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Abstract

An n x n real matrix is said to be totally nonpositive if every minor is nonpositive.
In this paper, we are interested in totally nonpositive completion problems, that is, does
a partial totally nonpositive matrix have a totally nonpositive matrix completion? This
problem has, in general, a negative answer. Therefore, we analyze the question: for which
labeled graphs G does every partial totally nonpositive matrix, whose associated graph is
G, have a totally nonpositive completion? Here we study the mentioned problem when G
is a chordal graph or an undirected cycle.

1 Introduction

A partial matriz over R is an n xn array in which some entries are specified, while the remaining
entries are free to be chosen from R. We make the assumption throughout that all diagonal
entries are prescribed. A completion of a partial matrix is the conventional matrix resulting
from a particular choice of values for the unspecified entries. A matriz completion problem asks
which partial matrices have completions with some desired property.

An n x n partial matrix is said to be combinatorially symmetric if the (7, j) entry is specified
if and only if the (j,7) entry is.

The specified positions in an n x n partial matrix A = (a;;) can be represented by a graph
G4 = (V, E), where the set of vertices V' is {1,...,n} and {i,j}, i # j, is an edge or arc if the
(1,7) entry is specified. G4 is an undirected graph when A is combinatorially symmetric and a
directed graph in other case. We omit loops since all diagonal entries are specified.
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An n x n real matrix A = (a;;) is called a totally nonpositive matriz if every minor is
nonpositive. In particular, this means that a;; <0, 4,j € {1,2,...,n}.

The submatrix of a matrix A, of size n x n, lying in rows « and columns 3, a, 3 C N =
{1,...,n}, is denoted by Al«a|fd], and the principal submatrix A[a|a] is abbreviated to A[a].
Therefore, a real matrix A, of size n x n, is a totally nonpositive matrix if det A[«|5] > 0, for
all a, 8 C {1,...,n} such that |a| = |3].

The following simple facts are very useful in the study of totally nonpositive matrices.

Proposition 1.1 Let A = (a;;) be an n x n totally nonpositive matriz.

~

. If D is a positive diagonal matriz, then DA and AD are totally nonpositive matrices.
2. If D is a positive diagonal matriz, then DAD™! is a totally nonpositive matriz.

3. Total nonpositivity is not preserved by permutation similarity.

4. If a;; #0, for alli € {1,2,...,n}, then a;; <0, for alli,j € {1,2,...,n}.

5. Any submatriz of A is a totally nonpositive matrix.

The last property of Proposition 1.1 allows us to give the following definition.

Definition 1.1 A partial matriz is said to be a partial totally monpositive matriz if every
completely specified submatriz is a totally positive matrix.

Our interest here is in the totally nonpositive matriz completion problem, that is, does a
partial totally nonpositive matrix have a totally nonpositive matrix completion? The prob-
lem has, in general, a negative answer for combinatorially and non-combinatorially symmetric
partial matrices.

Example 1.1 (a) Let A be the following non-combinatorially symmetric partial totally non-
positive matrix

-1 -01 -3
A= T21 —1 —1
-1 32 -1

A has no totally nonpositive completions since det A[{1,2}] < 0 and det A[{2,3}|{1,3}] <0 if
and only if x9; < —10 and z9; > —1.
(b) Let B be the following combinatorially symmetric partial totally nonpositive matrix

-1 -1 13
B=|-2 0 -1
31 -2 -1

Matrix B has no totally nonpositive completions since, for example, det B[{1,2}|{2,3}] > 0
for every value of 3.



Taking into account the example above, the first natural question is: for which graphs G
does every partial totally nonpositive matrix, the graph of whose specified entries is G, have
a totally nonpositive completion? In this paper we are going to work with combinatorially
symmetric partial matrices and therefore with undirected graphs.

Because total nonpositivity is not preserved by permutation similarity we must consider
labeled graphs, that is, graphs in which the numbering of the vertices is fixed. Note that if A is
a partial totally nonpositive matrix with graph G and A has a totally nonpositive completion,
then, if B is a partial totally nonpositive matrix whose graph is isomorphic to G, B may not
necessarily have a totally nonpositive completion. For example, let

-1 —4 13
A= -1 -1 -1
T31 -2 -1
and
-1 -1 -1
B = —4 -1 93
—2 T32 -1

Then both A and B are partial totally nonpositive and the graphs of A and B are isomorphic.
A totally nonpositive completion of A is given by

—1 —4 —4
A=1] -1 -1 -1
—2 -2 -1

However, there is no totally nonpositive completion of B since det B[{1,2}|{2,3}] < 0 and
det B[{2,3}|{1,3}] < 0 if and only if 293 > —1 and x93 < —2, which is impossible. So, the
labeling of the graphs is crucial in determining when there is a totally nonpositive completion.

A path is a sequence of edges {i1, 2}, {i2,43}, ..., {ix_1,1x} in which all vertices are distinct.
A cycle is a closed path, that is a path in which the first and the last vertices coincide. A graph
G is said to be chordal if there are no minimal cycles of length greater than or equal to 4 (see
[1]). A graph is complete if it includes all possible edges between its vertices. A clique is an
induced subgraph that is complete.

A graph G is said to be 1-chordal graph [1] if G is a chordal graph in which every pair of
maximal cliques C;, C;, C; # C}, intersect in at most one vertex (this vertex is called minimal
vertex separator). If the maximum number of vertices in the intersection between two maximal
cliques is p, then the chordal graph is said to be p-chordal. A monotonically labeled 1-chordal
graph (see [2]) is a labeled 1-chordal graph in which the vertices of the maximal cliques are
labeled in natural order, that is, for every pair of maximal cliques Cj, C}, in which 7 < j and
C; N C; = {u}, the labeling of the vertices within the two cliques is such that every vertex of
{v:v e C; —u} is labeled less than u and every vertex of {w : w € C; — u} is labeled greater
than u. In analogous way, we say that a cycle, a p-chordal graph, ... is monotonically labeled
if its vertices are labeled in natural order.



In Section 2 we analyze the totally nonpositive completion problem for some special cases of
chordal graphs. We show that the 1-chordal graph guarantee the existence of the desired com-
pletion and we study the 2-chordal case. Finally, in Section 3 we obtain that the ”SS-condition”
is a necessary and sufficient condition in order to obtain a totally nonpositive completion of
a partial totally nonpositive matrix whose graph is a monotonically labeled cycle. The re-
sults shown in section 2 and section 3 are similar to ones obtained by Johnson, Kroschel and
Lundquist in [2] and by Jordén and Torregrosa in [3], for the totally positive completion prob-
lem.

2 Chordal graphs

In this section we study the totally nonpositive completion problem when the associated graph
to a partial totally nonpositive matrix is chordal. We will see that the monotonically labeled
condition and the non-nullity of the minimal vertex separator are necessary conditions.

Throughout the proof of our main result of this section we use the following classical fact
of Frobenius-Kénig (see [4])

Lemma 2.1 Suppose that A is an n X n real matriz. If A has a p X q submatriz of zeros, then
A is singular whenever p+q > n+ 1.

Proposition 2.1 Let A be an n X n partial totally nonpositive matriz, whose graph of the
specified entries is a monotonically labeled 1-chordal graph with two mazximal cliques, such that
the entry corresponding to the minimal vertex separator is non-zero. Then, A admits a totally
nonpositive completion.

Proof. We may assume, without loss of generality, that A has the following form

All A12 X
A - Agl —1 A%}% )
Y A32 A33

where Ay, As; € RP, Agz, Az e RTand p+qg=n— 1.
Consider the completion

A A —ApAL
- A32 Agl A32 A33

of A. We are going to see that A, is a totally nonpositive matrix.

Let a, 3 € {1,...,n} be such that |a] = |B|. Let k be the index of the minimal vertex
separator. We may define oy, 51 C {1,...,k— 1}, as, 0, C{k+1,...,n} such that « — {k} =
ap Uag and §—{k} = 51U fBs.



Obviously, if |a| = || = 1, det A, [«|F] < 0. Therefore, we consider «, § such that |a| =
8> 1.

Firstly, we study the cases in which at least one of the sets oy, as, 31 and (5 is empty, and
we end with the case where all of those sets are non-empty:

(1) ag # 0 and g =0
(11) fo=0

In this case, A.[a|f] is a submatrix of

A Ap

AT 1
and therefore is totally nonpositive.

(1.2.) [B2] =1

We know that there exist indices 1 < i1 <ips < ... < <kand 1< <jo<...<j <
n, with j,_1 < k < j;, such that o = {iy,...,4} and 5 = {j1,...,75:}. So, A.[a|f] has

the form
Q5 T Qg oo T Qiyg .y T A4k Ak,
T Qiygy T Qiggy oo T Qigg . T Aok Ay
. . . . 9
Qg T Qiyge e T Qg T Qi k Ak

where each a;; is nonnegative. If k € 3, j;; = k and det A.[o|B] = 0. If k ¢ B,
det A, [o|B] = ay;, det A, [o|(8 — B2) U {k}] < 0.

(1.3.) |2 > 1
In this case, thereexist 1 <431 <ixa < ... <y <kand 1< j; <jo<...<Js < Jsy1 <
oo < Jp < n, with j, < k < jei1, such that « = {iq,...,4} and 8 = {j1,...,4}. So,
A, [@|f] has the form

_ahjl —CLZ'U'2 e _ailjs —ailkakjsH e —ailkakjt
—am-l —a,-m Ce —CLZ'M'S —aiQkakjS“ e —aizkakjt

. . . )
—Qijy T Qigy oo T iy, T3k Qkj oo T Qi k kg,

where each a;; is nonnegative, so det A, [a|F] = 0.
(2.)ag =0 and ag # 0
(2.1) B =19

Ac

[Oz|ﬁ] is a submatrix of
< 132 < 133 ’

and therefore det A, [a|5] < 0.



(2.2) |6l =1

There exist indices k£ < 41 <o < ... < <nand 1< j; < jJo < ... < 7j <n, with
Jj1 < k < jo, such that o = {iy,...,4;} and = {j1,...,4:}. So, A.[|F] has the form

Qi kAkgy T Qg - TGy, T Qg
—Qipk Qg —Qigjp oo TQigg g T Qiggy

. . b
TQikOkjy T Qi - TQiggy T Qiggy

where each a;; is nonnegative. If k& € 3, then jo = k and det A. [a|3] = 0. If k ¢ 3,
det A, (| 8] = aj, det A [a|(6 — 1) U {k}] <O.

(2.3.) [/l >1
So, there exist k < i1 <is < ... <y <nand 1 <j1 <jo< ... <Js<Js1 <...<jp <

n, with j; < k < jsi1, such that o = {iy,..., 4} and 8 = {j1,...,75:}. Ac[a|f] has the

form
Qi kQkjy - T EAkj, T Qiygey - TGy T4,
T Qigk kg - oo Tk Akj, T Qiggeyq - T Qigg g T Qiggy
. . )
Qi kAl - oo Tk Qk5, T Qg - oo T Qa5 g T Qg

where each a;; is nonnegative, and therefore det A, [o|5] = 0.

(3.) ag #0 and ag # 0

(3.1.) Bi# 0 and By =0
(3.1.1.) Jan| = 1

In this case, there exist 1 <13 <1y < ... < <n,with,_ |1 <k <i,and 1 < j;p <o <
... < jy <k such that o = {iy,...,4} and 6= {j1,...,7:}. So, A.|c|f] has the form

Qg — Qi g, st — @iy gy
—Qiyjy —Qigjgo s — @iy,
)
— Q4 _y 4, Ty e TGy
i —aitkakjl —aitkaka e —aitkakjt ]

where each a;; is nonnegative. If k € «, that is, 4,_; = k, then det A. [a|F] = 0. If k ¢ a,
det A, [o| 5] = aj,p det A, [(a — a2) U {k}|S] < 0.

(3.1.2.) |ag| > 1
There exist 1 < 41 < iy < ... < iy < Ggy1 < ... < 4y < n, with 5 < k < 1441, and



(3.2.)

1 <1 <jo<...<yr <ksuchthat o = {iy,...,4} and 8 = {j1,...,75:}. So, the
submatrix A, [«|F] has the form

— iy, ~ iy e — @iy
—Qiyjy —Qigjgy SR —Qiygy
— Qg5 — i, SR — Qi )
_a"is+1]€a']€j1 _a’is+1k’a'k‘j2 L) _ais+1ka’kjt
—aitkakjl —aitkakjg e —@itkakjt

there each a;; is nonnegative, and therefore det A, [o|3] = 0.

Bi=0and By # 0

(3.2.1.) || =1
There exist 1 <41 <9< ... <y <n,withi; <k <ig,and k<1 <jppo<...<5i<n
such that o = {éy,...,4} and = {j1,...,:}. The submatrix A, [«|f] has the form

—Qi kQLj;  — Q4 kAkjy - — Q4 Ok,
—Qigjy —Qigjgy s —Qiyj,
. . . )
— Q5 —Qiyjo s Qi gy

with a;; > 0 for all ¢ and j. So, if k € «a, det A [o|5] = 0. If k ¢ «, det A, [o| 5] =
apdet Ac [(a — 1) U{k} ] <0.

(3.2.2) |ay| > 1

There exist 1 < 47 < ... < 1y < lgy1 < ... < 4y < n, with 5 < k& < 144, and
k< j <jo < ...<j <nsuchthat « = {iy,...,i;} e 8 = {j1,...,j¢}. Then,
A, [@|f] has the form

—ailkakjl —ailkakh e —ailkakjt
—aiskakjl —aiskaka Ce —aiskakjt
7
_ais+1j1 _ais+1j2 s — Qg 15,
L Qi iy, - Ty,

with a;; > 0, for all 7, j. So, det A, [«|5] = 0.
In order to finish the proof we need to study the case

7



(3.3.) B £ D and Gy # 0
We know that there exist i1,4a, ..., %5, bot1s- -0t J1, 925« s Jrs Jrtds -5 Jp € {1,...,n}
such that 43 < ... < iy < t911 < ... < i, 1 < o0 < Jp < Jrp1 < ... < Jp and
ar = {i1, ..., 05}, 00 = {ist1, ... 0}, 01 = {J1, .-, Jr} and Bo = {Jry1, .- Jp}-
Consider the following cases:

(331)keaand ke f
In this case, t = p and A. [«|f] has the form

— @y 5y s —0Qiyj, — Qi k Qi kg - T Qi kA,
—Qigjy “e- Qi ik TQikQkjryy - - T @ik kg,
— ALy, ce —Qkj, -1 —akjrﬂ c.. —Qkj, s
—ais+lkakj1 P —CLiSJrlkaij _ai5+1k —ais+1jr+l e —(]JZ'SJrljz
— Qi kAl s — Q4 k Ak, —Qik QG s —Qiyje

where each a;; is nonnegative.

(3.3.1L.L) |B1] = || > 1
For each [ € {s+1,...,t} such that a;; # 0, we add to the (I + 1)-th row of A.[a|3] the
(s + 1)-th row multiplied by —a;;. The matrix A obtained has the form

A [Adoa Uk} U (R} | Acon U {k}[5)
0 | B

Note that A has a zero submatrix of size |as| x (|31] + 1). By applying Lemma 2.1,
det A =0 if |ag| + [01] +1 > || + 1. But,

| + 161 +1>|a|+1 <= |ag| + |6 +12> |ay| + |oo| +1+1
— |Bi] = || > L.

So, det A = 0 and therefore det A, [a|3] = 0.

(3.3.1.2.) |B1] — |as] =0 )

In this case, we can obtain the same matrix A of the previous case. It is easy to proof
that det A = det A[a; U {k}|B1 U {k}]det B. Now, we are going to prove that det B is
nonnegative. Consider the submatrix A.[{k} U as|{k} U 5]

-1 —akjrﬂ .. —Qkj,
TQig ik T Qigpgep o0 T Qigagy
— Q4. k —Qiyhryq s — Q4 5,

8



For each [ € {s + 1,...,t} such that a;), # 0, we add to the (I — s + 1)-th row of
A [{k} U as|{k} U (] the first row multiplied by —a;,;. Then, we obtain the matrix

—1 | A[{k}|5]
“=17 B

Since det C' = det A [{k} U as|{k} U B3] < 0 and det C' = —1 x det B, we can assure that
det B > 0. Therefore det A.[ar|5] < 0.

(3:3.13) Jou| - || > 1
In analogous way to the case (3.3.1.1.) we obtain that det A.[«|5] = 0.

(332)kecaand k& p
In this case, t = p — 1 and A, [a|5] has the form

—ailjl ce —ailjr —Clilk(lij_l Ce —ailkakjp
_&is]d RN —aisjr —aiskakjrﬂ Ce —aiskakjp
— Qg . —Qkj, —aij_H c. —akjp s
Qi kg - T Qi kO T Qi oo T Qigggy
— 04,k Akjy s — Q4 KAk, Qg s Q4

where a;; > 0 for all < and j.

In analogous way to the case (3.3.1.) we obtain the result analyzing the subcases

(3.3.2.1) |B] — ou| > 2
(3.3.2.2.) |B] — Jou| = 1
(3.3.2.3) |ou| — |B] > 1
(3.3.2.4.) |B] — |eu| = 0
(

333) k¢ aand k€
In this case, t = p+ 1 and A, [«|5] has the form

—ailjl P —ailjr — Qi k —ailkaijH ce —ailkakjp
—Qigjy e —Qigj, —Qisk T QikQkjpy - T @ik Qg
)
Qi 1k Akgy - - T Qg kQkj, —Qig gk T Qg g B Qi i1dp
—aitkakjl N —aitkaij —aitk —amﬂl e —aitjp



where a;; > 0 for all 4,j.

Analyzing the subcases

(3:3.3.3.) [ou| — |B1] > 2

we obtain the desired result.

(334) k¢ aand k ¢ 3
Now, we have that t = p and A, [«|f] has the following form

—ailjl ce —ailjr —ailkakjrﬂ Ce —ailkakjt
— Qg5 R —0igj, —aiskakjrﬂ R TN LT
)
—aisﬂkakjl ce —ais+1kaij —aisﬂjr“ e —aiSJrljt
—aitkakjl ce —aitkakjr —aithJrl Ce —aitjt i

where a;; > 0 for all ¢ and j.

(3.3.4.1) [Bi] — |eu| = 2
First, suppose that a;_, ,; = 0. Since for all 7 > k the submatrix

Al{k, i t{k, 5} = [ o iy 1 |

is totally nonpositive, then a;_,,; = 0. Therefore, det A, [a|3] = 0.

Now, we consider that a, 1 7# 0. For each | € {s +2,...,t} such that a;; # 0, we add
to the [-th row of A. [a|f] the (s + 1)-th row multiplied by —ailka;silk and we obtain

I

i Acfar U{ig }B] | Aclon U {igy1}| 5]
A= 0 | B }

Note that A has a zero submatrix of size (Jas| — 1) x |34] since

lao| =1+ [B1] > Ja| +1 <= |ao| =1+ |Bi] > |1 + |aa| +1
= |G| — || > 2,

10



then det A.[a|f] = 0.

If a;,,,1 = 0 we obtain the result in the same form as in the previous case.

If a;,,,r # 0 consider the matrix A obtained in the case above. Note that the submatrices

Acfoy U{is1}|31] and B are square matrices and then A is block triangular matrix. Now,
consider the square matrix

a _ — Qi a1k ‘ Ac [{7;5-1-1}‘52]
‘“”%”@“mmmrﬁwmm«M%—m@@ﬂ'

For each [ € {s + 2,...,t} such that a;x # 0, we add to the (I — s + 1)-th row of
A, [ao|{k} U (2] the first row multiplied by —ailka;il .- We obtain the matrix

O — [ _a8+1k A [{isgl}fﬁz] ] ‘

Since det C' = det A, [ao|{k} U 5] <0 and a; 1, # 0, we may assure that det B > 0 and
therefore det A = det Aoy U {igy1} B det B <0.

(3.3.4.3.) |ag| — |41] = 2
It is easy to see it is a symmetric case to (3.3.4.1.) and therefore we obtain the result in
analogous way.

It is a symmetric case to (3.3.4.2.).

Consider the following partition of the submatrix A.Ja U {k}|5 U {k}] of A,

B u | —uv?
AJaU{RHBU{KY = | w' |=1] " |,
—zwl | 2 C

where B = Ac[on|B1], u = Afon[{K}], w" = A[{k}|B1], v" = A[{k}|Ba], 2 = Acloa|{k}]
and C' = A.[as|Fs2]. Note that

adld) = |2t

—zw? ‘ C
Firstly, we suppose that B is nonsingular. As

det [ ﬁ _ul } <0 <= det B x det(—1 —w'B'u) <0,

11



we have A = —w? B~ 'u > 1.

In addition .
-1 v
det { . C <

and we have det(C' + 20v7) > 0.

} <0 <= —1xdet(C — z(-1)v") <0,

Taking into account that

T
det[ B uv}

_ _ tp-1T
ot O = det Bdet(C — zw'B™ uv")

= det Bdet(C + \zv"),

we need to prove that det(C + AzvT) > 0.

We denote C' = (¢;5)7%—, and zv" = (by;)i%_;. Then, det(C +~zv") = det C' 4~y M, where
v € R and

b1 2 ... Cim 11 ... Cim-1 blm

bay c2 ... Com €21 ... Com—1 Doy
M = det . . . + ...+ det ) )

bml Cm2 .-+ Cmm Cml -+ Cmm—1 bmm

If v = 1, we have det(C + yzv?) = det(C + 20T) > 0. Then, M > —det C' > 0.
If v = \, we have det(C + yzvT) = det(C + A\zv”) = det C' + AM. So,

det(C + A207) >0 <= AM > —det C.

Since A > 1 and M > 0,
AM > M > —det C,

therefore det A.[a|G] < 0.

Finally, we suppose that B is singular. Then, there exists h € {1, ..., s} such that

— Gy, = > (—&aa),

lE({jl 77777 js}_{jh})

for all i € {i1,... 45}

12



Consider the submatrix A.[aq U {k}|51 U {k}] whose determinant, nonpositive, is

—Qij  —Qijy - > (=&aig) - —ij, —aik
le({g1,mist—{in})
— @iy T Qiggy - E (—flaigl) cee TQiggy —Qsk
le({g1,mist—{in})
det
_aisjl _aist M § : (_glalsl) st _aisjs _a‘isk
le({y1,edst—{dn})
| —Qkjy  —Okjy .- —Qj, cee g, -1 ]
—Qiyj; iy - 0 cee —Qiyj, —Gigk
—Qiyjy  ~Qigjy - 0 cee Qg —Qk
= det
Qg5 TQigjy .- 0 cee T4, A4k
—Qkj;  —Okjy .. —0kj, T E (Gary) ... —ar;, —1
L le({g1,mdst—{in}) J

_ <-1)s+l+hx(—akjh+ 3 <5lakl>)xdetAc[alrwl—{jh}w{k}].
le({g1,-dst—{gn})

Then,
o (cag Y (aa) 20

le({g1,-dst—{gn})

On the other hand, consider the totally nonpositive submatrix A.[(c; — {i1}) U {k}|51]
of A., whose determinant is

13



le({j1,-dst—{gn})

—Qiyjy  —Qiyjy - > (—&aiy)

(flakl)

“Qigg T Qigjy .- Z (_Slaz‘sl)
le({jlv"'vjs}_{jh})
| —Qfjy —CQkjy - — Qg
TQiyg T Qiggy - - 0
= det| —ay —aig, - 0
“Qkjy T Qkjy e Tk, T E
| le({1ssds3—{dn})

= (—1)*t" x <_akjh + Z (fzakz)) x det Ac[(ar — {ir})|(B1r — {in})]-

le({d1,ds}—{in})
Then,

(—1)"" x (—akjh + 3 (&akl)) > 0.

le({y1,dst—{dn})
So

Ukjy, = > (&an).
le({ji,dsy—{in})
Now, we can conclude that the h-th column of

[

is a linear combination of the remaining columns. Therefore,

({_ffﬂ )<\mr

and we have

B —w”
T T C < || + |as| = a.

Then, det A.[«|f] = 0.

We can extend this result in the following way.

14
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Theorem 2.1 Let G be an undirected connected monotonically labeled 1-chordal graph. Then
any partial totally nonpositive matriz, whose graph of the specified entries is G and whose
entries corresponding to the minimal vertex separator are non-zero, has a totally nonpositive
matriz completion.

Proof. Let A be a partial totally nonpositive matrix, the graph of whose specified entries
is G. The proof is by induction on the number p of maximal cliques in G. For p = 2 we
obtain the desired completion by applying Proposition 2.1. Suppose that the result is true for
a monotonically labeled 1-chordal graph with p — 1 maximal cliques and we are going to prove
it for p maximal cliques.

Let G be the subgraph induced by two maximal cliques with a common vertex. By applying
Proposition 2.1 to the submatrix A; of A, the graph of whose specified entries is Gy, and by
replacing the obtained completion A;, in A, we obtain a partial totally nonpositive matrix
whose associated graph is a monotonically labeled 1-chordal graph with p — 1 maximal cliques.
The induction hypothesis allows us to obtain the result. 0

As we saw in Example 1.1 (b), we can not omit the condition of having non-zero minimal
vertex separators. On the other hand, in the following example we present a partial totally
nonpositive matrix, whose associated graph is a non-monotonically labeled 1-chordal graph with
two maximal cliques, with non-zero minimal vertex separator, that has no totally nonpositive
completions.

Example 2.1 Consider the partial totally nonpositive matrix

-1 z12 =2 714
T21 -1 —4 -8
-1 =5 -1 =2 |’
T41 —-10 -2 -1

whose associated graph is a non-monotonically labeled 1-chordal graph with two maximal
cliques.

A has no totally nonpositive completions since det A [{1,2}|{2,3}] = —4z12 — 2 < 0 and
det A[{1,3}[{1,2}] =5+ x12 < 0 if and only if z15 > —0.5 and x5 < —5, which is impossible.

A:

The totally nonpositive completion problem for partial matrices whose associated graph is
a p-chordal graph, p > 2, is yet an open problem. We have obtained partial results for matrices
of size 4 x 4 whose associated graph is a monotonically labeled 2-chordal graph and such that
their main diagonal entries are non-zero.

The study of this problem for this particular case illustrates the difficulties of working in
the more general case.

We will assume, throughout the rest of this section, that all the diagonal entries are non-zero.

Lemma 2.2 Let A be a partial totally nonpositive matriz, whose graph is a monotonically
labeled 2-chordal graph and such that its minimal vertex separator is singular. Then, there
exists a totally nonpositive completion A. of A.
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Proof. We may assume, without loss of generality, that A has the following form:

-1 -1 —ai3 T14

i —a21 —1 —1 —agq
A o —Aasy —1 —1 —1
Ty —agp —ag3 —1

Since A is a partial totally nonpositive matrix det A[{1,2,3}] and det A [{2,3,4}] are nonpos-
itive, then az; = ao; or a13 = 1, and ags = ays3 or asy = 1. In both cases it is easy to prove
that

-1 -1 —ai3 —azan
AC _ —Qa21 — 1 — 1 — Q24
—asy -1 —1 —1
—a31042 —A42 —A43 —1
is a totally nonpositive matrix completion of A. O

Now, we are going to study the case in which the minimal vertex separator is nonsingular.

Lemma 2.3 Consider the following partial totally nonpositive matrix

-1 —1 —ai3 T14
—ayn -1 =1 —agy
A= )
—az; —azz —1 -1
Ty —age —agz —1

where each a;; is positive and azy > 1. Then, the partial matriz B obtained from A by replacing
the entry x4, by —a31a42a§21, 15 also a partial totally nonpositive matriz.

Proof. It is easy to prove that all totally specified minors, of size 2 x 2, are nonpositive.

Since A is a partial totally nonpositive matrix, we know that det B [{1, 2, 3}] and det B [{2, 3,4}]
are nonpositive.

For the remaining totally specified submatrices, of size 3 x 3, we have

det B[{1,2,4}|{1,2,3}] = auas, det B[{1,2,3}] + (a2 — azpa43)(1 — ag )azy, <0,
det B[{1,3,4}]{1,2,3}] = (a3 — as2)(as2a43 — asz)azy <0,

det B[{2,3,4}|{1,2,3}] = (a4 — azsa43)(azazs — agl)a?;l <0,

det B[{2,3,4}|{1,2,4} (a4 — ass)(agiazs — agl)a§21 <0,

det B[{2,3,4}|{1,3,4}] = asias, det B[{2,3,4}] + (as1 — aza32)(1 — as3)az; < 0.

Then, B is a partial totally nonpositive matrix. (]

]
]
]
]

Lemma 2.4 Let B be the following partial totally nonpositive matriz

—1 —1 —ai3 T14
—ag —1 —1 —ag4
B = ,
—asi —as2 —1 -1
-1
—a31042035 —Q42 —Q43 —1



where each a;; is positive and azy > 1. Consider the partition

—1 —1 —a13 T14
-1 Al | 714
—ag —1 —1 —agq
B = = Ay Agg | Agg
—asgy —az —1 -1 —
1A 1
=1 1 —31042039 32| —
—Q31042039 | —Q42 —A43 | —
Then,
-1
-1 Aqo A12A22A23
B, = Ao Ago Aas
-1
—@31042039 Asy -1

15 a totally nonpositive completion of B.

Proof. It is easy to prove that all minors of size 2 x 2 are nonpositive. Since B is a partial
totally nonpositive matrix, we have

det B.[a|{1,2,3}] < 0 Vae€{{1,2,3},{1,2,4},{1,3,4},{2,3,4}},

det B.[{2,3,4}|8] < 0 VBe{{1,2,4},{1,3,4},{2,3,4}}.
On the other hand, it is easy to see that

det B[{1,2,3}]det B[{2,3,4}] _

det B, =
¢ det B[{2,3)] =

Now, for a = {1, 2,3}, we obtain

det B, [a]{1,2,4}] = (asy — 1) '(agaz; — 1)det B[a] <0,
det B. [a[{1, 3,4}] (asy — 1) (ay — 1)det B[a] <0,

det B, [«|{2,3,4}] = 0.
For a = {1,2,4},
det Bc [Oé] = CL4QCL3_21 det BC [{1, 2, 3}|{1, 2, 4}] + CL3_21(CL42 - (lgg)(l - a21) S 0,
det B. [a|{1,3,4}] = auas, det B.[{1,2,3}|{1,3,4}]
+(asz — a3y) " (aszaz — as)(azs — 1)(1 — az)
+(1 - agg)_l(l — CL136L21) det B [{2, 3, 4}] S 0,
det B. [a]{2,3,4}] = (az —1) (a3 — 1)det B.[{2,3,4}] <0.
Finally, for a = {1, 3,4},
det BC [Oé|{1, 2, 4}] = a§21(a32 — CL42)(CL31 — CL32) S O,
det B.[a] = asiaz, det B, [a|{2,3,4}] + ag (as; — ase)(1 — ay3) <0,
det B.[a|{2,3,4}] = (asy — 1) *(a13a32 — 1) det B[{2,3,4}] <0.
Therefore, B, is a totally nonpositive completion of matrix B. 0

The previous Lemmas allow us to give the following result.
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Theorem 2.2 Let A be a partial totally nonpositive matrix, of size 4 x4, whose associated graph

18 a monotonically labeled 2-chordal graph. Then, there exists a totally nonpositive completion
A. of A.

In this result we can not omit the hypothesis of monotonically labeled as we can see in the
following example:

Example 2.2 Consider the partial totally nonpositive matrix

—1 T192 -1 -2
. T21 —1 -1 -2
A= -15 -2 -1 -1 |’

-3.5 —45 -2 -1

whose graph is a non-monotonically labeled 2-chordal graph.
A has no totally nonpositive completions since

detA[{172}|{273}] <0 <= w122
det A[{1,3M{1,2}] <0 = 15 < —4/3

which is impossible.

3 Cycles

In this section we study the totally nonpositive completion problem for partial matrix whose
associated graph is a cycle. In general, the mentioned problem has a negative answer for cycles
that are or not monotonically labeled, as we will see in the next example.

A cycle G = (V,E), with V. = {1,...,n}, is said to be monotonically labeled if E =
{{1,2},{2,3},...,{n — 1,n},{n,1}}. In this section we consider that all specified entries are
non-zero, since in other case the results, in general, do not hold.

Example 3.1 (a) Consider the partial totally nonpositive matrix

-1 -1 T13 —0.5

-2 -1 -1 T4

31 -2 -1 —1 ’
—8 T42 —2 —1

whose associated graph is a monotonically labeled cycle. A has no totally nonpositive comple-
tions since

det A [{1,2}[{2, 3}]
det A [{1,3}[{3,4}]

—1,
—0.5.

0 < x13
0<:z>$13

IV IA

<
<
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(b) Now, consider the following partial totally nonpositive matrix whose associated graph is a
cycle that is not monotonically labeled

-1 12 -2 —4
T21 -1 —4 -6
-1 -5 -1 T34
-2 —=10 T43 —1

In analogous way to (a), B has no totally nonpositive completions since

det BI{1,2}|{2,3)] <0 <= 21> 0.5,
det B[{1,3}|{1,2)] <0 <= a2 < —5.

In this section we only study the mentioned problem when the associated graph to the n xn
partial totally nonpositive matrix is a monotonically labeled cycle. We can assume, without
loss of generality, that this type of matrices have the form:

-1 —ap x3 - T —aip
—Q21 -1 —Q23 - Ton—1 Lon
r3r  —azxp  —1 - X3, T3n
A=
Tp-11 Tp—-12 Tp-13 - -1 —Qp—1n
| —Qp1 Tn2 Tn3 e —Ann-1 -1 1

Definition 3.1 Let A be a partial totally nonpositive matriz, of size n X n, whose associated
graph is a monotonically labeled cycle. We say that A satisfies the ”SS-diagonal condition” if

12023 = Ap_1n < Q1 AN Qpp—10p—1p—2 - Q21 < Qp.

Lemma 3.1 Let A be a partial totally nonpositive matriz, of size 4 x 4, whose graph is a
monotonically labeled cycle. There exists a totally nonpositive completion A. of A if and only
if A satisfies the SS-diagonal condition.

Proof. Suppose that there exists a totally nonpositive completion A. of A,

-1 —a;p —ci3 —ay
A, = —az1  —1  —ay —cy
—c31 —azz —1  —axu

—ay1 —Ci —agz  —1

where all ¢;; is positive. From det A, [{1,2}[{2,3}] < 0 and det A, [{1,3}|{3,4}] < 0, we get
ai4 > ay2a23a34. An analogous reasoning for det A, [{3,4}|{2,3}] and det A.[{2,4}|{1, 2}] gives
the condition a4; > a91a32a43.
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For the sufficiency we take the completion of A

—1 —ai2 —ai120a23 —Qai14
A, = —Cl2171 -1 —Qg3  —aya7y
— Q41043 —a32 -1 —a34
—ay41 —@32043 —a43 -1

By using the SS-diagonal condition, it is easy to show the nonpositivity of all minors of A.. [

This result can be generalized to matrices of size n x n, n > 4.

Theorem 3.1 Let A be a partial totally nonpositive matriz, of size n X n, n > 4, whose graph
is a monotonically labeled cycle. There exists a totally nonpositive completion A. of A if and
only if A satisfies the SS-diagonal condition.

Proof. The proof is by induction on n. If n = 4 we apply Lemma 3.1. Suppose that the result
holds for matrices of size (n — 1) x (n — 1) and we are going to see it for n X n matrices.
Suppose that there exists a totally nonpositive completion of A

-1 —Q12 —C13 —Cin—1 —Q1n
—ag -1 —as3 —Cop—1  —Cop
—C31 —Qa32 -1 —C3n—-1 —Can
Ac = . . s
—Cp—11 —Cp—12 —Cp—13 ... -1 —Qp—1n
—an1 —Cp2 —Cn3 —Qpp—1 _]- |

with ¢;; > 0, for all 4, 5. Then, A.[{2,...,n}] is a totally nonpositive completion of the partial
totally nonpositive matrix

-1 —a23 Top—1 —Cop
—azy —1 T3n—1 T3y,
Tp—12 Tp—13 -1 —Qp—1n

| —Cp2 Tn3 —Qpp—1 _1 |

By induction hypothesis we know that aszasy - - a,_1, < con and ageays -« - App_1 < Cpo. From
det A.[{1,2}{2,n}] = a12¢2n — a1, < 0 and det A, [{2,n}[{1,2}] = a21¢n2 — an1 < 0, we can
conclude the SS-diagonal condition.

Conversely, we suppose that the SS-diagonal condition is satisfied. It is easy to prove that

-1 —Q12 T13 Tin—1 Tin
—ag1 -1 —ag93 Ton—-1 —Clmafgl
_ x31 —aszp —1 T3n—1 T3p
A= . .
Tp-11  Tp—12  Tp-13 —1 —Up—1n
L Tnl _an1a2_11 Tn3 —Qpp—1 —1 i
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is a partial totally nonpositive matrix.

Consider the submatrix A[{2,...,n}] = (=b;;)}'/2;. We can observe that it is a partial
totally nonpositive matrix, whose associate graph is a monotonically labeled cycle with n — 1
vertices, and satisfying the SS-diagonal condition. By induction hypothesis there exists a totally
nonpositive completion

1 -1 cp2
A{2,...,n}] = .
2= | g
Now, consider the following partial totally nonpositive matrix
-1 —anp xn,

= —a21 -1 C12
T
Tpl Coq Caa

:’>H

Note that its associated graph is a monotonically labeled 1-chordal graph with two maximal
cliques. By Proposition 2.1, there exists a totally nonpositive completion A, of A whose elements
in positions (1,n) and (n,1) are —ay, and —a,;, respectively. Therefore, A, is the desired
completion of A. O

Finally, we are going to see that the previous result does not hold when some diagonal entry
are zero.

Example 3.2 Consider the partial totally nonpositive matrix

-1 -3 13 -1

—4 =2 —2 T4

31 0 0 0 ’
—1 T42 —0.1 —-0.1

A:

whose associated graph is a monotonically labeled cycle. A satisfies the SS-diagonal condition,
however it does not admit a totally nonpositive completion since

det A[{1,2}[{2.4}] S0 = a9y > —2/3,
det A[{2,4}{3,4}] S0 <= 19y < —2.
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