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An invariant characterization of double warped space—times is given in terms of
Newman—Penrose formalism and a classification scheme is proposed. A detailed
study of the conformal algebra of these space—times is also carried out and some
remarks are made on certain classes of exact solution20@3 American Institute

of Physics. [DOI: 10.1063/1.1605496

I. INTRODUCTION

Given two metric manifolds M ,,h;) and (M,,h,) and given two smooth real functions
0,:M;—R, 6,:M,—R (warping functiony one can build a new metric manifoldV(,g) by
settingM =M ;X M, and

g=620277’1’h1®82017r’2’ h2, (1)

where 71,7, above are the canonical projections omig and M, respectively, and will be
omitted where there is no risk of confusithus writing, from now ong=e?%2h, ® €2%1h,). One
such structure will be calledouble warped product manifgldand gives rise to the so-called
warped product manifoldvhenever one of the warping functions is constant, see Refs. 1 and 2.

If dimM;+dimM,=4 andg has Lorentz signaturg.e., one of the manifoldsN; ,h;) is
Lorentz and the other Riemahrihen (M,g) will be referred to as aouble warped spaedime,
and again, if one of the warping functions is constant, one recovers the definitioarped
space-time (see Refs. 3 and)4

In what is to follow and unless otherwise stated, we shall assume that we are dealing with
“proper” double warped space—timése., neither of the warping functions is constaritirther,
and without loss of generalityM ;,h;) will be assumed Lorentzian and(,,h,) Riemannian.

The considerations in this work will be mainly local, thus we shall assume that forpach
e M there exists a neighborhoadl of p such that there is a coordinate systeéfn a=0,...,3 on
U adaptedto the product structure in the sense that the line element associated with be
written as

ds?= 202", (X)X dxP+ 6201070, » 5(xP)dxA dxB; 2

wherex®# " andx"B" will designate the coordinates on the submanifditls and M, of M
throughp, respectively, whilen; andn, denote their respective dimensions; thus, Greek indices
will run from 0 to n;—1 and capital Latin indices from,; to 3. Conversely, if a space—time
contains an open neighborhotdon which there exists a coordinate system as the one described
above, then it will be referred to dscally double warped spaed¢ime

The aim of the present paper is to deal with double warped space—times in much the same
way as warped space—times were dealt with previo(she Refs. 3 and 4 and references cited
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therein; thus their geometrical properties will be deducted and studied starting from those of their
lower dimensional factorsM; ,h;) which are, in general, much easier to deal with.

The paper is structured as follows: in Sec. Il an invariant characterization of these space—
times is given, including their characterization in terms of the Newman—Penrose formalism, and a
classification scheme is put forward. Section Il contains some results on the curvature structure of
such space—times, whereas Secs. IV and V deal with their conformal algebra. Finally, in Sec. VI,
a few remarks are made on double warped exact solutions.

II. INVARIANT CHARACTERIZATION AND CLASSIFICATION

Starting with the form(2) of the line element, let us re-write it as follows:
ds?= €210+ 020 e=2010MNo(x7)dx dxB+ e~ 2020, 55(XP)dxA dxXB], 3

now, the two terme ™ 2%10Dh,  4(x”) and e 20200, ,o(xP) are metrics on the submanifolds

M, and Mo, sayﬁl and ﬁz. The sum of their associated line elemefitsat is, the expression
within the square brackets if8)], is the line element, say38 of a decomposable space—time
(M,§) with M=M;xM, and §=h,®h, (Again, to be correct one should wrig=7%h,
Qs h,, 7, m, being the canonical projections ontd, andM,, but since there is no risk of
confusion, we omit them for the sake of simpligitghus we have proven:

Lemma 1: A (locally) double warped spadame is always conformally related to a (locally)
decomposable spaetme, the conformal factor being separable in the coordinates associated
with the two factor submanifolds

In what follows, we shall refer to the factor submanifolds in the decomposable space—time
(M,§) as M,,h;) and (M,,h,), respectively, assuming thak(; ,h,) is Lorentz and ,,h.,)
Riemann; and we shall write the metric of a double warped space—tinge=agp(20)g in the
understanding thaj is the metric of the underlying decomposable space—timedsseparates as
the sum of two function®; and 6, on M; andM,, respectively.

Now, the space—timeM,§) is locally decomposable if its holonomy group is nondegener-
ately reducible(and globally decomposable if, on top of this, it is simply connectsée for
instance Ref. 5, and references thergits holonomy type being theR,, Rs, R4, Rg, R7, Ryo,
or Ry; (see Ref. § one then has the following possibilities fak().>

(1) (M,d) is 1+3 decomposable if it admits a global, non-null, nowhere zero covariantly
constant vector fieldi. One then distinguishes betweer 3 spacelike(holonomy typeR;3) or
1+ 3 timelike (holonomy typeR;, Rg or Ry depending on the nature of the three-dimensional
submanifold orthogonal to the covariantly constant vector field. In a coordinate system adapted to
the covariantly constant vector field, séy=d,, the line element & then takes the following
forms, respectively:

d52= — du?+ h og(xP)dx” dx®
or
d8?=h,5(x”)dx® dxP + du®. (4)

If another non-null covariantly constant vector field exists in the space—time, gl (decom-
poses further and can be referred to as beirgl? 2 spacelike(type R,) or 1+1+2 timelike
(type Ry) in an obvious notation.

(2) (M,d) is 2+2 decomposable and then two global, linearly independent recurrent null
vector fields existholonomy typeR;). This is equivalent to saying that itM(,§) there exist two
linearly independent covariantly constant tensor fields of rank 2Psapd Q such that

Gab=Pabt Qap
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with

Pabic= Qanc=0; 5

a stroke denoting covariant derivative iM(§); the line element reads in this case
d82=hy ,5(x7)dx* dXP+hy Ap(XP)dx? dxB, (6)

Whereﬁ1 and ﬁz are two two-dimensional metrics dvl; andM,, respectively, such thaztr’l‘ﬁ1
=P and73h,=Q.

Going back to the double warped space—tirive §) conformally related toM,§) via (3), it
appears natural to consider the following two classes of double warped space—times.

Class Awhenever the underlying space—tinid (§) is 1+ 3 decomposable. If necessary, and
following the same notation as in the case of warped space—times, we shall distinguish between
classesA; (1+3 spacelikg and A, (1+ 3 timelike). Taking into account3) and (4), we shall
write the canonical form of the line element of these space—times as

ds? = e2(01(W)+ 020N[ — qu2+ i, 5(xP) dxA dxB], 7

d52: eZ(Hl(x"V) + HZ(U))[ﬁaB(Xy) dx® dXB-F du2]’ (8)

respectively.
Class Bwhenever the underlying space—timé §) is 2+2 decomposable. The canonical
form of the line element will be in this case

ds?= 210N = 20N o(x7)dx® dxP + iy op(XP) XA dx®]. (9)

In what is to follow and whenever no confusion may arise, we shaldgad, (x”) + 6,(xP) and
write accordingly

gab: eZOGaba
and also
ds?=e?? ds?. (10

Also, we shall denote the covariant derivatives M, ) and (M,§) by V andV or a semicolon

(;) and a slaslt/), respectively. Further, reference will be often made to conformal Killing vectors
and their properties, hence it is in order at this point to recall their definition and basic properties;
thus, given am-dimensional manifold/ endowed with a metrig of arbitrary signature, a vector
field X on V is said to be aconformal Killing vector(CKV) iff £zg=2¢g where ¢ is some
function of the coordinate&onformal factoy and Ly stands for the Lie derivative operator with
respect to the vector field. The former equation can also be written in an arbitrary coordinate
chart as

Xa;b= P9apt Fab (11

and then, from the Bianchi identities, it follows

Fabic= Rabcdxd_ babct Pudacs (12
LxRap= _(n_2)¢a;b_¢c;cgaba (13
L)ZR=—2¢R—2(I’I—1)¢C;C, (14)
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E)ZRabcd: 2¢Rabcd_ ¢a;cgbd+ ¢a;dgbc_ ¢b;dgac+ ¢b;cgad ’ (15)

where ¢,=¢ ,, a semicolon stands for the covariant derivative with respect to the connection
associated with the metri€,,,= — Fy, is the so-calledconformal bivectorandR ¢4, Rap, and
R stand, respectively, for the components in the chosen chart of the Riemann and Ricci tensors and
the Ricci scalar. The special cas¢s-constant andp=0 correspond, respectively, ) being a
homothetic vectofHV) and aKilling vector (KV), the associated bivector is then said to be the
homothetic bivectqror Killing bivector, respectively. A CKV is said to bproper whenever it is
nonhomothetidi.e., ¢+ const); likewise, we shall use “proper homothetic” to designate a HV
which is not a KV (i.e., ¢=const-0). A proper CKV is said to be @&pecial CKV(SCKV)
whenever its associated conformal facgpsatisfiess,.,=0 in any coordinate chart. Further, it is
easy to see that the CKV tha¥/{g) admits form, under the usual Lie bracket operation, a Lie
algebra of vector fields which we shall designateCal/,g), r being its dimension. Similar
statements can be made regarding the SCKV, HV, and KV tay)(may admit[Lie algebras
S (V,09), H,(M,g) andX,(V,g) respectively(note from the above considerations it follows that
in any given space—timé& D S,2 H2 K,,, with r=m=s=n)]. We refer the reader to Ref. 7 for
further details on CKV and their Lie algebra. Going back now to the problem of characterizing
class A and B double warped space—times, we see that this can be carried out by “translating” into
(M, g) the properties of the preferred vector fielden-null covariantly constant or null recurrgnt
that characterize the underlying decomposable space—times) ( Thus we get:

Theorem 1: The necessary and sufficient condition M ,g) to be a double warped class A
space-time is that it admits a non-null, nowhere vanishing CKWHich is hypersurface orthogo-

nal and such that the gradient of its associated conformal fagtis parallel to X

Proof: Let (M,q) be a class A double warped space—time, its line element takes then the form
(7) and (8) and it is easy to see that=4, is a CKV which satisfies the required properties, in
particular, its associated conformal facipris =6 , which on account of the form that has
(separable iru and the rest of the coordinajes = (u) and thereforey ;o X, .

The converse also holds for, assume thdt¢) admits a non-null, nowhere vanishing CKV
X which is hypersurface orthogonal. Sindeis nonvanishing and hypersurface orthogonal, a
coordinate chart exists, sgu,x¥}, such that

X=0,, ds?=ee?VuXIqu2+ hij (u,x¥)dx' dx?,

wheree= *1 (see for example Ref. 8, p. 168urther, the conformal equations férabove are
Simply gap,u=2¢gap (With = #(u,x¥)) which in turn implies

PuX)=U (ux¥), (U9 =eVOR, (x4
and the above line element can then be written as
ds?=e2VUX edu+ hij (x¥)dx dx!].

Finally, imposing thaty , X, yields = ¢(u) and thereforeJ (u,x¥) = 6;(u)+ 6,(x*) and the
resulting space—time is then class A double warped. O

The characterization of warped space—times can now be easily recovered as the following
corollary shows:

Corollary 2: If the CKV Xin theorem 1 is a Killing vector (KV) then the spagimne is warped
of class A in the classification given in Ref. 3. If X a proper (non-KV) gradient CKV (i.e., if the
associated conformal bivector vanisheg,F X,.,— X,.,=0) the spacetime is class A warped
in that classification

It is worthwhile noticing that Theorem 1 also provides an invariant characterization of space—
times conformal to * 3 locally decomposable space—times:
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Corollary 3: The necessary and sufficient condition fbf,g) to be conformally related to a
1+ 3 decomposable spaetme (M, ) is that it admits a non-null, nowhere vanishing conformal
Killing vector (CKV) Xwhich is hypersurface orthogonal

Theorem 1 can be conveniently rephrased in terms of Newman—PefN&sdormalisn?
through the two following theorems:

Theorem 4: (M,q) is a class A double warped spaedime if and only if there exist a
function U:M —R and a canonical complex null tetrgd,,l,,m,,m,} (k® ;= —m®m,=—1) in

which:

DU=e+F, (16)

AU=—(y+7), 17

SU=rk+7=—(7+7), (19

a+N=0, (19)

a+B=0, (20)

et et y+y=p+u, (22

D(p+u)=—, (22

Alptup)=>, (23

S(p+m)=38(p+n)=0, (24)

where® = ®(u) is a real function of the timelike coordinate u

Proof: With the notation of Theorem 1 we have that for a classlouble warped space—time
a coordinate charfu,x¥} exists such that the line element takes the fdin X=4, is then a
timelike hypersurface orthogonal CKV with associated conformal fagiar)= 6, ,(u), andu
=e Y4, is a unit timelike vector field parallel t%X where we putJ(u,x)= 6;(u) + 6,(x¥) for
convenience, it is then easy to see that, in the above coordinate chart, one has

ua;b:(U,cuc)gab_U,aub (25
and also
'ﬂ,a:q)eiuuav (26)

where®=®(u) is a real function of the timelike coordinate[to be precise® = — 6, ,,(u)].
One can define a canonical null tetrad as follows:

1 1 1 1 1 2,03
ka=5(ua+xa), Iazﬁ(ua—xa), ma=5(xa+|xa), (27

wherex;, xﬁ, xi are spacelike vectors orthogonalug. Expression$16)—(24) are then obtained
by contracting(25) and(26) with the tetrad(27).
On the other hand, contractiri@6)—(24) with the dual of(27) one recovers expressiofb)
and(26), which, according to Theorem 1, imply that the space—time is dasiouble warped
Theorem 5: (M,qg) is a class A double warped spaedime if and only if there exist a
function U:M —R and a canonical complex null tetrdd, |, ,m,,m,} (k?l ;= —m?m,=—1) in
which one of the following sets of equations holds:
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DU=¢€+F¢,
AU=—(y+7),
SU=—k+7=7+7,
0'—_20,
a+pB=0,
ete—(y+ty)=p—u,
D(p—un)=>,
A(p—p)=o,
S(p—m)=38(p—n)=0,
DU=0o+p,
AU=~(\+p),
sU=a—p,
SU+oU=m+7=—(7+7),
k+k=0,
v+v=0,
e—e=0,
y—v=0,
S(m+m)=8(m+m)=>,
A(m+m7)=D(7w+7)=0,
DU=—o+p,
AU=\—p,
sU=a—p,

SU-oU=—m+m=—714T7,
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—S(mr—m=8(m—m)=—D", (55)
A(m—m)=D(m—m)=0, (56)

where®,®’ and ®” are real functions of the spacelike coordinate u

Proof: The proof follows along the same lines as that of Theorem &K:tfau is the hyper-
surface orthogonal spacelike CKV aiig=e Vg, is the unit spacelike vector field parallel to it
whose existence are ensured by theorem 1, then a canonical tetrad can be constructed in one of the
following ways:

1 3 1 3 1 5

ka=5(ua+xa), Ia=5(—ua+xa), ma=5(xa+|xa), (57
1 1 1

ka:E(xngxg), Ia:E(—xgan:j), mazﬁ(uaﬂx;), (58)
1 1 1

ka=5(x§+xg), Ia=E(—x§+x§), ma=5(x;+|ua), (59)

whereu, ,x%,x2 are spacelike vectors ang is a timelike vector.
Equations(28)—(36) are obtained contractin@5) and (26) with tetrad(57), (37)—(46) arise
from contracting25) and(26) with tetrad(58), while contraction 0f25) and(26) with tetrad(59)
gives rise to(47)—(56). To recover expressior®5) and(26) one must in turn contract those sets
of equations with the corresponding dual tetrad. O
Regarding the characterization of class B double warped space—times, we shall first recall the
necessary and sufficient condition for a space—time to be conformally related-t®ad2com-
posable one, as it was given in theorem 3 of Ref. 3, and next give the condition on the conformal
factor that makes it separable in the two sets of coordinates adapted to the two two-dimensional
factor submanifolds. We do this in the following theorem:
Theorem 6: The necessary and sufficient condition (M ,g) to be conformally related to a
2+ 2 decomposable spaetme (M,§) with g=exp(20)§ (0 being a real function), is that there

exist null vectors land k (12%k,= — 1) satisfying
lap=Ae llp=0alp+ (01900, Kap=—Ae kalp— 0 okp+ (0 K®)Gap; (60)
for some function AFurther, (M,Q) is class B doublewarped if and only if
HE(h56,0);c+ 2(h560,0)(H56,0) =0,
where
hab=—2K@lp), Hap=0ap* hap- (62)

Proof: The reader is referred to Theorem 3 of Ref. 3 for a proof of the first part of the theorem.
As for the second part, namely that characterizing double warped space—times within the larger
class of space—times which are conformal t6 2 decomposable ones, notice that Egj) is
nothing but the covariant expressiondf{ d,6) =0, where{x*} and{x"} are coordinate charts on
the two 2-dimensional submanifoldd, andM,, respectively(see Sec.)l O

As in the former case, Theorem 6 can be expressed in terms of the NP formalism. To do so,
a complex null tetradk, | ,,m,,M,}={z"} is chosen such tha and [ are the vectors iti60);
i.e., k¥ ,=—mm,=—1 all other inner products vanishing.
One then has
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Theorem 7: The necessary and sufficient condition (M ,g) to be conformally related to a
2+ 2 decomposable spactime (M,§), with g=e?%g, is that there exist a functiod:M — R and
a canonical complex null tetrafk,,l,,m,,m,} as described above such that

k=o=N=v=a+pB=m+1=p+(e+€) =0,
Ae '=pu+(y+7y), (62
p=—D6, wu=A0, 7=-56,

where A is the real function appearing in (60). Furthermai®,g) is class B double warped if
and only if

op=—2pt, OSu=—2u7, pu=0. (63
Proof: Equation(60) for I andii=k becomes in NP formalism

Y1mn= b 71m 710~ 0 m 710+ 7mnD 6, (64)

Yomn= ~ O 72m71n— O mM2nt 7mnld 0, (65

whereb=Ae Y, m,n,... aretetrad indices and the notation is the same as in Ref. 9. Contracting

(64) and (65) with the tetrad vectorg62) are easily obtained.
On the other hand, the tetrad version(61), together with the information contained (62),

yields (63).
Conversely,(62) and (63) contracted with the dual tetrad ¢k,,l,,m,,m,} give Egs.(60)
and(61). O

The characterization of class A and class B double warped space—times given in Theorems 1
and 6, or alternatively 4, 5, and 7 should prove useful in formulating an algorithm for classifying
such metrics. This is so because this characterization is coordinate independent although tetrad
dependent. In what follows the tetrads described in Theorems 4, 5, and in Theorem 7 will be
designated adw tetrads of class A and,Bespectively

Thus, in order to determine whether a given medriepresents a double warped space—time,
one can either use Theorems 1, an@®&ordinate approaghor else their counterparts 4, 5, and 7
through the following scheme:

(1) Determine the Petrov type of the Weyl tensor associated with the ngetand choose a
canonical tetradk,,l,,m,,mM,} such thatg,p=2[ — I akp) + MM, ].

(2) Determine the NP spin coefficients and their NP derivatives in the chosen (&irad

(3) If the scalars determined in st€p) satisfy the relations of Theorem 4 ofigspectively, Yfor
some functionU (respectively,d), then the space—time is double warped of clagse&pec-
tively, B) and the algorithm stops here, otherwise continue the algorithm.

(4) If possible, find the Lorentz transformation of the invariance group that transforms (&jrad
into a dw tetrad; i.e., such that the corresponding NP spin coefficients and NP derivatives obey
the conditions in Theorem 4 or (Bespectively, 7. If such a transformation exists, the space—
time is double warped of class @espectively, B, otherwise it is not double warped.

The Lorentz transformations considered in stdpmust belong to the invariance group of the
Petrov type of the metric since in st€h one chooses a canonical tetrad. Thus, for instance, if the
given metric is of the Petrov type D or N, then in st@p one looks for spin and boost transfor-
mations or for null rotations respectively.
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lll. CURVATURE STRUCTURE

The purpose of this section is to study the Riemann tensor of double warped space—times in
connection with that of the underlying, conformally related, decomposable space—time, with a
special emphasis on the algebraic Petrov and Segre types of the associated Weyl and Ricci tensors,
respectively.

First of all, notice that since the metrig of the double warped space—time is conformally
related to that of the decomposable space—timéeheir respective Weyl conformal tensors and
hence their Petrov types, will be equal. The Petrov types of decomposable space—times can be
easily calculated and are in most cases related to the holonomy type of the space—time; thus Ref.
5 one has that if the space—time is-3 spacelikegholonomy typeR;3) the Petrov type can only
bel, D, or O, whence it follows that clasa; double warped space—times can only be of those
Petrov types. In the case oft13 timelike decomposable space—times the Petrov type of the Weyl
tensor is unrestricted and the same will hold foy double warped space—times. Finally, the
Petrov type of 2-2 decomposable space—tim@mlonomy typeR;,), and hence that of class B
double warped ones, can only e or O. Further, if it is type D the null vectork and [ in
Theorem 6 are principal null directions of the Weyl ten&3t,.4, since the corresponding null
vectors in the underlying 22 decomposable space—tinthat is: the recurrent null vectois,
=e Y, and Ra=e‘ %k, , see Ref. 3 for detailscan be easily seen to be principal null directions
of the Weyl tensor in §1,§); i.e., C?,.4 (Which equalsC?;_); see Ref. 10.

Regarding the Segre classification of the Ricci tensor, similar comments to those in the case of
warped space—times hold; that is: conformal scaling does change the Ricci tensor and therefore
the Segre type of double warped space—times is unrestricted in principle. Further, in the case of
class A warped space—times we have that the unit vector figlsee proof of Theorem)lis
always an eigenvector of the Ricci tenSg¢and therefore the Segre type of clasgs warped
space—times i§l,111 or one of its degeneracigsvhile in the case of double warped space—times
this is no longer so for, from the Ricci identity specializeditd follows (see Ref. 1t

R%yu,=— %,b+%(®+2)ub.

now, in order ford to be an eigenvector of the Ricci tensor, it should be thgt<u, and then a
trivial calculation using the expressions fdrand the metric that appear in the proof of Theorem
1 shows that eithe® =0 and then the conformal factor associated Wtfs ¢=0; i.e,XisaKV
and the space—time &, warped(see Corollary 2or elseU(u,x*)= 6,(u) the space—time thus
being typeA,; warped. Since the converse follows trivially, we have shown

Corollary 8: The necessary and sufficient condition for a class A double warped-sjraee
to be a class A warped spaegme is that the CKV Xn Theorem 1 be a Ricci eigenvector (then
it is of class A if it is a proper CKV and of class Aif it is a KV).

In the case of type B space—times, all Segre types are possible in principle.

To close this section, we next give the expressions of the Ricci tensors and the Ricci scalar.
They can be derived easily from Appendix D in Ref. 12. Notice that, in the notation established in
the previous sectiorg, o= 60,4=0,

Ra,BZ r?a,e_z[ 01 al B~ 01 o1 ﬁ]_SAhl aB
Rug=2601,028, (66)
Ras=Rag—2[ 05 a8 02402 8]~ ST ag.
where

S=69,+26%y, (67)
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that is:

1 - . 1 .
S=——=[V—h107] ,+2h1"0, .0, ,+ _A[\/h_zagl],M"'ZhglNaz mO2n, (68)
—h

V=hy VA,

whereh,=det(,),,,, h,=det(,)s, and 6y ,= 6, ,, etc., andR,, stands for the components of
the Ricci tensor associated with the decomposable mgtniehich turn out to be@aﬁ= R, «p and

Rag=R, g that is: the Ricci tensors of the metribs and h,, respectively. Notice tha$ is
separable as a sum in the coordinatésandx”. For the Ricci scalar one easily gets

R=e 201" 0{R—6[(—h,)~ YA (—hy)Y20%) ,+ 0570, ,0,,
+(hg) ™ YA((h)"265") p+ AN 02 102 N1 (69)

whereR denotes the Ricci scalar of the metgic which is simplyR; +R,, i.e., the sum of the
Ricci scalars associated with the metrftsandh,.

IV. THE CONFORMAL LIE ALGEBRA OF CLASS B DOUBLE WARPED SPACE-TIMES

The purpose of this section is to make a few remarks on the Lie algebra of CKYV, including
Killing vectors (KV) and homothetic vectordHV), of class B double warped space—times.

A double warped space—timé/(g) admits a CKVX iff Lxg=2yg where ¢ is some real
function. If »= constant therX is a HV and ify=0 it is a KV.

Now, since a double warped space—tinM,{) is always conformally related to a decom-
posable one 1,d), their respective conformal algebras will be equal; and as it turns out, it is
relatively simple to deal with the conformal algebra of the decomposable space-NIngg. (
Conformal algebras in locally decomposable space—times have been studied by Coley and
Tupper® Capocci and Halt* and (following a different approachby Tsamparlis® For the sake
of completeness, we next summarize the basic results and refer the reader to the above papers for
detailed proofs.

Theorem 9: Let (M,§) be a 2+2 decomposable spaetme; the following results hold
regarding its conformal Lie algebra:

(1) If (M,d) is conformally flat (CF) its conformal algebra is 15-dimensional, their generators
being those of Minkowski’s conformal algebra. In this case the two factor submanifolds must
each be of constant curvature, say &d k,, respectively, with k+k,=0.

(2) If itis not CF, the only CKV it may admit are KV or HV

(3) If (M,8) is not CF its KV are the KV of the submanifol{lsl; ,ﬁi), for i=1,2; that is: if
22=(L°,¢Y is a KV of(M4,h;), then£2=(¢°,¢1,0,0) is a KV of (M, §), etc. Alsg (M,§)
will admit a HV if and only if each ofM; ,h;) fori=1,2admit a HV, i.e., if«®= (x° «*) and
A2=(A2,\%) are HV of the 2-spaces (adjusted to the same numerical values of the respective
homothetic scalars), thep?= (% «*,\2,\3) is an HV of(M,§) with the same value for its
homothetic scalar

For the case referred to in the above theorem, the reader is also referred to Ref. 16 where a
thorough discussion of conformally decomposable22space—times is given, along with a clas-
sification in terms of their conformal algebra.

V. THE CONFORMAL LIE ALGEBRA OF CLASS A DOUBLE WARPED SPACE-TIMES

We shall dedicate this section to the study of the conformal algebra of class A double warped
space—times, which by our previous remarks, will be the same as that of the underlyi®g 1
decomposable space—time in each case. In so doing, we shall give some interesting results on
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particular types of CKMnamely: gradient CKV or GCKV for shorin three-dimensional mani-

folds which, to the best of our knowledge, are new. Most of the results on proper CKW 81 1

decomposable space—times can be found in Ref. 13 andaibough no explicit expressions are

given) in Ref. 14, we re-derive them here following a different approach which provides interest-

ing information on the geometry of three-dimensional manifolds, and renders along the way useful

and interesting results on particular types of Ckhamely: gradient CKV, GCKV for shortalso

in three-dimensional manifolds which, to the best of our knowledge, do not exist in the literature.
For this section alone, we shall change our notation slightly so as to avoid unnecessary

complications, thus, the line element of the decomposable space-Mni@g (ill be written as

d8%=[ edu®+hpg(xP)dx* dxB], e=+1. (70

The three-dimensional submanifold coordinated ¥y A=1,2,3 will be noted as/ and its
metric (of either signatureash (instead off). We shall represent the covariant derivative with

respect to the three-dimensional metriby a slash(*/” ), whereas a semicolon “; " will be used

to note that with respect to the four-dimensional meffic(The reader is reminded that this
notation holds only in the present section: notice that, in the rest of the paper, a semicolon stands
for the covariant derivative associated wigy the metric of the double warped space—time,
whereas a slash stands for that associated §uitthe metric of the decomposable space—t)me.

The covariantly constant vector is thér d, (i.e., u,.,=0 and therefore it is a non-null gradient

KV). Finally note that, in the above coordinate system, the covariant derivatives satisfy

Xab- w=Xap ur Xap- ;A= Xab-- /A
for any tensoiX,..., and also that

(3)
Ria=0, Rag= Ras

(3)
where R 5 stands for the Ricci tensor associated to the 3-métmn V.

In order to investigate its conformal algebra, we first make a few trivial remarks in the
paragraphs that follow.

First of all, and making an obvious abuse in the notation, we shall represent poMtsin
their coordinates in the above chéihat is:pe M with coordinates<®(p) = (u,x*) will be rep-
resented simply asu(x”)]; next we consider the three-dimensional submanifbigpersurface
consisting of all the points with the same value of #fecoordinate, sax’=u, and note it as
V(u); i.e., V(u)={(u,x?) : u fixed}; the induced metric o (u) is h and, clearly, any two
such submanifolds are diffeomorphic amongst themselard diffeomorphic to ,h)] by the
one-parameter group of isometri€¢s;} generated byd [that is: 7:V(u)—V(u+t) where
7(u,x*) = (u+1t,x*) wherever this makes serjse

Note that7 h=h; that is, the three-dimensional metticis invariant under the isometries
generated byi. Further, a vector field in M will be invariant under these isometries,{X

=X) iff [G,X]=0. In particular, ifX is tangent to the submanifold&u) it follows that it will be
invariant undef 7.} iff its components with respect to the above coordinate basis do not depend on
u, i.e., X=XA(xP)d,.

Finally, we shall use the notatiafy(V,h) (S,(V,h), H,(V,h) or £,(V,h)) to designate the
n-dimensional conformalrespectively: special conformal, homothetic or Killinglgebra of
(V,h). Such an algebrgand therefore all of its subalgebjas finite dimensional, its dimension
being 10 at mostand (V,h) is then conformally flat If (V,h) is nonconformally flat, then, a
remarkable theorem by Hall and Capotste Ref. 1¥shows that its dimension can be at most 4.

In our subsequent developments we will often have to refer to some bagjé\gh), which we

will generically represent b{/fk}, k=1,...,n with associated conformal factorf ; that is
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L;h=2yh. (71)

Notice that any such basis is invariant under the isometries generated that is: [G,Zk]
=0, k=1,...n, hencel={E(xP)g and therefore als@y= ¢4 (x°). (Some of the conformal
factors . may be constant if they correspond to homotheties, or zero in the case of Killing
vectors)

We can now consider the problem of finding the CKV of-a3 reducible space—timéV,d).
Let YeC,(M,q), one then has

Ya;b+ Yb;a: 2¢’gab .

In the chosen coordinate chaxt= YU(u,xB)d,+ YA(u,xB)d, and the above equation then reads
(on account of our previous remajks

Yyu= €19, (72
Yu,A+YA,u:O: (73
Yast Yea=20hpg. (74

Now, (74) effectively says that fou fixed the vector field/®(u,xP)dg is a CKV inV(u) [equiva-
lently: if a proper CKV is admitted in1,§) then, its projection on the submanifoldfgu) is a

CKYV therg], therefore, giver{fk} a basis forC(V,h), it follows that it will also be a basis of
C(V(u),h) (u fixed but otherwise arbitrajywhence, onV(u) we shall necessarily have

YB(u,xD)aB=)\"Zk with A¥=constant and summation ovkr1,...n is to be understood; again

this will be so for any(u) (i.e., u fixed but otherwise arbitrayyFinally, since G,,]=0, we will
have

Y =YU(u,xB)dy+N(u) £(xB), (75

wherexX(u), k=1,... n aren functions of the coordinate. Substituting this back int672)—(74)
and putting¢=2., where a dot indicates differentiation with respecutoyields

Yo= e, =3 =N (U) ¢ (xB), (76)
613 A+ \KZ A=0. 77

Further,)\"(u)Zk is also a CKV in each/(u) [since foru fixed it is a linear combination of the
CKYV in the basis ofC(V,h)] which, on account of77), is locally a gradient, i.eA\XZ, A=

— €12 o. The question arises as to how many independent GCKV rivaly)(admit, what are
they; namely proper CKYV, proper HV, or KV, and what does their existence imply on the 3-metric
h.

Before proceeding, the following remarks, which follow trivially from the above equations,
are in order: _

RO: If no GCKYV exist in (V,h), then\*=0 [i.e., A\¥(u) = constant] in the above equations and
&=\ Y (xB) = constant(since theng= Ay, (xP)= #(xP), which yieldsY,=u¢(xP)+B(xP),
but thenY,, o+ Y ,=0 implies¢ ,=B ,=0.), that is:Y is homothetic in #1,8) [and\¥(u){ is
also homothetic in\{,h)]. If (V,h) is such that no HV are admitted, then the only CKV that
(M,d) admits are KV.

R1:Let £ be a KV in v,h), thené is also a KV of M™,9).

R2:Let Y be a KV in (M,d). The following situations may then arise:
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(@ (V,h) admits no KV, then\?zaau necessarily.

(b)  (V,h) admits KV none of which is locally a gradient. Then{&,! is a basis ofc(V,h), one

has
Y=ad,+h*& (79)
with a,b* arbitrary constants.

(¢ (V,h) admits KV some of which are locally gradiern(@nd therefore, by the Killing equa-
tion, covariantly constant vectgrsThen one can choose a basis fhi(V,h), say
(€1, &p Epi1,..,En} (With p<3) in a way such thag,,...,E, are covariantly constant.
Then

Y=A(B)g,+au &+brE,, (79

where a%,b* are arbitrary constants,s€1,...p, k=1,...n) and A(xB) satisfies Ag
=a%¢ . Notice that if one of the gradient KV in,h) is non-null, the space—timeM,§)
decomposes still further, becoming a-1+2 decomposable space—time. ¥,b) admits
two, then a third one is automatically admitted and the space—tuing)is locally flat. We
shall return to this later on in the paper.

R3: Let 7 be a proper HV in ¥,h) with homothetic constarit(+0), then\?zku&u+ 7 is

also a HV of M,§) with homothetic constarit. Further, ifY is a proper HV of M,§) with
homothetic constark(+0), then it is of the form

Y=kud,+ 7, (80)

77 being a(propey HV in (V,h) scaled so as to have the same vaddder its homothetic constant;
the above HV is unique up to the addition of KV such as those give{T8yand/or(79) (if GKV
exisp.

The various possibilities regarding the existence of GCKV\hh) can be summarized as
follows:

(1) (V,h) admits no GCKV(either proper or homothetic, including Killingln that case77)
implies \¥=0 and the rest of the equations imply then tiais a HV, see Eqgs(78) or (80)
above. Thus, in this casé/(,§) admits no proper CKV.

(2) The only GCKYV that ¥,h) admits are gradient KMGKV). In this case ¥,§) admits a
proper CKV (which turns out to be a SCKMf and only if the GKV is null and ¥/,h) admits
a proper SCKMi.e., nonhomotheticsuch that the gradient of its conformal factor is parallel
to the null GKV. Otherwise the only CKV that\{,§) admits are HV.

(3) (V,h) admits proper gradient HUGHV); it may also admit GKV, but no proper GCKV exist
in (V,h). In this case, 1,§) does admit a proper CKV which turns out to be spe(ial.,
SCKV); that is: its associated conformal factgrsatisfies¢,.,,=0. This SCKV is unique up
to the addition of KV and HV which must then take the forms discussed above.

(4) (V,h) admits proper GCKMGHYV and/or GKV can also be admitted in principlén this
case, the space—time admits proper CKV.

Regarding the maximum number of GCKYV that a three-dimensional space may admit, one can
easily prove the following results:
Proposition 1: Let(V,h) be a three-dimensional Lorentz or Riemann space admitting two

independent proper GCKYV, sefyand X, with associated conformal factoggand ¢, respectively,
then:

(1) The Lie brackefZ,y]=¢£ is a KV.
(2) The conformal factors ar¢g=k¢ and ¢=Kky, where k is a constant and and y are the
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functions whose gradients are the GCKMand y, respectively
(3) (V,h) is of constant curvature and therefore the Cottdfork tensor vanishes, thus being
conformally flat

Proof: Supposen and y are linearly independent GCKYV satisfying

{ae=Yhag,  Xas=Phag,

where{a={ a, xa= X, a and also[see comments following Eq111)] ¢=({) and = ¢(x).
Now, a direct calculation shows that

[{X]=pl—yx=E

that is, 7 and y are surface-forming.
Compute next

Lz ahas= ﬁf(ﬁjhAB)_E)}(/:ZhAB):2(§DXD)(<~25_1~ﬂ)hAB,
wherep=da/dy and y=dy/d¢, and also
Lihag=Ly;- z//)}hAB:(;Z’_’J/)(gAXB_FXAgB)
therefore

(p—)(Laxs+ xals) =2({Pxp) (¢—¥)hps.

An elementary consideration on the ranks of the tensors at both sides of the equation readily shows
that

therefore

and¢ is then a KV given by

E=K(x{— LX),

which is not a gradientéa,g=K({axs— Xalg)-

Now, since both/ and x are GCKV their respective conformal bivectors are zero @rl
applied to them vyields

Ragcpl” =k({ahgc— Lehac),
RABCDXD:k(XAth_XBhAc),
which in turn implies, upon contraction withf*®,
Rgpl®=—2k{z, Rgpx"=—2kxs.
Now, in three dimensions one has
RABCD: RAChBD_ RADhBC+ hACRBD_ hADRBC+ (R/Z)(hADhBC_ hAChBD)

hence, the above equations imply
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Racle— {aRsct (K+R/2)({ahgc— {8hac=0,

Racxs— xaRect (k+R/2)(xahgc— xghac=0,

contracting the two equations above wigh and y”, respectively, we get, sinc€ {a,x*xa
#0:

Rac=(k+R/2)hac— (3k+R/2){plc,
Rac=(k+R/2)hpc— (3k+R/2) xaxc

contracting again both equations with, sgy, equating and rearranging terms we get
(3k+R/2) {a=(3Kk+R/2)({cX ) xa

but this contradicts our hypothesis of linear independence unlkssRR=0, i.e., R=—6k
(=constant). TherRag= —2khag and Ragcp=k(haphgc—hachgp); that is: (V,h) is of con-
stant curvature and therefore the associated Cotton—York ténsarero, i.e.h is conformally
flat. (Il
The converse theorem also holds; namely:\ifK) is a three-dimensional space or space—

time of constant curvaturéand therefore conformally flgtit admits two linearly independent
GCKV whose associated conformal factors are multigleish the same multiplicative constant
of the functions whose gradients they are.

Furthermore, with the same notation and hypotheses as in the preceding theorem and follow-
ing a similar procedure to that outlined in its proof, it is easy to prove the following three results:
Lemma 2: Let be a GCKV andf a GKYV (i.e., is covariantly constant). Thef is neces-

sarily homothetic, that is, it is a GHV
Proof: Since {ap= hag and &xs=0 it follows [£,£]= — & Computing next the Lie de-
rivative of h in two different ways, as in the proof of Theorem 1, and then equating yields

2(EPyp)hag=¥(Laép+ Enlp)-

Again, considerations on the rank of the tensors that appear on both sides of the equation, imply
Ya=0; that is:{ is a GHV. O
Lemma 3: Let be a GCKV andy a GHV. Ther( is necessarily homothetic and therefore it
is the linear combination of; with some GKY
Proof: Now {a,5= thag and nag=khpg, and their Lie bracket i6,E]=k{— 7. Comput-
ing as above the Lie derivative of in two different ways and then equating implies

2(n°Yp)has= (nathe+ Yans),

which again impliesy,=0 and the result follows. O

Lemma 4: Lety and £ be a proper GHV and a GKV, respective(y,h) is then flat

Proof: In this case we havBagcpn®=Ragcpé® =0, henceRag7®=RagéE=0, and taking
into account the expression of the Riemann tensor in terms of the metric and the Ricci(semsor
the proof of Theorem 1 and recall thay cannot be nu)l one getsRag=(R/2)(hag
—(%°7p) 1name); contracting with&B both sides and equating to zero yields immediately
752 =R=0 (since 7 and & are linearly independentand this in turn implieR=R,z=0 and
then RABCD:O' O

The same result holds trivially if two linearly independent GKYV exist; since in this case two
linearly independent constant vector fields in a manifold of dimension three readily ity
stancy of the metricthat a third one must also exist. Thus, we have proven:

Proposition 2: A three-dimensional space or spatiee admitting two linearly independent
GHYV (proper or Killing) is necessarily flat
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Note that from the above Propositions 1 and 2, it follows that if fmomore independent
GCKYV exist in the three-spacé/(h), then it is of constant curvatu@nd therefore conformally
flat, being flat in several caseand then it admits 10 CKWthose of flat three-dimensional space
If this is not the casgi.e., (V,h) is not of constant curvatuteghen it can admit, at most, one
GCKYV which will then give rise to a proper CKV inM,§). If (V,h) admits no GCKY, then no
proper CKV exist in M,§), just HV (case 1 above

In the following sections we shall deal with cases 2, 3, and 4 separately, assuming that the
GCKYV admitted in each case is unique.

A. (V,h) admits a GKV and no proper GHV or GCKV

From the preceding results it follows that unle§§K) is conformally flat(in which case its
conformal algebra is completely knoyrihe GKY, sayf, is the unique GCKYV it admits. Taking

now a basis ofC,(V,h) as{£,7%.{,} whereZ, and 7 denote CKV(including KV) and a HV,
respectivelyfin case one exists inV,h), if not, just setz=0], we can write, from(74)

Ya=N(U)éat pu(U) ma+ N (U)
which substituted int@73) yields
~Yua=NU)Ea+ fa(U) 7o+ N(U) L

Since by hypothesisé is the only GCKV in (/,h) and £, # (if nonzerg and ¢, are linearly
independent vector fields, it follows that(u) =\, (u)=0 [otherwise the above equation would
imply that, for u fixed, i(u) 77A+Xk(u)§A is a GCKV independent of]; hence n=a,
(=constant)landay=0 if (V,h) admits no proper HY, and\k=a* (=constant). Therefore

Ya=N(U)éa+agnataia

and substituting this back int@4), (72), and(73) one has
=3 =agk+aky (xP), (81)

Y= ex(ak+a g (xP))u+B(XP),  ey(@pk+aky(xP)) au+B(x®) o+ N(U)Ex=0 (82

hence
X(u)=au+b,
ie.,
AMu)= gu2+ bu+c
and also

a“y(xP)=€,(—aé+m), B(xP)=—bé+n

and substituting this into the expressions for the covariant componerfts wk would getY,,
=(e,apk+m)u—(au+b)é+n and Ya=[(a/2)u’+bu+cléx+ X Where Xa=agna+aksy a.
Notice that the constants and ¢ can be set equal to zero without loss of generality, as they
amount to adding multiples af= 4, and g, respectively. On the other hand, are the covariant
components of a CKV whose associated conformal factey(is-a&+m)+agk [if no HV exists

in (V,h) then the CKV has components,=aX¢, » and conformal factor- €, (—aé&+m)], that is
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Y dx3=[(ekag+m)u—(au+b)£]du+ ;u2+ bu|éa+ Xa|dxA, (83
where
Xa=agna+a Lia
is such that
2X(agy=2[ €1(—ag+m)+agk]hag (84)
and the conformal factor associated¥ds
¢d=e€(—aé+m)+apk (85

and satisfiesp,.,=0, that is1Y is a SCKV in M.,9), whereasX is also a SCKV in ¥,h).

Notice that some of the constants appearing in the above expressions could have been re-
moved by means appropriate redefinitions of the objétisctions and coordinatgsn them.
However, as it turns out, it is useful to keep them as they appear because this makes the subse-

quent analysis much more clear. The following possibilities now arise regarding the natire of
namely

Case 1:(V,h) admits no proper SCKV nor proper HV, theg=0 andX,=ak{, » is a KV,
that isay,=€,(—aé+m)=0; i.e.,a=m=0 and the conformal factop above becomes zero,

hence,Y is a KV which can be seen to be given by
Y, dx3= —bédutbé dxP+Xadx?,  XeK(V,h). (86)

Case 2:(V,h) admits no proper SCKV but it admits a proper Hiat is:ay#0). It then
follows thatak¢, » must be a KV, hencay,= e;(—a&é+m)=0; and thera=m=0 as before.

The conformal factor is then constagit=kay, Y then being a HV which can be written as
Y, dx¥=ag[ e;kudu+ 7, dx*]—bédu+béa dxA+ X, dxA, (87)

where the first term within square brackets is a proper HV and the remaining terms are easily
recognizable as a KYsee Eq.(86)].

Case 3:(V,h) admits a proper SCK\X such that Xap)=2[ €1(—ag)hag; i.e.,a+0 and
the constant&agy,m (if nonzerg have been absorbed by suitably redefining the funcgiowe
then have

Xag= — €18§hpg+F g,

whereF 5p is the conformal bivector. Computing now the Lie brackeffczfnd)? and making use
of the above expression together with the fact thag=0 we get

[EX]=7, 7a=—e€1atéptFapt® 88)
computing nowna,c and making use of Eq12) it follows
nac=—€18(£P€p)hac (89)

that is: 7 is either a GHV(whenever is non-null, for in that case it can be scaled so that
&Pép=€,, wheree,= +1), or elses is a GKV (including 7=0 as a special casedn the former
case @ is a GHV and thereforé® ¢, = ¢,), Proposition 2 above implies tha¥(h) is flat. In the
latter case § is a GKV and£P£p,=0), one has from(88) that é&27,=0 and therefore either
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7° np+#0, in which case again, proposition 2 implies thetl) is flat, or else=ké wherek is

a constant which may be ze(ib it is not zero, it can always be chosen equal to 1 by re-scaﬁng
appropriately. This is the only nontrivial casign the sense that\(,h) is not necessarily fldtand

it is easy to see that coordinatesv,y can be chosen so that the three-dimensional line element
takes the form:

do?=—2dv dw+p. (W)MZ(y)[q (W) ~2dw?+dy?], (90
where

q-(w)=n’w?*1, p,(w)=q.(w)exd ekn/acot ! nw]

(91
p_(w)=q_(w)exy e;kn/acoth *nw], n=constant,
the KV & and SCKVX being, respectively,
- - 1
&=d,, X=kvd,+ qut(w)aw. (92

Alternatively, new coordinates can be chosen, which we stillicall,y, so that Ref. 11 the line
element takes the more familiar form

do?=—2dv dw—2H(w,y)dw?+ dy? (93

and still =4, but the functionH(w,y) satisfies then a partial differential equation a4dhen
takes a form which depends ¢h In this case, the Ricci tensor is

RAB: H ’yyl AI B (94)

wherely=¢&x.

B. (V,h) admits a proper GHV and no proper GCKV

Since a proper HV is unique up to the addition of KV, we can assume that there is just one
GHV (in the sense that, if another exists, then their difference must be a gradient KV—in that
respect, if any GKV exists in\(,h) we shall consider that has been added to the GHV, therefore,
any remaining proper CKV or KV i€(V,h) will be nongradient say 7 with homothetic constant
k(#0); i.e., na=17 A for some functiony(xB).

At this point, it is easy to find an expression for the line element associated hwith
coordinates adapted to the GHY/ First of all notice that fromy,g=khag it readily follows that
7 cannot be null; next and provided we are not in the vicinity of a fixed point of the HV, we can
always choose a coordinate, sey=v adapted top, i.e., 7=4,, now the fact that; is locally a
gradient and a HV with homothetic constanteadily implies(by a similar argument to that used
previously that coordinates'=x? x3 can be chosen so that the line element associatedtwith
reads

do?=e?(exdv2+h;(x)dx dx)), e,=*1 (95)
and then 7, dx*= e, exp(&v)dv, hence 7= (e,/2k)exp(Xv). Also, sinceEj (x¥) is a two-
dimensional metric, the coordinatescan be chosen so that it takes an explicit conformally flat
form, i.e.,
do?=e? (e, dv?+ Q2(x¥)(e5(dx?)2+ (dx%)?), €,,e3=*1, (96)

whereQ(x¥) is some function of its arguments. The line elementMdf.§) then reads
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d¥?=e; du*+e*“[ e, dv®+ Q2 (X¥) (e3(dx?)+ (dx®)?)], 97)
where
€,=*1 (a=1,23), e€160e3=—1, €,te+ez=+1.
Alternatively, the following change of coordinates can be carried out:
w=k texpkv), v=k linkw, (98)

which rendersy, 7 and the line element associated within the form

k
kWi, 7= WP, do?= e WP WP (e )7+ () (99)
hence
d8?= €; du+ €, dw?+wW2Q2(x*) (e3(dx?) 2+ (dx®)?). (100

Now going back to the problem of finding the CKV tha#l(§) admits in this case, Idt7,,} be
a basis forC(V,h) with # satisfying

Nas=Khag (101

and Zk being CKV (including KV) such that no proper CKVhor any linear combination of them
is a gradient, we then have

Skt Lk min=2hpg,

where ¢ is the associated conformal factor.
Equation(74) states thaty®(u,xP)dg is a CKV in everyV(u) for u fixed, and therefore
according to our previous developments, we may write

YB(U,X2)dg =\ (u) 7+ N(u) &y, (102

which when substituted back again int2)—(74) yields (recall, the conformal facto$ has been
renamed ag):

3 (u,xB) = KN (U) MKW g(xB), Y= eal kg (U) + mS(u) i xB) + BOX) ], (103
€115 AT B AT A7AT AL 2=0, (104

wherex(u) and x*(u) are such thaje(u)=x(u) and i.X(u)=x*(u), respectively, and(x*) is
a function of integration which does not dependwrNow, (104) above implies that, fou fixed,

i\kgk A must be a GCK\Msincen, is a gradient by assumptifrbut since, by hypothesis there is

none and#, {, are independent, it must be=0, that is\¥=a¥(=const). Plugging this back
again into(72) and(73) we get

Yo= e[ku(u) +uaky (xB)+ B(x*)],  euayy a+Ba+ \ 7a=0, (105
which, when differentiated with respect toyields
N At A72=0 (106

and two possibilities arise:
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case 1:A=0, i.e.. A=au+b, with a,b constants. Thera¥y, =0, that is: a“y=C
(=constant).

case 2:\=a (constant, hencex =a/2u?+bu+c and thenB=—bzn+m and e;a*y,=azy
+C wherem,C are constants ang is the function such thag = 7,.

Case 1:In this case it is straightforward to get from the equations aboveBkat- ean and

also thata®Z, must satisfy:

Lakz h=2Ch

that is:aka< is a HV, which, on account of the assumed independencg djﬁ can be set directly
equal to zero[Alternatively, since homotheties are essentially unique, it would folaig,

=(C/k)77+§, where is a KV, which can be absorbed by a suitable redefinition of the constant
b in A=au+b.] Taking all this into account, redefining nonessential combinations of constants

and subtracting any proper K\.e., linear combinations aof, and KV in (V,h) such ast abovd,
we get

dy+(autp) 7z,

. a
Y=[k<§u2+pu)—ela77

wherep is a constant.

It is immediate to check that the above CKX, whose associated conformal factor ds
=k(au+p), is in fact a SCKYV, that isp,.,=0. Also note that the H\pud,+ p# can be sub-

tracted fromY, the resulting vector
Y'=[k(al2)u’— e;an]d,+aun (107

being, indeed, a SCKV.

Case 2:We now have\ =(a/2)u®>+bu+c, B=—b»n+m, and alsoe;a*y,=an+C, where
a,b,m and C are constants. This implies théftEa"Zk is a CKV in (V,h) whose associated
conformal factor is precisely;(an+C). A direct calculation using the forn{96) or (99) readily

shows that no such CKX can exist, and therefore this case turns out to be impossible.

C. (V,h) admits a proper GCKV

Let us turn our attention now to the case in whidi,lf) admits a proper GCKV. Before
analyzing the consequences this has on the conformal algebra of+tBerdducible space—time

(M,§), we shall first explore the situation in a three-spa¢ehj. To this end, letf be a GCKV
in (V,h) with associated conformal factagr, we then have

{ae=¥hag, {a=C A, (108

where¢=¢(xP) is some function. The first equation above readily implies thaannot be null
unless it is a KV. Taking a further covariant derivative we have

{agc=¥chag, ¥c=¥c (109
and the Bianchi identities imply, sin@g,g= {g/a
Ragcpd” = ¢ahsc— ¢shac. (110
Contracting both sides of the above equation withyields
0=ynle— YA (111
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and then, unlesé is a HV (in which case the equation above is satisfied identicallyich we are
assuming is not, it follows that= (), hence, from now on we shall writg, =/, where the
tilde stands for the derivative with respect to the functipie., = dy/d¢. Also, differentiating
(112) and using(1098) it follows thatZ cannot be a SCKVunless it is a KV.

Following a procedure similar to the one in Sec. VB, we choose a coordinatiapted taf
and two other coordinateg’,x® so that

[=0d,, (adxP=e,exp2V(v))d, §=62f dv exp(2V(v)), (112
do?=e?VO) e,+ Q2(xX) (e5(dx?)?+ (dx3)?)] (113
the conformal factor then being=V'(v) where the prime indicates derivative with respect to
Note that
~ dy dy/dz\?t o
=—=_"(= = "a—2V(v)
= d ( dv) e,V'"e . (114

Alternatively, a new coordinate can be defined such that

sz dv exp(2V(v)) (119

and then

[=M(W)d,,, Mw)=expV(v(w))), {sdx*=e,M(w)dw, and §=ezdeM(W),
(116

do?= e,dw?+ M2(W) Q2(x¥) (e5(dx?)%+ (dx3)?) (117

the conformal factor igy=M'(w) (the prime now meaning derivative with respecitp and, as
before,

~_d¢//_d¢//(d§)1 M”
it

aw = Ezv. (118)

The above metric describes the situation in which one prapam-HV) GCKYV exists in (V,h),
with h being of arbitrary signature.

Let us now go back to the original problem of finding CKV in the 2 reducible space—time
whose three-dimensional factov (h) we are assuming to admit a GCKV. We next reproduce, for
the sake of convenience, the original equatiof®—(74) with the conformal factoe renamed as

3
You= 63, (119
YuatYau=0, (120
Yas+ Yea=23 hag. (121

Again, (121) implies thatY®(u,xP)dg is a CKV in everyV(u) for u fixed.
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Now, assume first that only one proper GCKV is admitted Vhh), sayZ with conformal
factor . From our previous developments it follows that no proper GHV or GKV can exist in

(V,h); therefore we may consider a basis @fV,h) given by {Z,%.} where, again,y, are
nongradient CKV(possibly HV and KV with conformal factorsp,.
From the remark above it follows that

YB(u,xP)dg=N(u) ¢+ N (u) ¥
which, upon substitution int¢121), yields
3 =N (U) (X2) + NK(U) by (X°)

that can be formally integrated to give

Ezw(xD)f du X (u)+ ¢k(xD)f du \(u)+B(xP),

where the terms resulting from the constants of integration arising frshuX (u)), etc., have
been absorbed into the function of integrat®(x®).

Substituting this intd120 and taking into account tha&,Azllng we get

(f dui(u)

and this implies that, fou fixed, )'\kaA must be a GCKV independent ¢f,. Since this is not
possible from our assumptions, it follows thef=0, that is \k=a*(=const). Therefore the
above-given equation reads now

|

and differentiating with respect to,

Boat| [ W) g atB A WL a0 (122

{patuakey a+Ba=0 (123

f du A(u))?pﬂk(u)

[N P+ A (U)]La+a ey a=0, (124
which readily implies:
T/;zk (constan, k)\(u)+X(u)=a (constant, aX¢=—al+c, (125

wherec is a constant. Substituting this information back ii@3) and taking into account that
from Y=k andk\ (u)+A(u)=a it follows %/ du X\ (u)+A(u)=au, one easily gets

B’A:O,

B=b (constant (126
and then, usindSdu X\ (u)+X(u)=au, Eq. (119 implies
Yuzel(—§X+cu+b).

Note thatb can be set equal to zero without loss of generality, since it simply amounts to adding
a constant multiple of the KWi=4,,, and we shall do that in what follows, thus writing
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Y, = e (—IN+cu). (127)
Also, from the above-mentioned developments we get
Ya=MWiatXa, Xa=a%a, (128

whereh (u) satisfies\ + k\ = a, the conformal factor associated with the GCK\s Y=k¢, and
X is a CKV (nongradient by assumptipwhose associated conformal =a¥, factor is, from
Eq. (1295 ¢'=—al+c.

Consider next the CK\Z defined byZE(a/k)2+ X. From the previous paragraph it follows
that

Lzhag=2Chpg,

that is: Z is a HV with homothetic constant, therefore, puX above askx=Z—(a/k){ and then

V= - earz (129

whereZ is a HV in (V,h) with homothetic constant. If (V,h) admits no HV, therc=Z=0
above; thus we finally have

Y=(—N+cu)a,+| Mu)— ;)ZJrZ.

Sincecud,+Z is a HV with homothetic constarnt we can subtract it from the above to get

Y=(=N)a,+ )\(U)-E)Z (130

and{ is now that given by(112) or (99), the corresponding three-dimensional line elements then
being (113 or (117), thus we can finally write for the line element df1(§) a 1+ 3 reducible
space—time admitting a CKV under these hypotheses:

A= €; du®+ &, dw? + M?(W) Q%(x) (e5(dx?)*+ (dx*)?), (13
where
€,=*1 (a=123 e€16063=—1, €e1t+e,tez=+1.

The CKV is then
\?z(—gi\)ﬁqu()\(u)—%)M(W)é’w, (132

where\ (u) andM (w) must satisfy{see(118)]
Au)+kn(u)=a, M”"(w)=ekM. (133

These equations can be easily integratedef>0,e,k<<O and e,k=0 obtaining then explicit
expressions for both the line elemerf dand proper CKW.
In the next theorem, we make an attempt at summarizing the results thus far obtained.
Theorem 10:Let(M,§) a 1+ 3 decomposable spaetme; the following results hold regard-
ing its conformal Lie algebra:
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(1) If (V,h) admits no GCKV then the only CKV th@,§) admits are HV and K¥-their forms
are those discussed in remark9fR3 at the beginning of this section.

(2) (M,§) can admit a proper CKV ¥f and only if(V,h) admits a GCKV, which can be either
a GKV ¢, or a GHV 7, or a (proper) GCKVC.

(3) If two or more GCKV are admitted b{V,h), then (V,h) is of constant curvature and
conformally flat (and it is flat if one of the GCKV admitted is a GHV)

(4) If only one GCKV is admitted b{v,h), then:

(@) Ifitisa GKVE, then(M,§) admits a proper CKV ¥f and only ifé is null and a proper
SCKYV exists also iV, h), X, such that E,)Z] =ké&; the CKV Yis also a SCKV and the
metric is a special type of generalized @ve. Otherwise [i.e., if no proper SCKV X

exists in(V,h) or it exists but it does not satisfiZ, X]=ké], then Yis a HV, possibly
KV.

(b) Ifitis a GHV 7 then(M,§) admits a proper SCKV Yunique up to the addition of HV).
The line element and ¥re:

d8?= €; du+ e, dw?+w?Q2(x)[ eg(dx?) 2+ (dx®)?], (134
e,=*1 (=123, e€1663=—1, €te,+tez=+1

5 dytaurn, 7n=kwd,. (135

- a a
Y= (_kuz_ EIGZEkWZ

(c) Ifitisa GCKV/{ then(M,§) admits a proper CKV*\(unique up to the addition of HV).
The line element and ¥re:

d8?= €, du?+ e, dw?+ M?(W) Q2(x)[ eg(dx?) 2+ (dx®)?], (136
€,=*1 (=123, e€16063=—1, €1t+e,+ez=+1,

Y=—oMu) au+(x—2)2, z;=e2f dw M(w),  {=M(W)d, (137
and the functions (u) and M(w) satisfy

d?\ 2

W'Fk)\:a, ersz. (138)

VI. EXAMPLES

In this section we shall briefly discuss instances of double warped space—times. Notice that
warped space—times are special cases of double warpedianesthenever one of the warping
functions is constahtand they include relevant classes of space—times such as all the spherically,
plane and hyperbolic symmetric space—times, the whole class of Friedmann—Robertson—Walker
solutions, the Bertotti—Robertson space—time and many others, see Refs. 3 and 4 for further
information.

Fluid space-times.We have not been able to find a proper double warfped nonwarped
perfect fluid solution due to the complicated form that the field equations take on account of the
Ricci tensor(see Sec. I). However, it is indeed possible to find anisotropic fluid solutions
satisfying the dominant energy conditicee Ref. 1}, as the following two examples show. The
energy—momentum tensor is in both cases of the Segre{tyi€11)}, and therefore can be
written as

Tap= MUaUp+ P1ZaZp+ P2l XaXp+ YaYol, (139

where{u,,z,,Xa,Ya} form an orthogonal tetrad-{u,u®=xx,=y?y,=2z%z,=1, the rest of the
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products being zejpu? is aligned with the velocity of the fluid, and, p;,p, are, respectively, the
energy density and tw@liffereny pressures as measured by an observer co-moving with the fluid.
The dominant energy condition implies then

#=0, p*xp;=0, uxp,=0. (140
Case 1:Consider the line element given by
ds?=z(—dt?+ dx?) + t(dy?+dz?), (141

wheret andz are both non-negative. This space—time can be seen to represent an anisotropic fluid
with an energy—momentum tensor given (189 with

uy=(—z"?cosh®,0,0t*2sinh®),  z,=(—z"?sinhd,0,0t?coshd),
Xa=(0,z120,0), y,=(0,0£*20),

t

coshd = /—, sinh® = — for t—z>0
t—z t
z . t
cosh®d =/ —, sinh®=—\/— for z—t>0
z—t z—t
and also
|z—t| z—t

HEar PR P

This has to be understood as two different open submanifolds; namely, the one defihed by
>0 and that defined bg—t>0. In both cases the dominant energy condifibf0) is satisfied. As
a final comment to this example, it can noted that the above metric admits the Killing vectors

£1=dy, &,=0,, and the homothetic vectaj=td,+xdx+ydy+zd, with homothetic constany
=3/2.
Case 2:Consider next the following line element:

ds?=(m—kZ%)(—dt?+dx?) + (q+kt?) (dy?+ dz?), (142

wherem,k,q are constantan,q>0 andk=0 in order for the energy conditions and other posi-
tivity requirements to be satisfied, and the range ofztmordinate is restricted tm—kz*>0.
Again, this represents an anisotropic fluid with energy—momentum tensor giverB8ywhere

Uy=(—(m—kz?)Y2cosh®,0,0(q+ kt?)?sinhd),
z,=(— (m—kZ%)Y?sinh®,0,0(q+ kt?)2coshd),
Xa=(0,m—kZz%)¥2,0,0), y,=(0,0(q+kt?)¥20),

qZ2+mt?

cosh b= |qZ%— mt?+ 2kt?z?|

The densityu and the pressurgs,;,p, are given in this case by
w=k(m—kz?) ~?(q+kt?) " 2{k|qz>— mt?+ 2kt?z?| + (m—kZ%) (g + kt?)},

p;=k(m—kz%) ~2(q+kt?) ~2{k|qZ2— mt®+ 2kt?z%| — (m—kZ?)(q+ kt?)},
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_(—3gm—2kt’'m+2 gkZ +k*t?z%)k
P2= (—m+kZ)?(q+kt?)?

and it can be seen that the dominant energy conditldi) is satisfied.

Vacuum spacetimes.Notice from the second equation (i66) that any double warped space—
time representing a vacuum solution of Einstein’s field equations, must in fact be wasped
eitherd, ,=0 or 6, ,=0). Examples in this class include Schwarzschild solution and its plane
and hyperbolic symmetric equivalents.

The characterization of class A and class B double warped space—times given in Theorems 4,
5, and 7 should prove useful in formulating an algorithm for classifying such metrics. this is so
because this characterization is coordinate independent although tetrad dependent. In what follows
the tetrads described in Theorems 4, 5, and 7 will be designated as dw tetrads of class A and B,
respectively. In order to determine weatlerepresents a double warped metric we suggest the
following classification scheme:

(1) Choose a coordinate system.

(2) Choose a canonical complex null tetréld, ,I,,m,,m,} and write their components in the
coordinate system chosen (ih).

(3) Determine the NP spin coefficients and their NP derivatives in té&ad

(4) If the scalars determined i{3) satisfy the relations of Theorems 4 ofBheorem 7 then the
metric is a double warped space—time of classckass B and the algorithm stops here,
otherwise go to stefb).

(5) If possible, find the Lorentz transformations that transform tet@adnto a dw tetrad, i.e.,
such that the corresponding NP spin coefficients and their NP derivatives obey the conditions
of Theorems 4 or §Theorem 7. If such transformations exist then the space—time is a double
warped space—time of class(élass B, otherwise it is not double warped.

Unfortunately, step(5) of this procedure is not straightforward, since finding the Lorentz
transformation which maps tetrd#) into a dw tetrad can be difficult and such a transformation
might not exist in which case the metric is not double warped.

The algorithm described here not only describes a way of determining whether a particular
metric is double warped or not but also suggests a method for obtaining such space—times. For
example, we suspect that one can obtain type D vacuum warped metrics of class B, for which
p= =0, by following a similar integration procedure to the one performed by Kinnet8liy.
this paper, Kinnersley chooses coordinates suchlthatsy, makingx?>=r an affine parameter
alongl“®. These are the special coordinates given in Ref. 9. The idea would then be to express a
dw tetrad in these special coordinates, write the NP equations taking into a¢68urnh order to
determine explicitly the tetrad components in these special coordinates one must integrate the
corresponding equations. By following this procedure we hope to obtain such metrics in future
work.
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