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Summary. Variogram analysis provides a useful tool for measuring the dependence
between spatial locations. Suppose that the nature of the sampling process leads to
the presence of clustered data; the latter makes it advisable to use a variogram
estimator that aims to adjust for clustering of samples. In this setting, the use
of a nonparametric weighted estimator, obtained by considering an inverse weight
to the neighborhood density combined with the kernel method, seems to have a
satisfactory behavior in practice. Thus, we proceed in this work with the theoretical
study of the latter estimator, by proving that it is asymptotically unbiased as well
as consistent and by providing criteria for selection of the bandwidth parameter and
the neighborhood radius.
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1 Introduction

Among existing geostatistical methods, variogram analysis may provide a use-
ful tool for summarizing spatial data and a measure of spatial dependence
between samples. Typically, one assumes that the sampling points are uni-
formly spread over the observation region. In this setting, we may use the
empirical estimator, analyzed in [Mat63], or consider instead the Nadaraya-
Watson semivariogram, detailed in [GFG04]; see also [MGF05] for a review
of several approaches, which are put into comparison in a numerical study
covering different spatial dependence situations.

However, the sampling strategy may originate unequal samples density,
leading to the presence of clustered data. A possible reason might be related
to the adoption of a denser sampling in areas that are deemed critical (e.g.
maximum values search). Clustered locations may also be driven from external
factors, like for example the existence of specific geographic or demographic
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spots, or even they may be needed to better characterize short-range variabi-
lity. In this context, the behavior of the traditional variogram estimators may
significantly decay.

Declustering methods are quite intuitive, and their need is well recognized
in the spatial statistics literature to estimate spatially representative mean
trends for clustered data. On the contrary, the corresponding need for the
reliable estimation of the second-order spatial structures is not normally con-
sidered. The presence of clustered sample data is, however, not negligible at
all as analyzed in [KC04].

Consequently, a compensation for the unpopulated areas is proposed, by
suggesting an inverse weight to a given neighborhood density and, simulta-
neously, joining the benefits outcome from a kernel estimator; see [Men05] for
details. In this work, we shall prove that the variogram estimator proposed for
clustered data, which will be designed as RobCluster estimator, enjoys good
properties, such as asymptotic unbiasedness and consistency. In particular,
the dominant terms of the bias and the variance will be established. A numer-
ical study has also been included to give account of the better performance
of the new kernel estimator when compared to the other estimators, in the
presence of clustered data.

The RobCluster estimator requires the selection of two user-adjustable
values: the kernel bandwidth and the neighborhood radius. The first will be
treated via the MSE, i.e. the minimum square error. The latter will result
from the analysis of the density estimation derived on the observation region.

2 Definitions and assumptions

A random process {Z(x) : x ∈ D ⊂ IRd} is defined as intrinsically stationary
and isotropic, with semivariogram γ, if the following conditions are satisfied:

(i) E[Z(xi)− Z(xj)] = 0, for all xi, xj ∈ D.
(ii) Var[Z(xi) − Z(xj)] = 2γ(‖xi − xj‖), for all xi, xj ∈ D, where ‖.‖ denotes

the euclidean norm.

To ensure consistency in the estimation of γ, we will follow the strategy
proposed in [HFH94] so that the observation region D will be considered to
be increasing and a random design will be assumed for the spatial locations.

(A1) D = Dn = λD0 where λ = λn
n→∞−→ +∞ and D0 ⊂ IRd is a bounded

and fixed region.
(A2) xi = λvi, i = 1...n, where vi is a realization of a random sample Vi from

f0, the density function defined on D0.
(A3) For all v ∈ D0 and for some positive constants d1 and d2, one has

d1 < f0(v) < d2.

Additionally, some hypotheses will be imposed on the random process.
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(A4) γ admits three continuous derivatives in a neighborhood of u, for all
u > 0.

(A5) There is a bounded and continuously differentiable function
g : IR3d → IR satisfying that

Cov
[
(Z(xi)− Z(xj))2, (Z(xk)− Z(xl))2

]
= g(xi − xj, xi − xk, xi − xl)

together with
lim

‖x2‖≥r
∨
‖x3‖≥r

|g(x1, x2, x3)| = 0

with 0 < r < +∞.

Bear in mind that, in the context of a Gaussian process, one has

Cov
[
(Z(xi)− Z(xj))2, (Z(xk)− Z(xl))2

]
=

= 2 [γ(‖xi − xk‖) + γ(‖xj − xl‖)− γ(‖xi − xl‖)− γ(‖xj − xk‖)]2

and, afterwards, one may take

g(x1, x2, x3) = 2 [γ(‖x2‖) + γ(‖x3 − x1‖)− γ(‖x3‖)− γ(‖x2 − x1‖)]2

so that condition (A5) is satisfied provided that the semivariogram is bounded
and has an asymptotic range.

In what respects to the convergence rates, the following conditions will be
assumed.

(A6) {h + λ−1 + λdn−1 + (nh)−1} n→∞−→ 0.
(A7) Take δ = λa, for some positive and bounded a.

Here δ is the neighborhood radius in D and a > 0 is the equivalent in D0.

3 Main results

Let {Z(x) : x ∈ D ⊂ IRd} be an intrinsic and isotropic random process. Denote
by Z(x1), ..., Z(xn) the values of the process observed at spatial locations
x1, ..., xn, respectively.

The kernel semivariogram estimator proposed in the case of clustered data
is defined as follows:

γ̂(u) =

∑n
i=1

∑n
j=1

1√
ni×nj

×K
(

u−‖xi−xj‖
h

)
[Z(xi)− Z(xj)]2

2
∑n

i=1

∑n
j=1

1√
ni×nj

×K
(

u−‖xi−xj‖
h

) (1)

for u ≥ 0, where h and δ represent the bandwidth and neighborhood radius
selectors, respectively, and ni =

∑
k I{‖xi−xk‖≤δ}.
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The latter estimator will be referred to as RobCluster estimator. The
asymptotic results for the expectation and variance of above estimator are
presented in the following theorems. The derivation of the referred results
requires the assumptions introduced in previous Section, leading us to a de-
sirable consistent estimation. Additionally, one should note that:

• under isotropy, the variogram domain is restricted to non-negative values;
• the kernel function operates on the distances ‖xi− xj‖ ∈ [u−Ch, u +Ch];
• it is assumed that interval [u−Ch, u+Ch] is wholly contained within the

domain of γ.

According to the above, note that next results are attained on u ≥ Ch.

Theorem 1. Let {Z(x) : x ∈ D ⊂ IRd} be an intrinsic and isotropic random
process with semivariogram γ. Assume that conditions (A1)-(A4) are satisfied.
Additionally, suppose the convergence rates stated in (A6). Then, for u ≥ Ch,
one has

E [γ̂(u)] = γ(u) +
1
2
cKγ′′(u)h2 + o

(
h2

)
,

where cK =
∫

z2K(z)dz.

This theorem also shows that the proposed estimator is asymptotically
unbiasedness.

Remark 1. According to Theorem 1, the bias of γ̂(u) is of the exact order
h2, for u ≥ Ch; however, near the endpoint 0, u < Ch, an order h rather
than h2 is expected, due to the boundary effect. As suggested in [GFG04], the
adoption of a specific combination of boundary kernels is a possible solution
to keep the same rate of convergence. Although, Theorem 1 would remain
valid in practice for any u > 0 and large n, since the bandwidth parameter h
tends to 0 as n increases.

For the analysis of the asymptotic efficiency, we proceed with the variance
result of the proposed variogram estimator. A decreasing variance estimate
means a growing efficiency of the estimator, as it will tend to be more accurate.

Theorem 2. Assume the hypotheses required in Theorem 1. Additionally,
suppose that assumptions (A5) and (A7) are satisfied. Then, for u ≥ Ch,
one has

Var [γ̂(u)] =

∫ f0(w1)
2

H(a,w1)2
dw1

(∫
...

∫
Jd (θ1, ..., θd−1) dθ1...dθd−1

∫ f0(w1)2

H(a,w1)
dw1

)2 ·

·
(

Ad(u) dK

2ud−1
n−2λdh−1 + Bd(u) n−1 +

Cd(u)
4

λ−d

)
+

+ o(n−2λdh−1 + n−1 + λ−d + h4) =

= D(a, d, u) n−2λdh−1 + E(a, d, u) n−1 + F (a, d, u)λ−d +

+ o(n−2λdh−1 + n−1 + λ−d + h4)
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where dK =
∫

(K(z))2dz , Jd(θ1, ..., θd−1) = (sin θ1)d−2(sin θ2)d−3... sin θd−2

and H(a,w1) =
∫
‖w‖≤a

f0(w1 − w)dw , together with:

Ad(u) =
∫ π

0

...

∫ π

0

∫ 2π

0

Jd(θ1, ..., θd−1)·

·g

u(cos θ1, ...,

d−1∏

j=0

sin θj), 0, u(cos θ1, ...,

d−1∏

j=0

sin θj)


 dθ1...dθd−1

Bd(u) =
∫ π

0

...

∫ π

0

∫ 2π

0

∫ π

0

...

∫ π

0

∫ 2π

0

Jd (θ1,1, ..., θd−1,1) Jd (θ1,2...θd−1,2) ·

·g

u(cos θ1,1, ...,

d−1∏

j=0

sin θj,1), 0, u(cos θ1,2, ...,

d−1∏

j=0

sin θj,2)


 ·

·dθ1,1...dθd−1,1dθ1,2...dθd−1,2

Cd(u) =
∫ δ

0

∫ π

0

...

∫ π

0

∫ 2π

0

∫ π

0

...

∫ π

0

∫ 2π

0

∫ π

0

...

∫ π

0

∫ 2π

0

Jd (θ1,1, ..., θd−1,1) ·

· Jd (θ1,2...θd−1,2)Jd (θ1,3...θd−1,3) td−1·

·g

u(cos θ1,1, ...,

d−1∏

j=0

sin θj,1),

(t cos θ1,3 − u cos θ1,2, ..., t

d−1∏

j=0

sin θj,3 − u

d−1∏

j=0

sin θj,2),

t(cos θ1,3, ...,

d−1∏

j=0

sin θj,3)


 ·

·dtdθ1,1...dθd−1,1dθ1,2...dθd−1,2dθ1,3...dθd−1,3

3.1 Bandwidth parameter

We now intend to use the information available in the sampled data to make
guesses about the optimal kernel bandwidth h. One of the most common
criteria is that of minimizing the Mean Square Error, or MSE, which is defined
as

MSE[γ̂(u)] = E
[
(γ̂(u)− γ(u))2

]

Then, according to previous results, one has

MSE [γ̂(u)] = (Bias [γ̂(u)])2 + Var [γ̂(u)] ' c2
Kγ′′(u)2

4
h4 +

D(a, d, u) n−2λdh−1 + E(a, d, u) n−1 + F (a, d, u)λ−d
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From here, the bandwidth parameter that asymptotically minimizes the
MSE [γ̂(u)] becomes

hopt(u) =
[

D(a, d, u)
2 c2

Kγ′′(u)2

]1/5

n−2/5λd/5

Remark 2. Alternatively, one might deal with a global bandwidth parameter,
by minimizing the Mean Integrated Square Error, or MISE, defined as

MISE[γ̂(u)] =
∫

R

(MSE[γ̂(u)]) du =

=
∫

R

(Bias [γ̂(u)])2 du +
∫

R

Var [γ̂(u)] du

for some R ⊂ [0,+∞). For instance, we may take R = [m0, m], where m =
sup{‖xi− xj‖ : xi, xj ∈ D} and some constant m0, 0 < m0 < m. The resulting
optimal bandwidth would be

hopt =
[ ∫

R
D(a, d, u)du

2 c2
K

∫
R

γ′′(u)2du

]1/5

n−2/5λd/5

Both found local and global bandwidth expressions involve the unknown
function γ(u). For this purpose, a simple parametric approach may be used
to estimate γ(u) or, even, the latter procedure can be improved by being
incorporated into an iterated non-parametric procedure.

3.2 Neighborhood radius selector

Most methodologies for cluster analysis are directly motivated from those
derived for density estimation, supporting the natural idea that clusters cor-
respond to modes or peaks in the underlying density function f on IRd. In
here, we want to suggest a value for the neighborhood radius δ in (1); thus,
we are more interested on the density estimation of the distances between
locations than on the density estimation of the locations themselves.

We will start proposing two different approaches on the density estimation
of the distances. Suppose {xi}n

i=1 locations in IRd, then define

dj = ‖xi − xk‖, j = 1, ...,
n(n− 1)

2

Firstly, a kernel estimation may be applied on equispaced distances, ranging
from the lowest to the largest sampled distance dj . An alternative may be
that of applying the estimation on the sampled distances themselves. The δ
quantity may then be derived from the maximum of these functions or even
from, for instance, the 10% highest values. The final results, from these two
approaches, tend to be very similar.



Assessing spatial dependence for clustered data 7

Other possible approach for δ derivation is based on counts of distances.
For a given point and for a list of equispaced distances, one must count how
the remaining n − 1 points are spread within that list of distances. After
repeating this for all n points, the partial sum organized by the distances,
give us the distance for the maximum count, i.e the proposal for δ value.

According to our experience, the estimates of the semivariogram function
given in (1) seem not to be significantly affected by the selection of any of
the previous approaches for δ derivation. So, we argue that they all are good
candidates to be used as a neighborhood radius selector.

4 Numerical study

In order to analyze the performance of the proposed semivariogram estimator
for clustered data, simulations of spatial data in IR2 were carried out. Gaussian
data were generated on the observation region D ⊂ IR2, with D0 bounded and
fixed square unit and λ = n4/9. We considered samples of size n = 100 and
a theoretical exponential variogram with a nugget effect of 0.6, a sill of 1.336
and the corresponding range equal to 5.0.

The RobCluster estimator is compared against the estimator of Matheron
and the one using the Nadaraya-Watson kernel. The symmetric Epanechnikov
kernel was employed in the two previous kernel-type estimators. A conclusive
analysis of the behavior of these semivariogram estimators must be based
on results from several independent cases. We then generate a total of 100
independent data sets and, for each one, derive the integrated square error
(ISE) between the estimator and the theoretical semivariogram. The ISE,
defined as

∫ β

α
[γ̂(u)− γ(u)]2 du, was approximated numerically through the

trapezoid rule. In Table 1, the mean values of the resulting ISEs are compared
for two distinct sampling designs:

• A CSR design, where spatial locations are uniformly distributed on D;
• A clustered design, where 40% of the total spatial locations are gathered

together into one sub-region of D.

As the observation region D depends on λ, we decided to group the mean
values of the ISEs into four classes of lags: (0, 0.6λ), (0, 0.3λ), (0, 0.2λ) and
(0, 0.1λ). To easily compare columns, all ISE values were standardized by
dividing them by the corresponding integral interval, β − α.

According to Table 1, the RobCluster estimator, defined in (1), offers a
better performance than the others in the presence of clustered data. Under
a CSR model, the Nadaraya-Watson kernel estimator and the new estimator
present similar results, and better than those from Matheron’s proposal.
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Table 1. Mean values of the standardized ISEs, from the empirical estimators. Total
of replicas equals to 100 and each replica total sample size equals to 100.

Design Estimator u ≤ 0.6λ u ≤ 0.3λ u ≤ 0.2λ u ≤ 0.1λ

CSR Matheron 1.270 0.943 0.819 0.763
NW kernel 0.527 0.314 0.276 0.291
RobCluster 0.500 0.307 0.276 0.298

Cluster Matheron 1.519 1.141 0.889 0.568
NW kernel 0.582 0.525 0.488 0.400
RobCluster 0.392 0.294 0.243 0.245
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[MGF05] Menezes, R., Garćıa-Soidán, P., Febrero-Bande, M.: A comparison of
approaches for valid variogram achievement. J. Comput. Stat., 20, 4, 623–
642 (2005)

[Ste99] Stein, M.: Interpolation of Spatial Data: Some Theory for Kriging.
Springer, New York (1999)

[WL83] Wong M.A., Lane T.: A kth nearest neighbour clustering procedure. Royal
Statistical Society Ser. B, 45, 362–368 (1983)


