted with the dual tetrad of$ka ,l a ,ma ,m̄a% give Eqs.~60!
and ~61!. h

The characterization of class A and class B double warped space–times given in Theo
and 6, or alternatively 4, 5, and 7 should prove useful in formulating an algorithm for classi
such metrics. This is so because this characterization is coordinate independent althoug
dependent. In what follows the tetrads described in Theorems 4, 5, and in Theorem 7 w
designated asdw tetrads of class A and B, respectively.

Thus, in order to determine whether a given metricg represents a double warped space–tim
one can either use Theorems 1, and 6~coordinate approach!, or else their counterparts 4, 5, and
through the following scheme:

~1! Determine the Petrov type of the Weyl tensor associated with the metricg and choose a
canonical tetrad$ka ,l a ,ma ,m̄a% such thatgab52@2 l (akb)1m(am̄b)#.

~2! Determine the NP spin coefficients and their NP derivatives in the chosen tetrad~1!.
~3! If the scalars determined in step~2! satisfy the relations of Theorem 4 or 5~respectively, 7! for

some functionU ~respectively,u!, then the space–time is double warped of class A~respec-
tively, B! and the algorithm stops here, otherwise continue the algorithm.

~4! If possible, find the Lorentz transformation of the invariance group that transforms tetra~1!
into a dw tetrad; i.e., such that the corresponding NP spin coefficients and NP derivative
the conditions in Theorem 4 or 5~respectively, 7!. If such a transformation exists, the spac
time is double warped of class A~respectively, B!, otherwise it is not double warped.

The Lorentz transformations considered in step~4! must belong to the invariance group of th
Petrov type of the metric since in step~1! one chooses a canonical tetrad. Thus, for instance, if
given metric is of the Petrov type D or N, then in step~4! one looks for spin and boost transfo
mations or for null rotations respectively.
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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III. CURVATURE STRUCTURE

The purpose of this section is to study the Riemann tensor of double warped space–ti
connection with that of the underlying, conformally related, decomposable space–time, w
special emphasis on the algebraic Petrov and Segre types of the associated Weyl and Ricci
respectively.

First of all, notice that since the metricg of the double warped space–time is conforma
related to that of the decomposable space–timeĝ, their respective Weyl conformal tensors an
hence their Petrov types, will be equal. The Petrov types of decomposable space–times
easily calculated and are in most cases related to the holonomy type of the space–time; th
5 one has that if the space–time is 113 spacelike~holonomy typeR13) the Petrov type can only
be I , D, or O, whence it follows that classA1 double warped space–times can only be of tho
Petrov types. In the case of 113 timelike decomposable space–times the Petrov type of the W
tensor is unrestricted and the same will hold forA2 double warped space–times. Finally, th
Petrov type of 212 decomposable space–times~holonomy typeR7), and hence that of class B
double warped ones, can only beD or O. Further, if it is type D the null vectorskW and lW in
Theorem 6 are principal null directions of the Weyl tensorC bcd

a , since the corresponding nu
vectors in the underlying 212 decomposable space–time~that is: the recurrent null vectorsl̂ a

5e2ul a and k̂a5e2uka , see Ref. 3 for details! can be easily seen to be principal null directio
of the Weyl tensor in (M ,ĝ); i.e., Ĉ bcd

a ~which equalsC bcd
a ); see Ref. 10.

Regarding the Segre classification of the Ricci tensor, similar comments to those in the c
warped space–times hold; that is: conformal scaling does change the Ricci tensor and th
the Segre type of double warped space–times is unrestricted in principle. Further, in the c
class A warped space–times we have that the unit vector fielduW ~see proof of Theorem 1! is
always an eigenvector of the Ricci tensor3 ~and therefore the Segre type of classA1 warped
space–times is$1,111% or one of its degeneracies!, while in the case of double warped space–tim
this is no longer so for, from the Ricci identity specialized touW it follows ~see Ref. 11!:

R b
a ua52 2

3 Q ,b1 1
3 ~Q̇1Q2!ub ,

now, in order foruW to be an eigenvector of the Ricci tensor, it should be thatQ ,b}ub and then a
trivial calculation using the expressions foruW and the metric that appear in the proof of Theore
1 shows that eitherQ50 and then the conformal factor associated withXW is c50; i.e.,XW is a KV
and the space–time isA2 warped~see Corollary 2! or elseU(u,xk)5u1(u) the space–time thus
being typeA1 warped. Since the converse follows trivially, we have shown

Corollary 8: The necessary and sufficient condition for a class A double warped space–time

to be a class A warped space–time is that the CKV XW in Theorem 1 be a Ricci eigenvector (the
it is of class A1 if it is a proper CKV and of class A2 if it is a KV).

In the case of type B space–times, all Segre types are possible in principle.
To close this section, we next give the expressions of the Ricci tensors and the Ricci

They can be derived easily from Appendix D in Ref. 12. Notice that, in the notation establish
the previous section,ua,A5ua/A50,

Rab5R̂ab22@u1 a/b2u1 au1 b#2Sĥ1 ab ,

RaB52u1 au2 B , ~66!

RAB5R̂AB22@u2 A/B2u2 Au2 B#2Sĥ2 AB ,

where

S[u /d
d 12udud , ~67!
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that is:

S5
1

A2ĥ1

@A2ĥ1u1
m# ,m12ĥ1

mnu1 mu1 n1
1

Aĥ2

@Aĥ2u2
M# ,M12ĥ2

MNu2 Mu2 N , ~68!

whereĥ1[det(ĥ1)mn , ĥ2[det(ĥ2)AB, andu1 a[u1 ,a , etc., andR̂ab stands for the components o
the Ricci tensor associated with the decomposable metricĝ, which turn out to beR̂ab5R̂1 ab and
R̂AB5R̂2 AB that is: the Ricci tensors of the metricsĥ1 and ĥ2 , respectively. Notice thatS is
separable as a sum in the coordinatesxa andxA. For the Ricci scalar one easily gets

R5e22(u11u2)$R̂26@~2ĥ1!2 1/2~~2ĥ1!1/2u1
m! ,m1ĥ1

mnu1 mu1 n

1~ ĥ2!2 1/2~~ ĥ2!1/2u2
M ! ,M1ĥ2

MNu2 Mu2 N#%, ~69!

whereR̂ denotes the Ricci scalar of the metricĝ, which is simplyR̂11R̂2 , i.e., the sum of the
Ricci scalars associated with the metricsĥ1 and ĥ2 .

IV. THE CONFORMAL LIE ALGEBRA OF CLASS B DOUBLE WARPED SPACE–TIMES

The purpose of this section is to make a few remarks on the Lie algebra of CKV, inclu
Killing vectors ~KV ! and homothetic vectors~HV!, of class B double warped space–times.

A double warped space–time (M ,g) admits a CKVXW iff LXW g52cg wherec is some real
function. If c5constant thenXW is a HV and ifc50 it is a KV.

Now, since a double warped space–time (M ,g) is always conformally related to a decom
posable one (M ,ĝ), their respective conformal algebras will be equal; and as it turns out,
relatively simple to deal with the conformal algebra of the decomposable space–time (M ,ĝ).
Conformal algebras in locally decomposable space–times have been studied by Cole
Tupper,13 Capocci and Hall,14 and ~following a different approach! by Tsamparlis.15 For the sake
of completeness, we next summarize the basic results and refer the reader to the above pa
detailed proofs.

Theorem 9: Let (M ,ĝ) be a 212 decomposable space–time; the following results hold
regarding its conformal Lie algebra:

(1) If (M ,ĝ) is conformally flat (CF) its conformal algebra is 15-dimensional, their generat
being those of Minkowski’s conformal algebra. In this case the two factor submanifolds
each be of constant curvature, say k1 and k2 , respectively, with k11k250.

(2) If it is not CF, the only CKV it may admit are KV or HV.
(3) If (M ,ĝ) is not CF its KV are the KV of the submanifolds(Mi ,ĥi), for i 51,2; that is: if

za5(z0,z1) is a KV of (M1 ,ĥ1), thenja5(z0,z1,0,0) is a KV of (M ,ĝ), etc. Also, (M ,ĝ)
will admit a HV if and only if each of(Mi ,ĥi) for i 51,2admit a HV, i.e., ifka5(k0,k1) and
la5(l2,l3) are HV of the 2-spaces (adjusted to the same numerical values of the resp
homothetic scalars), thenha5(k0,k1,l2,l3) is an HV of(M ,ĝ) with the same value for its
homothetic scalar.

For the case referred to in the above theorem, the reader is also referred to Ref. 16 w
thorough discussion of conformally decomposable 212 space–times is given, along with a cla
sification in terms of their conformal algebra.

V. THE CONFORMAL LIE ALGEBRA OF CLASS A DOUBLE WARPED SPACE–TIMES

We shall dedicate this section to the study of the conformal algebra of class A double w
space–times, which by our previous remarks, will be the same as that of the underlying13
decomposable space–time in each case. In so doing, we shall give some interesting res
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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particular types of CKV~namely: gradient CKV or GCKV for short! in three-dimensional mani
folds which, to the best of our knowledge, are new. Most of the results on proper CKV in13
decomposable space–times can be found in Ref. 13 and also~although no explicit expressions ar
given! in Ref. 14, we re-derive them here following a different approach which provides inte
ing information on the geometry of three-dimensional manifolds, and renders along the way
and interesting results on particular types of CKV~namely: gradient CKV, GCKV for short! also
in three-dimensional manifolds which, to the best of our knowledge, do not exist in the litera

For this section alone, we shall change our notation slightly so as to avoid unnece
complications, thus, the line element of the decomposable space–time (M ,ĝ) will be written as

dŝ25@edu21hAB~xD!dxA dxB#, e561. ~70!

The three-dimensional submanifold coordinated byxA, A51,2,3 will be noted asV and its
metric ~of either signature! ash ~instead ofĥ). We shall represent the covariant derivative w
respect to the three-dimensional metrich by a slash~‘‘/ ’’ !, whereas a semicolon ‘‘ ; ’’ will be used
to note that with respect to the four-dimensional metricĝ. ~The reader is reminded that th
notation holds only in the present section: notice that, in the rest of the paper, a semicolon
for the covariant derivative associated withg, the metric of the double warped space–tim
whereas a slash stands for that associated withĝ, the metric of the decomposable space–tim!
The covariantly constant vector is thenuW 5]u ~i.e., ua;b50 and therefore it is a non-null gradien
KV !. Finally note that, in the above coordinate system, the covariant derivatives satisfy

Xab¯ ;u5Xab¯ ,u , Xab¯ ;A5Xab¯ /A

for any tensorXab¯ , and also that

Rua50, RAB5 R
~3!

AB,

where R
(3)

AB stands for the Ricci tensor associated to the 3-metrich on V.
In order to investigate its conformal algebra, we first make a few trivial remarks in

paragraphs that follow.
First of all, and making an obvious abuse in the notation, we shall represent points inM by

their coordinates in the above chart@that is: pPM with coordinatesxa(p)5(u,xA) will be rep-
resented simply as (u,xA)]; next we consider the three-dimensional submanifold~hypersurface!
consisting of all the points with the same value of thex0 coordinate, sayx05u, and note it as
V(u); i.e., V(u)5$(u,xA) : u fixed%; the induced metric onV(u) is h and, clearly, any two
such submanifolds are diffeomorphic amongst themselves@and diffeomorphic to (V,h)] by the
one-parameter group of isometries$t t% generated byuW @that is: t t :V(u)→V(u1t) where
t t(u,xA)5(u1t,xA) wherever this makes sense#.

Note thatt t* h5h; that is, the three-dimensional metrich is invariant under the isometrie
generated byuW . Further, a vector fieldXW in M will be invariant under these isometries (t t* XW

5XW ) iff @uW ,XW #50. In particular, ifXW is tangent to the submanifoldsV(u) it follows that it will be
invariant under$t t% iff its components with respect to the above coordinate basis do not depe
u, i.e., XW 5XA(xD)]A .

Finally, we shall use the notationCn(V,h) (Sn(V,h), Hn(V,h) or Kn(V,h)) to designate the
n-dimensional conformal~respectively: special conformal, homothetic or Killing! algebra of
(V,h). Such an algebra~and therefore all of its subalgebras! is finite dimensional, its dimension
being 10 at most~and (V,h) is then conformally flat!. If ( V,h) is nonconformally flat, then, a
remarkable theorem by Hall and Capocci~see Ref. 17! shows that its dimension can be at most
In our subsequent developments we will often have to refer to some basis ofCn(V,h), which we
will generically represent by$zW k%, k51,...,n with associated conformal factorsck ; that is
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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LzWk
h52ckh. ~71!

Notice that any such basis is invariant under the isometries generated byuW ; that is: @uW ,zW k#

50, k51,...,n, hencezW k5zk
B(xD)]B and therefore alsock5ck(x

D). ~Some of the conforma
factors ck may be constant if they correspond to homotheties, or zero in the case of K
vectors.!

We can now consider the problem of finding the CKV of a 113 reducible space–time (M ,ĝ).
Let YW PCr(M ,ĝ), one then has

Ya;b1Yb;a52fĝab .

In the chosen coordinate chart,YW 5Yu(u,xB)]u1YA(u,xB)]A and the above equation then rea
~on account of our previous remarks!:

Yu,u5e1f, ~72!

Yu,A1YA,u50, ~73!

YA/B1YB/A52fhAB . ~74!

Now, ~74! effectively says that foru fixed the vector fieldYB(u,xD)]B is a CKV in V(u) @equiva-
lently: if a proper CKV is admitted in (M ,ĝ) then, its projection on the submanifoldsV(u) is a
CKV there#, therefore, given$zW k% a basis forC(V,h), it follows that it will also be a basis of
C(V(u),h) (u fixed but otherwise arbitrary! whence, onV(u) we shall necessarily hav
YB(u,xD)]B5lkzW k with lk5constant and summation overk51,...,n is to be understood; agai
this will be so for anyV(u) ~i.e.,u fixed but otherwise arbitrary!. Finally, since@uW ,zW k#50, we will
have

YW 5Yu~u,xB!]u1lk~u!zW k~xB!, ~75!

wherelk(u), k51,...,n aren functions of the coordinateu. Substituting this back into~72!–~74!

and puttingf[Ṡ, where a dot indicates differentiation with respect tou, yields

Yu5e1S, f5Ṡ5lk~u!ck~xB!, ~76!

e1S ,A1l̇kzk A50. ~77!

Further,l̇k(u)zW k is also a CKV in eachV(u) @since foru fixed it is a linear combination of the
CKV in the basis ofC(V,h)] which, on account of~77!, is locally a gradient, i.e.,l̇kzk A5
2e1S ,A . The question arises as to how many independent GCKV may (V,h) admit, what are
they; namely proper CKV, proper HV, or KV, and what does their existence imply on the 3-m
h.

Before proceeding, the following remarks, which follow trivially from the above equatio
are in order:

R0: If no GCKV exist in (V,h), thenl̇k50 @i.e.,lk(u)5constant] in the above equations an
f5lkck(x

B)5constant~since thenf5lkck(x
D)[f(xD), which yieldsYu5uf(xD)1B(xD),

but thenYu,A1YA,u50 impliesf ,A5B,A50.), that is:YW is homothetic in (M ,ĝ) @andlk(u)zW k is
also homothetic in (V,h)]. If ( V,h) is such that no HV are admitted, then the only CKV th
(M ,ĝ) admits are KV.

R1: Let jW be a KV in (V,h), thenjW is also a KV of (M ,ĝ).
R2: Let YW be a KV in (M ,ĝ). The following situations may then arise:
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~a! (V,h) admits no KV, thenYW 5a]u necessarily.
~b! (V,h) admits KV none of which is locally a gradient. Then, if$jW k% is a basis ofK(V,h), one

has

YW5a]u1bkjWk ~78!

with a,bk arbitrary constants.
~c! (V,h) admits KV some of which are locally gradients~and therefore, by the Killing equa

tion, covariantly constant vectors!. Then one can choose a basis forK(V,h), say

$jW1 ,...,jW p ,jW p11 ,...,jWn% ~with p<3) in a way such thatjW1 ,...,jW p are covariantly constant
Then

YW5A~xB!]u1asu jWs1bkjWk , ~79!

where as,bk are arbitrary constants, (s51,...,p, k51,...,n) and A(xB) satisfies A,B

5asjs B . Notice that if one of the gradient KV in (V,h) is non-null, the space–time (M ,ĝ)
decomposes still further, becoming a 11112 decomposable space–time. If (V,h) admits
two, then a third one is automatically admitted and the space–time (M ,ĝ) is locally flat. We
shall return to this later on in the paper.

R3: Let hW be a proper HV in (V,h) with homothetic constantk(Þ0), thenYW 5ku]u1hW is
also a HV of (M ,ĝ) with homothetic constantk. Further, if YW is a proper HV of (M ,ĝ) with
homothetic constantk(Þ0), then it is of the form

YW 5ku]u1hW , ~80!

hW being a~proper! HV in (V,h) scaled so as to have the same valuek for its homothetic constant
the above HV is unique up to the addition of KV such as those given by~78! and/or~79! ~if GKV
exist!.

The various possibilities regarding the existence of GCKV in (V,h) can be summarized a
follows:

~1! (V,h) admits no GCKV~either proper or homothetic, including Killing!. In that case~77!

implies l̇k50 and the rest of the equations imply then thatYW is a HV, see Eqs.~78! or ~80!
above. Thus, in this case (M ,ĝ) admits no proper CKV.

~2! The only GCKV that (V,h) admits are gradient KV~GKV!. In this case (M ,ĝ) admits a
proper CKV~which turns out to be a SCKV! if and only if the GKV is null and (V,h) admits
a proper SCKV~i.e., nonhomothetic! such that the gradient of its conformal factor is paral
to the null GKV. Otherwise the only CKV that (M ,ĝ) admits are HV.

~3! (V,h) admits proper gradient HV~GHV!; it may also admit GKV, but no proper GCKV exis
in (V,h). In this case, (M ,ĝ) does admit a proper CKV which turns out to be special~i.e.,
SCKV!; that is: its associated conformal factorf satisfiesfa;b50. This SCKV is unique up
to the addition of KV and HV which must then take the forms discussed above.

~4! (V,h) admits proper GCKV~GHV and/or GKV can also be admitted in principle!. In this
case, the space–time admits proper CKV.

Regarding the maximum number of GCKV that a three-dimensional space may admit, on
easily prove the following results:

Proposition 1: Let(V,h) be a three-dimensional Lorentz or Riemann space admitting

independent proper GCKV, sayzW andxW , with associated conformal factorsc andf, respectively,
then:

(1) The Lie bracket@zW ,xW #[jW is a KV.
(2) The conformal factors arec5kz and f5kx, where k is a constant andz and x are the
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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functions whose gradients are the GCKVhW and xW , respectively.
(3) (V,h) is of constant curvature and therefore the Cotton–York tensor vanishes, thus bein

conformally flat.

Proof: SupposehW andxW are linearly independent GCKV satisfying

zA/B5chAB , xA/B5fhAB ,

wherezA5z , A , xA5x , A and also@see comments following Eq.~111!# c5c(z) andf5f(x).
Now, a direct calculation shows that

@zW ,xW #5fzW2cxW [jW

that is,hW andxW are surface-forming.
Compute next

L[ zW ,xW ]hAB5LzW~LxW hAB!2LxW ~LzWhAB!52~zDxD!~f̃2c̃ !hAB ,

wheref̃[df/dx and c̃[dc/dz, and also

LjWhAB5LfzW2cxW hAB5~f̃2c̃ !~zAxB1xAzB!

therefore

~f̃2c̃ !~zAxB1xAzB!52~zDxD!~f̃2c̃ !hAB .

An elementary consideration on the ranks of the tensors at both sides of the equation readily
that

f̃2c̃50;

therefore

c5kh, f5kx

andjW is then a KV given by

jW5k~xzW2zxW !,

which is not a gradient:jA/B5k(zAxB2xAzB).
Now, since bothzW and xW are GCKV their respective conformal bivectors are zero and~12!

applied to them yields

RABCDzD5k~zAhBC2zBhAC!,

RABCDxD5k~xAhBC2xBhAC!,

which in turn implies, upon contraction withhAC,

RBDzD522kzB , RBDxD522kxB .

Now, in three dimensions one has

RABCD5RAChBD2RADhBC1hACRBD2hADRBC1~R/2!~hADhBC2hAChBD!

hence, the above equations imply
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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RACzB2zARBC1~k1R/2!~zAhBC2zBhAC50,

RACxB2xARBC1~k1R/2!~xAhBC2xBhAC50,

contracting the two equations above withzA and xA, respectively, we get, sincezAzA ,xAxA

Þ0:

RAC5~k1R/2!hAC2~3k1R/2!zAzC ,

RAC5~k1R/2!hAC2~3k1R/2!xAxC

contracting again both equations with, sayzC, equating and rearranging terms we get

~3k1R/2!zA5~3k1R/2!~zCxC!xA

but this contradicts our hypothesis of linear independence unless 3k1R/250, i.e., R526k
(5constant). ThenRAB522khAB and RABCD5k(hADhBC2hAChBD); that is: (V,h) is of con-
stant curvature and therefore the associated Cotton–York tensor11 is zero, i.e.,h is conformally
flat. h

The converse theorem also holds; namely: if (V,h) is a three-dimensional space or spac
time of constant curvature~and therefore conformally flat!, it admits two linearly independen
GCKV whose associated conformal factors are multiples~with the same multiplicative constan!
of the functions whose gradients they are.

Furthermore, with the same notation and hypotheses as in the preceding theorem and
ing a similar procedure to that outlined in its proof, it is easy to prove the following three res

Lemma 2: LetzW be a GCKV andjW a GKV (i.e.,jW is covariantly constant). ThenzW is neces-
sarily homothetic, that is, it is a GHV.

Proof: SincezA/B5chAB and jA/B50 it follows @zW ,jW #52cjW . Computing next the Lie de-
rivative of h in two different ways, as in the proof of Theorem 1, and then equating yields

2~jDcD!hAB5c̃~zAjB1jAzB!.

Again, considerations on the rank of the tensors that appear on both sides of the equation
cA50; that is:zW is a GHV. h

Lemma 3: LetzW be a GCKV andhW a GHV. ThenzW is necessarily homothetic and therefore
is the linear combination ofhW with some GKV.

Proof: Now zA/B5chAB andhA/B5khAB , and their Lie bracket is@zW ,jW #5kzW2chW . Comput-
ing as above the Lie derivative ofh in two different ways and then equating implies

2~hDcD!hAB5~hAcB1cAhB!,

which again impliescA50 and the result follows. h

Lemma 4: LethW and jW be a proper GHV and a GKV, respectively; (V,h) is then flat.
Proof: In this case we haveRABCDhD5RABCDjD50, henceRABhD5RABjB50, and taking

into account the expression of the Riemann tensor in terms of the metric and the Ricci tens~see
the proof of Theorem 1 and recall thathW cannot be null!, one gets RAB5(R/2)(hAB

2(hDhD)21hAhB); contracting withjB both sides and equating to zero yields immediat
hDjD5R50 ~sincehW andjW are linearly independent!, and this in turn impliesR5RAB50 and
thenRABCD50. h

The same result holds trivially if two linearly independent GKV exist; since in this case
linearly independent constant vector fields in a manifold of dimension three readily imply~con-
stancy of the metric! that a third one must also exist. Thus, we have proven:

Proposition 2: A three-dimensional space or space–time admitting two linearly independen
GHV (proper or Killing) is necessarily flat.
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Note that from the above Propositions 1 and 2, it follows that if two~or more! independent
GCKV exist in the three-space (V,h), then it is of constant curvature~and therefore conformally
flat, being flat in several cases! and then it admits 10 CKV~those of flat three-dimensional space!.
If this is not the case@i.e., (V,h) is not of constant curvature# then it can admit, at most, on
GCKV which will then give rise to a proper CKV in (M ,ĝ). If ( V,h) admits no GCKV, then no
proper CKV exist in (M ,ĝ), just HV ~case 1 above!.

In the following sections we shall deal with cases 2, 3, and 4 separately, assuming th
GCKV admitted in each case is unique.

A. „V,h … admits a GKV and no proper GHV or GCKV

From the preceding results it follows that unless (V,h) is conformally flat~in which case its
conformal algebra is completely known!, the GKV, sayjW , is the unique GCKV it admits. Taking
now a basis ofCn(V,h) as $jW ,hW ,zW k% where zW k and hW denote CKV~including KV! and a HV,
respectively@in case one exists in (V,h), if not, just sethW 50], we can write, from~74!

YA5l~u!jA1m~u!hA1lk~u!zA,

which substituted into~73! yields

2Yu,A5l̇~u!jA1ṁ~u!hA1l̇k~u!zA .

Since by hypothesis,jW is the only GCKV in (V,h) and jW , hW ~if nonzero! and zW k are linearly
independent vector fields, it follows thatṁ(u)5l̇k(u)50 @otherwise the above equation wou
imply that, for u fixed, ṁ(u)hA1l̇k(u)zA is a GCKV independent ofjW ]; hence m5a0

(5constant)@anda050 if (V,h) admits no proper HV#, andlk5ak (5constant). Therefore

YA5l~u!jA1a0hA1akzA

and substituting this back into~74!, ~72!, and~73! one has

f5Ṡ5a0k1akck~xD!, ~81!

Yu5e1~a0k1akck~xD!!u1B~xD!, e1~a0k1akck~xD!! ,Au1B~xD! ,A1l̇~u!jA50 ~82!

hence

l̇~u!5au1b,

i.e.,

l~u!5
a

2
u21bu1c

and also

akck~xD!5e1~2aj1m!, B~xD!52bj1n

and substituting this into the expressions for the covariant components ofYW , we would getYu

5(e1a0k1m)u2(au1b)j1n and YA5@(a/2)u21bu1c#jA1XA where XA[a0hA1akzk A .
Notice that the constantsn and c can be set equal to zero without loss of generality, as t
amount to adding multiples ofuW 5]u andjW , respectively. On the other hand,XA are the covariant
components of a CKV whose associated conformal factor ise1(2aj1m)1a0k @if no HV exists
in (V,h) then the CKV has componentsXA5akzk A and conformal factor2e1(2aj1m)], that is
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Yadxa5@~e1ka01m!u2~au1b!j#du1F S a

2
u21buD jA1XAGdxA, ~83!

where

XA5a0hA1akzk A

is such that

2X(A/B)52@e1~2aj1m!1a0k#hAB ~84!

and the conformal factor associated toYW is

f5e1~2aj1m!1a0k ~85!

and satisfiesfa;b50, that is:YW is a SCKV in (M ,ĝ), whereasXW is also a SCKV in (V,h).
Notice that some of the constants appearing in the above expressions could have b

moved by means appropriate redefinitions of the objects~functions and coordinates! in them.
However, as it turns out, it is useful to keep them as they appear because this makes the
quent analysis much more clear. The following possibilities now arise regarding the natureXW ;
namely

Case 1:(V,h) admits no proper SCKV nor proper HV, thena050 andXA5akzk A is a KV,
that isakck5e1(2aj1m)50; i.e., a5m50 and the conformal factorf above becomes zero
hence,YW is a KV which can be seen to be given by

Yadxa52bj du1bjA dxA1XA dxA, XW PK~V,h!. ~86!

Case 2:(V,h) admits no proper SCKV but it admits a proper HV~that is: a0Þ0). It then
follows thatakzk A must be a KV, henceakck5e1(2aj1m)50; and thena5m50 as before.
The conformal factor is then constantf5ka0 , YW then being a HV which can be written as

Ya dxa5a0@e1ku du1hA dxA#2bjdu1bjA dxA1XA dxA, ~87!

where the first term within square brackets is a proper HV and the remaining terms are
recognizable as a KV@see Eq.~86!#.

Case 3:(V,h) admits a proper SCKV,XW such that 2X(A/B)52@e1(2aj)#hAB ; i.e., aÞ0 and
the constantska0 ,m ~if nonzero! have been absorbed by suitably redefining the functionj. We
then have

XA/B52e1ajhAB1FAB ,

whereFAB is the conformal bivector. Computing now the Lie bracket ofjW andXW and making use
of the above expression together with the fact thatjA/B50 we get

@jW ,XW #5hW , hA52e1ajjA1FABjB ~88!

computing nowhA/C and making use of Eq.~12! it follows

hA/C52e1a~jDjD!hAC ~89!

that is: hW is either a GHV~wheneverjW is non-null, for in that case it can be scaled so th
jDjD5e2 , wheree2561), or elsehW is a GKV ~includinghW 50 as a special case!. In the former
case (hW is a GHV and thereforejDjD5e2), Proposition 2 above implies that (V,h) is flat. In the
latter case (hW is a GKV andjDjD50), one has from~88! that jDhD50 and therefore eithe
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hDhDÞ0, in which case again, proposition 2 implies that (V,h) is flat, or elsehW 5kjW wherek is
a constant which may be zero~if it is not zero, it can always be chosen equal to 1 by re-scalinXW

appropriately!. This is the only nontrivial case@in the sense that (V,h) is not necessarily flat#, and
it is easy to see that coordinatesv,w,y can be chosen so that the three-dimensional line elem
takes the form:

ds2522dv dw1p6~w!M2~y!@q6~w!22dw21dy2#, ~90!

where

q6~w!5n2w261, p1~w![q1~w!exp@e1kn/a cot21 nw#

~91!
p2~w![q2~w!exp@e1kn/a coth21nw#, n5constant,

the KV jW and SCKVXW being, respectively,

jW5]v , XW 5kv]v1
1

n2 q6~w!]w . ~92!

Alternatively, new coordinates can be chosen, which we still callv,w,y, so that Ref. 11 the line
element takes the more familiar form

ds2522dv dw22H~w,y!dw21dy2 ~93!

and still jW5]v but the functionH(w,y) satisfies then a partial differential equation andXW then
takes a form which depends onH. In this case, the Ricci tensor is

RAB5H ,yyl Al B, ~94!

wherel A5jA .

B. „V,h … admits a proper GHV and no proper GCKV

Since a proper HV is unique up to the addition of KV, we can assume that there is jus
GHV ~in the sense that, if another exists, then their difference must be a gradient KV—in
respect, if any GKV exists in (V,h) we shall consider that has been added to the GHV, theref
any remaining proper CKV or KV inC(V,h) will be nongradient!, sayhW with homothetic constan
k(Þ0); i.e.,hA[h , A for some functionh(xB).

At this point, it is easy to find an expression for the line element associated withh in
coordinates adapted to the GHVhW . First of all notice that fromhA/B5khAB it readily follows that
hW cannot be null; next and provided we are not in the vicinity of a fixed point of the HV, we
always choose a coordinate, sayx1[v adapted tohW , i.e.,hW 5]v , now the fact thathW is locally a
gradient and a HV with homothetic constantk readily implies~by a similar argument to that use
previously! that coordinatesxi[x2,x3 can be chosen so that the line element associated wih
reads

ds25e2kv~ ė2dv21h̄i j ~xk!dxi dxj !, e2561 ~95!

and thenhA dxA5e2 exp(2kv)dv, hence h5(e2/2k)exp(2kv). Also, since h̄i j (x
k) is a two-

dimensional metric, the coordinatesxi can be chosen so that it takes an explicit conformally
form, i.e.,

ds25e2kv~e2 dv21V2~xk!~e3~dx2!21~dx3!2!, e2 ,e3561, ~96!

whereV(xk) is some function of its arguments. The line element of (M ,ĝ) then reads
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dS25e1 du21e2kv@e2 dv21V2~xk!~e3~dx2!21~dx3!2!#, ~97!

where

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511.

Alternatively, the following change of coordinates can be carried out:

w[k21 exp~kv !, v5k21 ln kw, ~98!

which rendershW , h and the line element associated withh in the form

hW 5kw]w , h5
ke2

2
w2, ds25e2 dw21w2V2~xk!~e3~dx2!21~dx3!2! ~99!

hence

dŝ25e1 du21e2 dw21w2V2~xk!~e3~dx2!21~dx3!2!. ~100!

Now going back to the problem of finding the CKV that (M ,ĝ) admits in this case, let$hW ,zW k% be
a basis forC(V,h) with hW satisfying

hA/B5khAB ~101!

andzW k being CKV~including KV! such that no proper CKV~nor any linear combination of them!
is a gradient, we then have

zk A/B1zk B/A52ckhAB ,

whereck is the associated conformal factor.
Equation ~74! states thatYB(u,xD)]B is a CKV in everyV(u) for u fixed, and therefore

according to our previous developments, we may write

YB~u,xD!]B5l~u!hW 1lk~u!zW k, ~102!

which when substituted back again into~72!–~74! yields ~recall, the conformal factorf has been
renamed asṠ):

Ṡ~u,xB!5kl~u!1lk~u!ck~xB!, Yu5e1@km~u!1mk~u!ck~xB!1B~xA!#, ~103!

e1mkck, A1B,A1l̇hA1l̇kzk A50, ~104!

wherem(u) andmk(u) are such thatṁ(u)5l(u) andṁk(u)5lk(u), respectively, andB(xA) is
a function of integration which does not depend onu. Now, ~104! above implies that, foru fixed,
l̇kzk A must be a GCKV~sincehA is a gradient by assumption!, but since, by hypothesis there
none andhW , zW k are independent, it must bel̇k50, that islk5ak(5const). Plugging this back
again into~72! and ~73! we get

Yu5e1@km~u!1uakck~xB!1B~xA!#, e1uakck, A1B,A1l̇hA50, ~105!

which, when differentiated with respect tou yields

e1akck, A1l̈hA50 ~106!

and two possibilities arise:
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case 1: l̈50, i.e.: l5au1b, with a,b constants. Thenakck, A50, that is: akck5C
(5constant).

case 2:l̈5a ~constant!, hencel5a/2u21bu1c and thenB52bh1m and e1akck5ah
1C wherem,C are constants andh is the function such thath , A5hA .

Case 1:In this case it is straightforward to get from the equations above thatB52eah and
also thatakzW k must satisfy:

L akzWk
h52Ch

that is:akzW k is a HV, which, on account of the assumed independence ofhW , zW k can be set directly
equal to zero.@Alternatively, since homotheties are essentially unique, it would followakzW k

5(C/k)hW 1jW , wherejW is a KV, which can be absorbed by a suitable redefinition of the cons
b in l5au1b.] Taking all this into account, redefining nonessential combinations of cons
and subtracting any proper KV@i.e., linear combinations of]u and KV in (V,h) such asjW above#,
we get

YW 5FkS a

2
u21puD2e1ahG]u1~au1p!hW ,

wherep is a constant.
It is immediate to check that the above CKVYW , whose associated conformal factor isf

5k(au1p), is in fact a SCKV, that isfa;b50. Also note that the HVpu]u1phW can be sub-
tracted fromYW , the resulting vector

YW 85@k~a/2!u22e1ah#]u1auhW ~107!

being, indeed, a SCKV.
Case 2:We now havel5(a/2)u21bu1c, B52bh1m, and alsoe1akck5ah1C, where

a,b,m and C are constants. This implies thatXW [akzW k is a CKV in (V,h) whose associated
conformal factor is preciselye1(ah1C). A direct calculation using the forms~96! or ~99! readily
shows that no such CKVXW can exist, and therefore this case turns out to be impossible.

C. „V,h … admits a proper GCKV

Let us turn our attention now to the case in which (V,h) admits a proper GCKV. Before
analyzing the consequences this has on the conformal algebra of the 113 reducible space–time
(M ,ĝ), we shall first explore the situation in a three-space (V,h). To this end, letzW be a GCKV
in (V,h) with associated conformal factorc, we then have

zA/B5chAB , zA5z , A , ~108!

wherez5z(xD) is some function. The first equation above readily implies thatzW cannot be null
unless it is a KV. Taking a further covariant derivative we have

zA/BC5cChAB , cC5c ,C ~109!

and the Bianchi identities imply, sincezA/B5zB/A ,

RABCDzD5cAhBC2cBhAC . ~110!

Contracting both sides of the above equation withzC yields

05cAzB2cBzA ~111!
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and then, unlesszW is a HV ~in which case the equation above is satisfied identically! which we are
assuming is not, it follows thatc5c(z), hence, from now on we shall writecA5c̃zA , where the
tilde stands for the derivative with respect to the functionz, i.e., c̃5dc/dz. Also, differentiating
~111! and using~108! it follows that zW cannot be a SCKV~unless it is a KV!.

Following a procedure similar to the one in Sec. V B, we choose a coordinatev adapted tozW

and two other coordinatesx2,x3 so that

zW5]v , zA dxA5e2 exp~2V~v !!dv, z5e2E dv exp~2V~v !!, ~112!

ds25e2V(v)@e21V2~xk!~e3~dx2!21~dx3!2!# ~113!

the conformal factor then beingc5V8(v) where the prime indicates derivative with respect tov.
Note that

c̃5
dc

dz
5

dc

dv S dz

dv D 21

5e2V9e22V(v). ~114!

Alternatively, a new coordinatew can be defined such that

w[E dv exp~2V~v !! ~115!

and then

zW5M ~w!]w , M ~w!5exp~V~v~w!!!, zAdxA5e2M ~w!dw, and z5e2E dw M~w!,

~116!

ds25e2dw21M2~w!V2~xk!~e3~dx2!21~dx3!2! ~117!

the conformal factor isc5M 8(w) ~the prime now meaning derivative with respect tow) and, as
before,

c̃5
dc

dz
5

dc

dw S dz

dwD 21

5e2

M 9

M
. ~118!

The above metric describes the situation in which one proper~non-HV! GCKV exists in (V,h),
with h being of arbitrary signature.

Let us now go back to the original problem of finding CKV in the 113 reducible space–time
whose three-dimensional factor (V,h) we are assuming to admit a GCKV. We next reproduce,
the sake of convenience, the original equations~72!–~74! with the conformal factorf renamed as
Ṡ:

Yu,u5e1Ṡ, ~119!

Yu,A1YA,u50, ~120!

YA/B1YB/A52Ṡ hAB . ~121!

Again, ~121! implies thatYB(u,xD)]B is a CKV in everyV(u) for u fixed.
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Now, assume first that only one proper GCKV is admitted in (V,h), sayzW with conformal
factor c. From our previous developments it follows that no proper GHV or GKV can exis
(V,h); therefore we may consider a basis ofC(V,h) given by $zW ,xW k% where, again,xW k are
nongradient CKV~possibly HV and KV! with conformal factorsfk .

From the remark above it follows that

YB~u,xD!]B5l~u!zW1lk~u!xW k

which, upon substitution into~121!, yields

Ṡ5l~u!c~xD!1lk~u!fk~xD!

that can be formally integrated to give

S5c~xD!E du l~u!1fk~xD!E du lk~u!1B~xD!,

where the terms resulting from the constants of integration arising from (*dul(u)), etc., have
been absorbed into the function of integrationB(xD).

Substituting this into~120! and taking into account thatc ,A5c̃zA we get

S E du l~u! D c̃zA1S E du lk~u! Dfk, A1B,A1l̇~u!zA1l̇k~u!xk A50 ~122!

and this implies that, foru fixed, l̇kxk A must be a GCKV independent ofzA . Since this is not
possible from our assumptions, it follows thatl̇k50, that is lk5ak(5const). Therefore the
above-given equation reads now

F S E du l~u! D c̃1l̇~u!GzA1uakfk, A1B,A50 ~123!

and differentiating with respect tou,

@l~u!c̃1l̈~u!#zA1akfk, A50, ~124!

which readily implies:

c̃5k ~constant!, kl~u!1l̈~u!5a ~constant!, akfk52az1c, ~125!

wherec is a constant. Substituting this information back into~123! and taking into account tha
from c̃5k andkl(u)1l̈(u)5a it follows c̃*du l(u)1l̇(u)5a u, one easily gets

B,A50,

i.e.,

B5b ~constant! ~126!

and then, usingk*du l(u)1l̇(u)5a u, Eq. ~119! implies

Yu5e1~2zl̇1cu1b!.

Note thatb can be set equal to zero without loss of generality, since it simply amounts to a
a constant multiple of the KVuW 5]u , and we shall do that in what follows, thus writing
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Yu5e1~2zl̇1cu!. ~127!

Also, from the above-mentioned developments we get

YA5l~u!zA1XA , XA[akxk A , ~128!

wherel(u) satisfiesl̈1kl5a, the conformal factor associated with the GCKVzW is c5kz, and
XW is a CKV ~nongradient by assumption! whose associated conformalf8[akfk factor is, from
Eq. ~125! f852az1c.

Consider next the CKVZW defined byZW [(a/k)zW1XW . From the previous paragraph it follow
that

LZW hAB52chAB ,

that is:ZW is a HV with homothetic constantc, therefore, putXW above asXW 5ZW 2(a/k)zW and then

YA5S l~u!2
a

kD zA1ZA, ~129!

whereZW is a HV in (V,h) with homothetic constantc. If ( V,h) admits no HV, thenc5ZW 50
above; thus we finally have

YW 5~2zl̇1cu!]u1S l~u!2
a

kD zW1ZW .

Sincecu]u1ZW is a HV with homothetic constantc we can subtract it from the above to get

YW 5~2zl̇ !]u1S l~u!2
a

kD zW ~130!

andzW is now that given by~112! or ~99!, the corresponding three-dimensional line elements t
being ~113! or ~117!, thus we can finally write for the line element of (M ,ĝ) a 113 reducible
space–time admitting a CKV under these hypotheses:

dŝ25e1 du21e2 dw21M2~w!V2~xk!~e3~dx2!21~dx3!2!, ~131!

where

ea561 ~a51,2,3! e1e2e3521, e11e21e3511.

The CKV is then

YW 5~2zl̇ !]u1S l~u!2
a

kD M ~w!]w , ~132!

wherel(u) andM (w) must satisfy@see~118!#

l̈~u!1kl~u!5a, M 9~w!5e2kM. ~133!

These equations can be easily integrated fore2k.0,e2k,0 ande2k50 obtaining then explicit
expressions for both the line element dŝ2 and proper CKVYW .

In the next theorem, we make an attempt at summarizing the results thus far obtained
Theorem 10:Let (M ,ĝ) a 113 decomposable space–time; the following results hold regard

ing its conformal Lie algebra:
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(1) If (V,h) admits no GCKV then the only CKV that(M ,ĝ) admits are HV and KV—their forms
are those discussed in remarks R0-R3 at the beginning of this section.

(2) (M ,ĝ) can admit a proper CKV YW if and only if (V,h) admits a GCKV, which can be eithe

a GKV jW , or a GHV hW , or a (proper) GCKVzW .
(3) If two or more GCKV are admitted by(V,h), then (V,h) is of constant curvature and

conformally flat (and it is flat if one of the GCKV admitted is a GHV).
(4) If only one GCKV is admitted by(V,h), then:

(a) If it is a GKVjW , then(M ,ĝ) admits a proper CKV YW if and only ifjW is null and a proper

SCKV exists also in(V,h), XW , such that [jW ,XW ]5kjW ; the CKV YW is also a SCKV and the

metric is a special type of generalized pp-wave. Otherwise [i.e., if no proper SCKV XW

exists in(V,h) or it exists but it does not satisfy@jW ,XW #5kjW ] , then YW is a HV, possibly
KV.

(b) If it is a GHVhW then(M ,ĝ) admits a proper SCKV YW (unique up to the addition of HV)

The line element and YW are:

dŝ25e1 du21e2 dw21w2V2~xi !@e3~dx2!21~dx3!2#, ~134!

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511

YW 5S a

2
ku22e1e2

a

2
kw2D ]u1auhW , hW 5kw]w . ~135!

(c) If it is a GCKVzW then(M ,ĝ) admits a proper CKV YW (unique up to the addition of HV)

The line element and YW are:

dŝ25e1 du21e2 dw21M2~w!V2~xi !@e3~dx2!21~dx3!2#, ~136!

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511,

YW 52zl̇~u! ]u1S l2
a

kD zW , z5e2E dw M~w!, zW5M ~w!]w ~137!

and the functionsl(u) and M(w) satisfy

d2l

du2 1kl5a,
d2M

dw2 5e2kM. ~138!

VI. EXAMPLES

In this section we shall briefly discuss instances of double warped space–times. Notic
warped space–times are special cases of double warped ones~i.e., whenever one of the warpin
functions is constant!, and they include relevant classes of space–times such as all the spher
plane and hyperbolic symmetric space–times, the whole class of Friedmann–Robertson–
solutions, the Bertotti–Robertson space–time and many others, see Refs. 3 and 4 for
information.

Fluid space–times.We have not been able to find a proper double warped~i.e., nonwarped!
perfect fluid solution due to the complicated form that the field equations take on account
Ricci tensor ~see Sec. III!. However, it is indeed possible to find anisotropic fluid solutio
satisfying the dominant energy condition~see Ref. 11!, as the following two examples show. Th
energy–momentum tensor is in both cases of the Segre type$1,1(11)%, and therefore can be
written as

Tab5muaub1p1zazb1p2@xaxb1yayb#, ~139!

where$ua ,za ,xa ,ya% form an orthogonal tetrad (2uaua5xaxa5yaya5zaza51, the rest of the
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products being zero!, ua is aligned with the velocity of the fluid, andm,p1 ,p2 are, respectively, the
energy density and two~different! pressures as measured by an observer co-moving with the
The dominant energy condition implies then

m>0, m6p1>0, m6p2>0. ~140!

Case 1:Consider the line element given by

ds25z~2dt21dx2!1t~dy21dz2!, ~141!

wheret andz are both non-negative. This space–time can be seen to represent an anisotrop
with an energy–momentum tensor given by~139! with

ua5~2z1/2coshF,0,0,t1/2sinhF!, za5~2z1/2sinhF,0,0,t1/2coshF!,

xa5~0,z1/2,0,0!, ya5~0,0,t1/2,0!,

coshF5A t

t2z
, sinhF52A z

t2z
for t2z.0

coshF5A z

z2t
, sinhF52A t

z2t
for z2t.0

and also

m5
uz2tu
4t2z2 , p15m, p25

z2t

4t2z2 .

This has to be understood as two different open submanifolds; namely, the one defined bt2z
.0 and that defined byz2t.0. In both cases the dominant energy condition~140! is satisfied. As
a final comment to this example, it can noted that the above metric admits the Killing ve
jW15]x , jW25]y , and the homothetic vectorhW 5t] t1x]x1y]y1z]z with homothetic constantc
53/2.

Case 2:Consider next the following line element:

ds25~m2kz2!~2dt21dx2!1~q1kt2!~dy21dz2!, ~142!

wherem,k,q are constants,m,q.0 andk>0 in order for the energy conditions and other po
tivity requirements to be satisfied, and the range of thez coordinate is restricted tom2kz2.0.
Again, this represents an anisotropic fluid with energy–momentum tensor given by~139! where

ua5~2~m2kz2!1/2coshF,0,0,~q1kt2!1/2sinhF!,

za5~2~m2kz2!1/2sinhF,0,0,~q1kt2!1/2coshF!,

xa5~0,~m2kz2!1/2,0,0!, ya5~0,0,~q1kt2!1/2,0!,

cosh 2F5
qz21mt2

uqz22mt212kt2z2u
.

The densitym and the pressuresp1 ,p2 are given in this case by

m5k~m2kz2!22~q1kt2!22$kuqz22mt212kt2z2u1~m2kz2!~q1kt2!%,

p15k~m2kz2!22~q1kt2!22$kuqz22mt212kt2z2u2~m2kz2!~q1kt2!%,
6 Nov 2006 to 193.137.16.173. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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p25
~23 qm22 kt2m12 qkz21k2t2z2!k

~2m1kz2!2~q1kt2!2

and it can be seen that the dominant energy condition~140! is satisfied.
Vacuum space–times.Notice from the second equation in~66! that any double warped space

time representing a vacuum solution of Einstein’s field equations, must in fact be warped~i.e.,
eitheru1, a50 or u2, A50). Examples in this class include Schwarzschild solution and its p
and hyperbolic symmetric equivalents.

The characterization of class A and class B double warped space–times given in Theor
5, and 7 should prove useful in formulating an algorithm for classifying such metrics. this
because this characterization is coordinate independent although tetrad dependent. In what
the tetrads described in Theorems 4, 5, and 7 will be designated as dw tetrads of class A
respectively. In order to determine weatherg represents a double warped metric we suggest
following classification scheme:

~1! Choose a coordinate system.
~2! Choose a canonical complex null tetrad$ka ,l a ,ma ,m̄a% and write their components in th

coordinate system chosen in~1!.
~3! Determine the NP spin coefficients and their NP derivatives in tetrad~2!.
~4! If the scalars determined in~3! satisfy the relations of Theorems 4 or 5~Theorem 7! then the

metric is a double warped space–time of class A~class B! and the algorithm stops here
otherwise go to step~5!.

~5! If possible, find the Lorentz transformations that transform tetrad~2! into a dw tetrad, i.e.,
such that the corresponding NP spin coefficients and their NP derivatives obey the con
of Theorems 4 or 5~Theorem 7!. If such transformations exist then the space–time is a dou
warped space–time of class A~class B!, otherwise it is not double warped.

Unfortunately, step~5! of this procedure is not straightforward, since finding the Lore
transformation which maps tetrad~2! into a dw tetrad can be difficult and such a transformat
might not exist in which case the metric is not double warped.

The algorithm described here not only describes a way of determining whether a par
metric is double warped or not but also suggests a method for obtaining such space–tim
example, we suspect that one can obtain type D vacuum warped metrics of class B, for
r5m50, by following a similar integration procedure to the one performed by Kinnersley.18 In
this paper, Kinnersley chooses coordinates such thatl a5d2

a , makingx25r an affine paramete
along l a. These are the special coordinates given in Ref. 9. The idea would then be to exp
dw tetrad in these special coordinates, write the NP equations taking into account~63!. In order to
determine explicitly the tetrad components in these special coordinates one must integr
corresponding equations. By following this procedure we hope to obtain such metrics in
work.
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