Caracterização da Rigidez de Misturas Betuminosas em Ensaios de Tracção Indirecta por Compressão Diametral de Provetes Cilíndricos

José M. C. Neves^{1,†}

Instituto Superior Técnico, Departamento de Engenharia Civil e Arquitectura, CESUR Avenida Rovisco Pais – 1049-001 Lisboa, Portugal

A. Gomes Correia²

Universidade do Minho, Departamento de Engenharia Civil Azurém, 4800-058 Guimarães, Portugal

RESUMO

As misturas betuminosas utilizadas nas camadas dos pavimentos rodoviários têm comportamento mecânico do tipo visco-elástico. Na prática do dimensionamento, este comportamento é definido pelo módulo de rigidez e pelo coeficiente de Poisson que caracterizam o comportamento elástico linear, mas admitindo que estes parâmetros são dependentes da temperatura e da frequência de aplicação das cargas. A norma europeia EN 12697-26 diz respeito à caracterização da rigidez de misturas betuminosas fabricadas a quente em ensaios com carregamentos repetidos à flexão, tracção indirecta ou tracção directa uniaxial. Esta norma contempla o ensaio de tracção indirecta por compressão diametral de provetes cilíndricos. O Instituto Superior Técnico possui o equipamento NAT que tem permitido o desenvolvimento de estudos baseados nesta técnica de ensaio. O artigo apresenta as principais conclusões de alguns desses estudos relacionadas, essencialmente, com a exactidão do método de ensaio e a sua adequação para caracterizar misturas betuminosas de aplicação corrente na construção e reabilitação das estradas da rede rodoviária nacional. É descrito ainda um modelo de previsão do módulo de rigidez, validado e calibrado para os resultados experimentais obtidos.

INTRODUÇÃO

De um modo geral, a caracterização em laboratório do comportamento mecânico de misturas betuminosas aplicadas em camadas dos pavimentos rodoviários baseia-se em ensaios realizados em provetes submetidos a cargas repetidas com variação sinusoidal no tempo, ou outro tipo de impulso, com tensão ou extensão imposta. Os ensaios de tracção indirecta em compressão diametral são ensaios simples com aplicação frequente na caracterização do comportamento mecânico de misturas betuminosas: caracterização da rigidez (módulo

¹ Professor Auxiliar

[†] Autor para quem a correspondência deverá ser enviada (neves@civil.ist.utl.pt)

² Professor Catedrático

complexo), da resistência à tracção e, ainda, da resistência à fadiga. Em 2004 foi aprovada a norma europeia EN 12697-26 que contempla este ensaio na determinação do módulo complexo de misturas betuminosas.

Desde 1992 que o Departamento de Engenharia Civil e Arquitectura do Instituto Superior Técnico (IST) tem o equipamento desenvolvido pela Universidade de Nottingham – *"Nottingham Asphalt Tester"* (NAT) – no Reino Unido. Entre outros ensaios, este equipamento permite realizar ensaios de tracção indirecta em compressão diametral com vista à caracterização da rigidez e da resistência à fadiga de misturas betuminosas. Dos ensaios de caracterização da rigidez que têm sido realizados, foram seleccionados aqueles cuja divulgação se considera importante para uma melhor compreensão desta técnica de ensaio e da sua adequação para caracterização de misturas betuminosas tradicionais, correntemente aplicadas em estradas da rede rodoviária portuguesa.

Os resultados experimentais apresentados no artigo dizem respeito a dois estudos de determinação do módulo de rigidez de misturas betuminosas:

- o primeiro estudo inseriu-se no protocolo de investigação entre o IST e a Junta Autónoma de Estradas, actualmente Estradas de Portugal, E.P.E. (EP), e consistiu no fabrico de provetes em laboratório que foram ensaiados, quer no equipamento NAT, quer no equipamento "*Material Testing Apparatus*" (MATTA), desenvolvido pela *ELE International* e instalado no Laboratório Central da EP (JAE/IST, 1995);
- o segundo estudo foi desenvolvido no âmbito de uma tese de doutoramento e baseou-se na realização de ensaios no equipamento NAT, com provetes obtidos nas camadas betuminosas do pavimento de dois trechos experimentais (Neves, 2001).

As principais conclusões a reter dos estudos analisados e apresentadas neste artigo dizem respeito: i) à exactidão do método de ensaio em termos da sua repetibilidade e reprodutibilidade; ii) à influência nos resultados de algumas das principais condições de ensaio e das características dos provetes; iii) à previsão do módulo de rigidez das misturas betuminosas, com base num modelo verificado e calibrado para os resultados experimentais obtidos com as misturas betuminosas aplicadas no pavimento dos trechos experimentais.

1. CARACTERIZAÇÃO DA RIGIDEZ DE MISTURAS BETUMINOSAS

O comportamento reológico das misturas betuminosas nos pavimentos, influenciado sobretudo pela presença do betume, depende essencialmente da temperatura e da frequência de aplicação das cargas. Para deformações elevadas, correspondentes a temperaturas e tempos de carga elevadas, as misturas betuminosas exibem comportamento viscoso. Por sua vez, no domínio das pequenas deformações, característico de temperaturas e tempos de carga baixos, as misturas betuminosas têm comportamento elástico. Para condições intermédias, estes materiais evidenciam comportamento do tipo visco-elástico. O modelo de Burger tem sido o modelo reológico mais utilizado na descrição do comportamento visco-elástico das misturas betuminosas.

Quando é aplicada uma tensão (σ), sinusoidal no tempo (t) com frequência ω e dada por $\sigma_0 \times sen(\omega t)$, da qual resulta uma deformação (ϵ), com desfasamento ϕ (ângulo de fase) e dada por $\epsilon_0 \times sen(\omega t-\phi)$, o comportamento de materiais visco-elásticos é caracterizado pelo módulo complexo (E*) que é constituído por uma parte real (E₁) e uma parte imaginária (E₂):

$$E^* = \frac{\sigma}{\varepsilon} = \left| E^* \right| \times \left(\cos(\phi) + i \times sen(\phi) \right) \tag{1}$$

$$E_1 = \left| E^* \right| \times \cos(\phi); \ E_2 = \left| E^* \right| \times sen(\phi) \tag{2; 3}$$

O valor absoluto do módulo complexo ($|E^*|$), correntemente designado por módulo de deformabilidade, módulo dinâmico ou módulo de rigidez (S_m), e o ângulo de fase (ϕ) são dados pelas Equações 4 e 5:

$$\left|E^{*}\right| = \sqrt{E_{1}^{2} + E_{2}^{2}} \tag{4}$$

$$\phi = \arctan\left(\frac{E_2}{E_1}\right) \tag{5}$$

O módulo de rigidez, conforme será referido neste artigo, é definido como a relação entre as amplitudes das tensões aplicadas e das deformações medidas. O ângulo de fase é uma medida do desfasamento entre as tensões e as deformações, permitindo inferir se o comportamento da mistura betuminosa é predominantemente elástico (ângulo de fase nulo) ou viscoso.

Na prática do dimensionamento estrutural dos pavimentos é corrente adoptar para as misturas betuminosas o comportamento elástico linear, mas caracterizado por módulos de rigidez e coeficientes de Poisson variáveis em função, sobretudo, da temperatura e da frequência de aplicação das cargas. São vários os métodos previsionais que têm sido desenvolvidos com este objectivo, mas cujas condições de aplicação devem ser conhecidas e seguidas escrupulosamente.

A determinação do módulo de rigidez e do coeficiente de Poisson pode ser feita em ensaios laboratoriais com carregamentos repetidos, cuja variação temporal deve procurar reproduzir o melhor possível as condições de solicitação induzidas pela passagem do tráfego. Os ensaios são realizados a temperatura controlada em provetes prismáticos, trapezoidais ou cilíndricos, quer fabricados em laboratório, quer extraídos das camadas dos pavimentos. Do ponto de vista da solicitação de ensaio, os provetes podem ser submetidos à flexão simples, à tracção indirecta em compressão diametral ou à tracção directa uniaxial.

2. MATERIAIS ENSAIADOS

O primeiro estudo que é apresentado neste artigo, desenvolvido em 1995, incidiu em provetes de laboratório fabricados com misturas preparadas individualmente para cada provete. Os provetes foram compactados pelo método Marshall, fazendo variar a composição da mistura (quantidade de betume) e a energia de compactação (número de pancadas do compactador Marshall) (JAE/IST, 1995). A Tabela 1 apresenta as principais características destes provetes: i) geometria dos provetes definida pelo diâmetro (ϕ) e pela espessura (h), condicionada pelas dimensões do molde Marshall; ii) número de pancadas da compactação Marshall; iii) baridade (ρ); iv) teor em betume (T_b); v) percentagem volumétrica de betume (V_b); vi) porosidade (V_v); vii) vazios na mistura de agregados (VMA).

Na Tabela 2 apresenta-se a composição granulométrica da mistura de agregados calcários dos provetes de laboratório.

Em dois trechos experimentais realizados no lanço Pontinha/Odivelas/Olival Basto do IC17, em Lisboa, foram colhidos provetes das camadas de base, em macadame betuminoso, da camada de regularização, em mistura betuminosa densa, e da camada de desgaste em betão betuminoso, logo após a abertura ao tráfego. Estes provetes obtidos em obra serviram de base ao segundo trabalho apresentado neste artigo, desenvolvido em 1999 (Neves, 2001).

A Tabela 3 apresenta as principais características dos provetes obtidos em obra, de forma análoga à apresentação das características dos provetes de laboratório.

Provete	φ	h	Número de	ρ	T_b	V_b	V_{v}	VMA			
Hovete	(mm)	(mm)	pancadas	(kN/m^3)	(%)	(%)	(%)	(%)			
LL2-1	101,8	60,4	75	2,46		8,3	8,0	16,3			
LL2-2	101,2	61,3	15	2,47		8,3	7,7	16,0			
LL2-3	102,0	61,1	50	2,45	35	8,2	8,4	16,6			
LL2-4	102,0	62,3	30	2,45	5,5	8,2	8,4	16,6			
LL2-5	102,8	62,3	25	2,40		8,1	10,3	18,4			
LL2-6	103,0	62,8	23	2,41		8,1	9,9	18,0			
LL2-7	101,8	56,5	75	2,52		11,4	4,0	15,4			
LL2-8	101,9	60,3	75	2,51		11,3	4,3	15,6			
LL2-9	103,0	59,6	50	2,48	17	11,2	5,5	16,7			
LL2-10	102,0	60,8	50	2,47	4,7	11,2	5,9	17,1			
LL2-11	101,8	64,1	25	2,46		11,1	6,3	17,4			
LL2-12	102,1	66,0	23	2,46		11,1	6,3	17,4			
LL2-13	101,9	57,1		2,55		14,5	1,0	15,5			
LL2-13B	101,1	58,8	75	2,55		14,5	1,0	15,5			
LL2-14	101,7	57,1		2,55		14,5	1,0	15,5			
LL2-15	102,0	57,6		2,53		_(1)	_(1)	_(1)			
LL2-15B	101,7	58,9	50	_(1)	5.0	_(1)	-(1)	_(1)			
LL2-16	103,0	56,2		2,53	5,9	14,4	1,7	16,1			
LL2-16B	101,9	59,3		_(1)		_(1)	-(1)	_(1)			
LL2-17	102,6	59,4		2,48		14,1	3,7	17,8			
LL2-17B	101,9	60,0	25	_(1)		_(1)	-(1)	_(1)			
LL2-18	102,7	58,6		2,47		14,0	4,1	18,1			

Tabela 1 – Características dos provetes de laboratório

⁽¹⁾ Não foi possível determinar o valor

Tabela 2 –	Composição	granulométrica	das misturas	de agregados
		()		

Peneiro ASTM	11⁄2"	1"	3⁄4"	5/8"	1⁄2"	3/8"	4	10	40	80	200
Abertura da malha (mm)	38,1	25,4	19,1	15,9	12,7	9,52	4,75	2	0,425	0,177	0,075
Mistura betuminosa		% de material acumulado que passa no peneiro									
Mistura de laboratório (LL2)	_(1)	_(1)	_(1)	100,0	85,3	71,4	51,3	34,2	18,5	10,0	7,2
Macadame betuminoso (P)	100,0	91,3	77,3	_(1)	61,1	55,1	38,8	24,2	12,4	8,8	6,4
Mistura betuminosa densa (P)	_(1)	100,0	96,6	_(1)	79,8	71,4	55,5	31,4	13,9	9,6	7,3
Mistura betuminosa densa (R)	_(1)	_(1)	100,0	_(1)	82,2	74,7	54	33,8	16,3	11,1	7,9
Betão betuminoso (R)	_(1)	_(1)	100,0	_(1)	94,8	87,6	74,1	40,4	17,2	11,5	8,1

⁽¹⁾ Não foi utilizado o peneiro

Os agregados das misturas betuminosas das camadas de base e de regularização são de natureza calcária. Os agregados da mistura betuminosa da camada de desgaste são basálticos. A Tabela 2, apresentada anteriormente, mostra a composição granulométrica das misturas de agregados destes provetes de obra.

Drovata	Mistura	φ	h	ρ	T _b	V_b	$V_{\rm v}$	VMA
Provete	betuminosa	(mm)	(mm)	(kN/m^3)	(%)	(%)	(%)	(%)
P-8.A		141,4	59,9	2,39		8,6	4,4	13,0
P-8.B		141,7	61,2	2,43		8,7	2,7	11,4
P-8.C		141,7	58,8	2,41		8,7	3,4	12,1
P-9.A	Maaadama	141,5	58,6	2,39	3,7	8,6	4,5	13,1
P-9.B	betuminoso	141,7	55,8	2,42		8,7	3,2	11,9
P-9.C	betummoso	141,5	68,4	2,39		8,6	4,5	13,1
P-10.A		141,7	57,5	2,40		8,6	4,1	12,7
P-10.B		141,7	62,1	2,42		8,7	3,0	11,7
P-10.C		142,0	65,1	2,35		8,4	6,1	14,5
R-1.C		100,1	44,7	2,24		10,9	10,1	21,0
R-2.C		100,1	48,2	2,31	5.0	11,2	7,4	18,6
R-3.C	Mistura	100,0	49,4	2,25	5,0	10,9	9,7	20,6
R-4.C	betuminosa	100,1	45,7	2,23		10,8	10,5	21,3
P-1.D	densa	100,0	53,8	2,31		10,5	7,3	17,8
P-2.D		100,2	52,3	2,27	4,7	10,4	8,7	19,1
P-3.D		100,1	48,7	2,29		10,5	7,9	18,4
R-1.D		100,3	40,2	2,43		12,5	7,8	20,3
R-2.D	Betão	100,3	47,5	2,50	5 2	12,9	5,4	18,3
R-3.D	betuminoso	100,2	43,6	2,48	5,5	12,7	6,1	18,8
R-4.D		100,4	38,8	2,44		12,5	7,6	20,1

Tabela 3 – Características dos provetes obtidos em obra

As principais propriedades do betume de classe 50/70 dos provetes de laboratório e dos provetes de obra são, respectivamente:

- penetração a 25°C, 100 g, 5 s (×0,1 mm) − 61 e 68;
- temperatura de amolecimento anel e bola (°C) 42 e 48;
- temperatura de inflamação em vaso aberto (°C) − 300 e 268.

Na determinação de todas as propriedades dos provetes foram seguidos os métodos de ensaio preconizados no caderno de encargos em vigor.

3. ENSAIO DE TRACÇÃO INDIRECTA EM COMPRESSÃO DIAMETRAL

3.1. Método de ensaio

Em 2004 foi aprovada pelo CEN ("*European Committee for Standardisation*") a norma EN 12697-26, que estabelece a caracterização do módulo complexo de misturas betuminosas fabricadas a quente através de diferentes métodos de ensaio descritos em cinco anexos:

- ensaios de flexão realizados em provetes trapezoidais ou em provetes prismáticos com carregamento em dois pontos (Anexo A);
- ensaios de flexão realizados em provetes prismáticos com carregamento em três ou quatro pontos (Anexo B);
- ensaios de tracção indirecta em provetes cilíndricos (Anexo C);
- ensaios de tracção-compressão directa uniaxial em provetes cilíndricos (Anexo D);
- ensaios de tracção directa uniaxial em provetes cilíndricos ou provetes prismáticos (Anexo E).

No caso particular dos ensaios de tracção indirecta por compressão diametral de provetes cilíndricos, o anexo correspondente (Anexo C) resulta da actualização do procedimento de ensaio preconizado na norma BS DD 213 (1993). A norma descreve o equipamento de ensaio, o modo de preparação e condicionamento dos provetes, o método de ensaio e o modo de determinação do módulo de rigidez dos provetes.

De um modo geral, o ensaio de tracção indirecta utiliza provetes cilíndricos moldados em laboratório ou obtidos em sondagens à rotação realizadas nas camadas betuminosas dos pavimentos. Os provetes são submetidos a um carregamento repetido de compressão diametral, que desenvolve um estado de tensão horizontal de tracção uniforme ao longo do plano diametral de aplicação da carga. Este estado de tensão induz a deformação (d) do provete conforme se representa na Figura 1a. Durante o ensaio, é registada a curva da deformação medida no provete, segundo a direcção diametral perpendicular ao plano de actuação da carga, e a curva correspondente ao impulso da força. Estas curvas têm a forma que se representa na Figura 1b. O impulso da força é caracterizado pela amplitude (F) e pelo tempo de crescimento da carga (RT) (tradução do termo inglês "rise time"). O tempo de crescimento da carga é o período de tempo decorrido desde o instante inicial de aplicação da força até ao instante em que se regista o respectivo valor máximo e está relacionado com a frequência de aplicação da carga. A bibliografia recomenda que o tempo de crescimento da carga seja um valor compreendido entre 120 e 125 milissegundos, correspondente a um carregamento sinusoidal com frequência de 2,5 Hz. A norma EN 12697-26 (2004) recomenda um valor de 124 ± 4 milissegundos para o tempo de crescimento da carga

(b) Curvas da força e deformação

Figura 1 – Princípio de carregamento e deformação do provete no ensaio de tracção indirecta

Nestas condições de carregamento dos provetes, o módulo de rigidez (S_m) para cada carga é calculado com base na Equação 6:

$$S_m = \frac{F \times (\nu + 0.27)}{(d \times h)} \tag{6}$$

em que *F* é a amplitude da carga em Newton (N); *d* é a deformação total segundo a direcção diametral perpendicular ao plano de actuação da carga em milímetros (mm); *h* é a espessura do provete em milímetros (mm); e ν é o coeficiente de Poisson do provete à temperatura do

ensaio. Quando o equipamento de ensaio não permitir a determinação do coeficiente de Poisson, a norma EN 12697-26 (2004) recomenda que se utilize 0,35.

Em cada ensaio, o provete é submetido a várias repetições da carga, antecedidas sempre de uma fase de pré-carregamento com repetições de carga de valor igual, para ajustamento do sistema de aplicação de carga ao provete. A norma EN 12697-26 (2004) refere que devem ser aplicadas, no mínimo, dez repetições de carga na fase de pré-carregamento. Para cada provete é realizado o ensaio segundo duas direcções diametrais e ortogonais, definindo-se o módulo de rigidez do provete como o valor médio dos dois ensaios. A norma refere as condições de aceitação ou rejeição do módulo de rigidez, consoante a variabilidade dos resultados nas duas direcções.

3.2. Descrição do equipamento NAT

O equipamento utilizado nos ensaios de tracção indirecta em compressão diametral das misturas betuminosas foi o NAT, instalado no Departamento de Engenharia Civil e Arquitectura do IST. No estudo realizado com os provetes de laboratório também foi utilizado o equipamento MATTA, instalado no laboratório da EP, caracterizado por ter uma técnica de ensaio e forma de apresentação dos resultados análogas às do equipamento NAT.

Os principais componentes do equipamento são: i) sistema de apoio do provete e dos transdutores de deslocamento; ii) sistema de aplicação das cargas, constituído por transdutor de força, actuador e válvula; iii) câmara climatizada com controlo de temperatura; iv) sistema regulador da pressão e reservatório de ar comprimido; v) interface digital de entrada de dados e saída de resultados ligada a computador e impressora.

O sistema de apoio dos transdutores de deslocamentos é colocado no provete de ensaio de forma a garantir a centralidade em relação à direcção perpendicular à do carregamento. Este sistema é fixado ao provete por meio de parafusos adequados, cuja força de aperto deve ser aferida em cada ensaio pelo operador. Por sua vez, o provete é apoiado no centro das barras de aplicação da carga, interpondo-se uma película delgada de gesso de forma a garantir um perfeito contacto das barras com a superfície rugosa do provete. A Figura 2a mostra o pormenor de montagem de um provete, em condições de ser ensaiado no interior da câmara climatizada a temperatura controlada, variável de -10° C a $+50^{\circ}$ C (Figura 2b).

(a) Montagem do provete
(b) Equipamento no interior da câmara
Figura 2 – Pormenores da montagem do provete e do equipamento de ensaio

Os provetes podem ter diâmetros de 100 mm ou 150 mm, com espessuras entre 30 mm e 75 mm. As dimensões dos provetes devem ser definidas em função da maior dimensão nominal do agregado, para que seja assegurada a representatividade do material ensaiado. A facilidade de preparação dos provetes para o ensaio, quer em laboratório quer em obra (simples carotagem no pavimento), pode ser reconhecida como uma vantagem desta técnica de ensaio em relação a outras baseadas em provetes prismáticos.

O equipamento NAT do IST não permite a determinação do coeficiente de Poisson.

O carregamento do provete é feito por um sistema pneumático que aplica verticalmente a carga através de barras de aço apoiadas na geratriz do provete e com uma geometria apropriada às suas dimensões. A força aplicada é medida através de um transdutor de força. A amplitude de carga é definida, indirectamente, através de um número inteiro designado por nível de carregamento (NC). As deformações induzidas no provete são medidas pelos dois transdutores de deslocamentos.

As medições realizadas pelos transdutores de força e deslocamento durante o ensaio são registadas automaticamente através do sistema de aquisição, que está ligado ao computador e à impressora para entrada de dados e saída de resultados.

3.3. Resultados dos ensaios

O programa de ensaios das misturas betuminosas em estudo foi definido com o objectivo principal de determinar o seu módulo de rigidez, mas também de estudar a influência de algumas variáveis relacionadas com a composição das misturas e com as condições de ensaio: porosidade, temperatura, tensão imposta e tempo de crescimento da carga. Os ensaios foram ainda realizados segundo a norma BS DD 213 (1993).

Os provetes de laboratório foram ensaiados à temperatura de 20°C. Os provetes de obra foram ensaiados às temperaturas de 5°C, 10°C, 15°C, 20°C, 25°C e 30°C. Antes do início do ensaio, todos os provetes permaneceram 12 horas no interior da câmara. A norma EN 12697-26 (2004) recomenda um período de tempo mínimo de 4 horas. Os ensaios foram realizados para um tempo de crescimento de carga de 125 milissegundos. Para atender à repetibilidade do ensaio, optou-se por realizar sempre mais de cinco repetições de carga em cada direcção de ensaio. Na fase de pré-carregamento foram sempre aplicadas cinco repetições de carga.

As Tabelas 4 e 5 apresentam a análise estatística dos resultados dos ensaios realizados nos provetes de laboratório e nos provetes de obra, respectivamente. Para cada ensaio, as tabelas contêm o valor médio do módulo de deformabilidade correspondente às duas direcções ensaiadas (S_m) e o respectivo valor do desvio-padrão (σ_{Sm}).

3.4. Exactidão do método de ensaio

A realização dos ensaios com os provetes de laboratório em ambos os equipamentos NAT (IST) e MATTA (EP) permitiu estudar a exactidão do método de ensaio em termos das condições de repetibilidade e reprodutibilidade.

A análise da Tabela 4 mostra que, geralmente, se obteve valores médios e de desvio-padrão do módulo de rigidez superiores no equipamento NAT.

Os provetes LL2-8 e LL2-11 foram seleccionados para investigar de forma mais adequada a repetibilidade e a reprodutibilidade do ensaio. As condições de repetibilidade foram analisadas em cada laboratório através de cinquenta aplicações de carga realizadas consecutivamente para cada uma das cinco montagens dos provetes (M-1 a M-5), nas duas direcções ortogonais de ensaio (A e B), pelo mesmo operador.

		Equipa	amento			Equipamento				
Drovete	NA	АT	MA	MATTA		NA	 Υ	MATTA		
110/010	S _m (MPa)	σ _{Sm} (MPa)	S _m (MPa)	σ _{Sm} (MPa)	Tiovete	S _m (MPa)	σ _{Sm} (MPa)	S _m (MPa)	σ _{Sm} (MPa)	
LL2-1	5381	244	4540	64	LL2-12	2070	117	1591	45	
LL2-2	4535	445	3718	79	LL2-13	5012	152	4114	82	
LL2-3	5221	114	4278	86	LL2-13B	4807	123	3719	93	
LL2-4	4435	152	4567	81	LL2-14	4511	182	3800	63	
LL2-5	3690	231	3203	67	LL2-15	4730	174	4384	60	
LL2-6	3578	150	3267	46	LL2-15B	3555	69	3245	89	
LL2-7	5308	365	4926	72	LL2-16	4346	159	3792	83	
LL2-8	4359	65	4085	66	LL2-16B	3699	160	3263	76	
LL2-9	4300	103	3886	77	LL2-17	3978	117	_(1)	_(1)	
LL2-10	4094	122	4007	72	LL2-17B	3022	112	2939	68	
LL2-11	2798	69	2843	54	LL2-18B	3984	111	4061	314	

Tabela 4 – Resultados dos ensaios realizados com os provetes de laboratório

⁽¹⁾ Não foi possível ensaiar o provete

Tabela 5 – Resultados dos ensaios realizados com os provetes de obra

	Temperatura de ensaio (°C)												
Drovoto	4	5	1	10		5	2	0	2	5	3	0	
Flovele	Sm	σ_{Sm}	Sm	σ_{Sm}	S _m	σ_{Sm}	Sm	σ_{Sm}	$\mathbf{S}_{\mathbf{m}}$	σ_{Sm}	Sm	σ_{Sm}	
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	
P-8.A	18757	748	17405	442	13165	762	10239	355	6408	251	5038	310	
P-8.B	18788	910	16852	712	11578	745	9535	406	6658	352	4151	181	
P-8.C	16164	882	12914	607	10639	632	8482	359	5823	340	3130	90	
P-9.A	18275	927	13868	579	10480	528	9475	177	7125	294	5150	92	
P-9.B	17950	1007	14763	645	13905	426	9784	528	7578	226	6194	169	
P-9.C	18405	1037	14947	864	15099	722	10331	319	7620	518	5350	437	
P-10.A	17517	820	11898	617	9040	397	6322	225	4758	70	3016	56	
P-10.B	18003	1325	15163	655	12648	619	9721	271	7137	223	5102	148	
P-10.C	16590	542	13320	569	11771	541	9360	255	7426	163	4403	119	
R-1.C	11485	271	8935	467	7381	418	5200	5758	4047	292	3804	147	
R-2.C	14755	511	9405	442	8824	573	6767	272	6073	230	5248	193	
R-3.C	11943	503	9622	581	7434	533	5704	190	4007	110	3066	268	
R-4.C	9638	588	8395	345	6121	202	4877	329	3689	173	_(1)	_(1)	
P-1.D	14725	802	11293	690	8762	714	6689	385	6312	151	4373	182	
P-2.D	12456	842	9292	541	8260	641	7381	366	5817	167	4039	193	
P-3.D	12956	712	9976	705	8406	652	7001	357	5794	179	4528	262	
R-1.D	10352	569	8702	284	6467	250	4670	243	3341	107	2094	204	
R-2.D	11826	653	10444	288	8357	338	5607	156	4955	208	3769	144	
R-3.D	11511	483	10657	500	7688	144	5721	226	4863	125	3341	150	
R-4.D	11143	344	9283	425	6878	143	4992	220	3882	158	2662	70	

⁽¹⁾ Não foi possível ensaiar o provete

As condições de reprodutibilidade foram analisadas através da realização dos mesmos ensaios nos dois laboratórios, por operadores e equipamentos diferentes (NAT e MATTA). Os ensaios deste estudo foram realizados à temperatura de 20°C.

A Tabela 6 apresenta a análise estatística dos valores do módulo de rigidez, em termos do valor médio (S_m) e do desvio-padrão (σ_{Sm}), obtidos para cada montagem e direcção de ensaio.

Provete	Fauinamento	Estatísticas		Direcção A				Direcção B				
Tiovete	Equipamento	Estatisticas	M-1	M-2	M-3	M-4	M-5	M-1	M-2	M-3	M-4	M-5
1128		S _m (MPa)	4851	4829	4691	4871	4510	4202	4330	3972	3997	3961
LL2-0	NAT	σ_{Sm} (MPa)	186	195	157	163	129	136	178	153	99	97
11211	NAT	S _m (MPa)	3481	3479	3189	2984	3024	2690	2728	3263	2807	2809
LL2-11		σ_{Sm} (MPa)	132	93	71	81	143	148	55	125	41	74
1120		S _m (MPa)	4104	4154	4213	4237	4065	4243	4174	4255	4324	4432
LL2-0		σ_{Sm} (MPa)	176	162	119	131	651	99	151	167	135	115
LL2-11	MATIA	S _m (MPa)	3219	3101	3299	3162	2877	3262	3448	3572	3451	3303
		σ_{Sm} (MPa)	96	77	89	73	78	97	124	116	105	78

Tabela 6 – Resultados obtidos em condições de repetibilidade e de reprodutibilidade

A avaliação da repetibilidade e da reprodutibilidade dos ensaios foi feita com base na norma ISO 5725-2 (1994) e é apresentada na Tabela 7. Esta tabela apresenta o desvio-padrão da repetibilidade e da reprodutibilidade ($s_r e s_R$), o coeficiente de variação da repetibilidade e da reprodutibilidade ($cv_r e cv_R$) e os limites da repetibilidade e da reprodutibilidade (r e R). Estes últimos parâmetros são a estimativa dos valores abaixo dos quais a diferença absoluta entre dois resultados de ensaios sucessivos, efectuados em condições de repetibilidade e de reprodutibilidade, ocorre com probabilidade de 95%.

	R	epetibilidad	de	Reprodutibilidade				
Provete	Sr	cvr	r	SR	cv _R	R		
	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)	(MPa)		
LL2-8	277	6	777	299	7	838		
LL2-11	252	8	706	287	9	803		

Tabela 7 – Estatísticas de exactidão dos ensaios

A análise dos valores leva a considerar que a exactidão, semelhante para os dois provetes ensaiados, é aceitável. A norma EN 12697-26 (2004) não dá valores de repetibilidade e reprodutibilidade para o ensaio de tracção indirecta, mas apresenta resultados para o ensaio de flexão com carregamento em dois pontos obtidos em 10 laboratórios.

4. CARACTERIZAÇÃO DA RIGIDEZ DAS MISTURAS ENSAIADAS

4.1. Influência das características da mistura betuminosa e das condições de ensaio

A maior diversidade de ensaios realizados com as misturas betuminosas de obra permitiu evidenciar de forma mais clara a influência da temperatura, da porosidade, do tempo de crescimento e da amplitude de carga na determinação do módulo de rigidez.

De um modo geral, os ensaios dos provetes de obra (Tabela 5) permitiram confirmar a maior sensibilidade da rigidez das misturas betuminosas à temperatura. De facto, para todas as misturas betuminosas estudadas, as curvas isócronas da Figura 3 evidenciam a evolução típica do módulo de rigidez em função da temperatura.

A Figura 4 mostra a influência da composição da mistura, traduzida pela porosidade, no módulo de rigidez. Tendencialmente observa-se uma diminuição do módulo de rigidez para os provetes com maior porosidade, mais significativa na mistura betuminosa densa e no betão betuminoso. Nos provetes de laboratório constatou-se uma maior dispersão de resultados que não permitiu evidenciar esta relação.

Figura 4 – Influência da porosidade

Os provetes P-8.A, R-1.C e R-4.D foram seleccionados para analisar a influência do tempo de crescimento de carga e da tensão imposta utilizados no método de ensaio. As Figuras 5 e 6 mostram as curvas isotérmicas do módulo de rigidez em função do tempo de crescimento de carga e da tensão imposta, respectivamente. A análise dessas figuras permite constatar que não há uma influência significativa destas características do método de ensaio na determinação do módulo de rigidez das misturas betuminosas ensaiadas.

4.2. Previsão do Módulo de Rigidez

A análise e interpretação dos resultados dos provetes de obra permitiram relacionar o módulo de rigidez das misturas betuminosas com um parâmetro de ensaio – a temperatura (T) – e com um parâmetro de composição da mistura – a porosidade (V_V). A expressão que traduz esta relação está definida na Equação 7.

$$\mathbf{S}_{\mathrm{m}} = \left(A_{1} + A_{2} \times V_{v}\right) e^{\left[\frac{T(A_{3}+T)}{A_{4}}\right]}$$
(7)

Nesta equação, a porosidade é representada em percentagem e a temperatura é expressa em graus Celsius. A_1 , A_2 , A_3 e A_4 são os parâmetros adimensionais da equação. O módulo de rigidez é obtido em megaPascal (MPa).

A calibração dos parâmetros da equação para as três misturas betuminosas estudadas foi feita pelo método dos mínimos quadrados. Os valores obtidos são apresentados na Tabela 8, bem como o valor do coeficiente de correlação (\mathbb{R}^2). A Figura 7 mostra o ajuste da expressão de previsão aos valores experimentais do módulo de rigidez das misturas betuminosas. Conclui-se que o melhor ajuste é conseguido para a mistura betuminosa densa e para o betão betuminoso. Ainda se investigou a aplicação de expressões linearmente dependentes da temperatura, conforme proposto por outros autores, mas concluiu-se que se obtinha uma menor qualidade de ajustamento aos valores experimentais (Neves, 2001).

Misture botuminose		$\mathbf{p}^{2}(1)$			
Wilstura Detullinosa	A_1	A_2	A_3	A_4	K
Macadame betuminoso	21527,4	-311,937	27,4371	-1175,09	0,91
Mistura betuminosa densa	28469,3	-1391,58	283,637	-5494,51	0,94
Betão betuminoso	19729,5	-961,788	33,8706	-1243,78	0,97

Tabela 8 – Valores dos parâmetros da expressão de cálculo do módulo de rigidez

⁽¹⁾ Coeficiente de correlação

Figura 7 – Previsão do módulo de rigidez

A comparação destes resultados com a modelação numérica do comportamento dos trechos experimentais durante ensaios de carga permitiu validar a Equação 7 (Neves, 2001).

5. CONCLUSÕES E RECOMENDAÇÕES

Foram apresentados dois estudos, desenvolvidos no IST, sobre a utilização do ensaio de tracção indirecta por compressão diametral de provetes cilíndricos na caracterização da rigidez de misturas betuminosas de utilização corrente nos pavimentos da rede rodoviária nacional. Os estudos envolveram provetes de misturas betuminosas, quer fabricados em laboratório, quer colhidos em trechos experimentais, do tipo macadame betuminoso para camada de base, mistura betuminosa densa para camada de regularização e betão betuminoso para camada de desgaste.

De um modo geral, a análise dos resultados obtidos permitiu concluir que o ensaio é adequado à determinação do módulo de rigidez das misturas betuminosas ensaiadas. O programa de ensaios permitiu analisar a influência de vários factores na caracterização das misturas betuminosas, relacionados com as condições de ensaio e com a composição das misturas. A análise e interpretação dos resultados permitiram ainda validar e calibrar uma expressão destinada à estimativa do módulo de rigidez em função da temperatura e da porosidade. A expressão foi calibrada para misturas betuminosas do tipo macadame betuminoso para camada de base, mistura betuminosa densa para camada de regularização e betão betuminoso para camada de desgaste. Estes resultados deverão ser necessariamente validados na extrapolação para outros materiais.

Um dos estudos apresentados envolveu ensaios realizados em dois laboratórios, pelo que foi analisada a exactidão do método de ensaio em termos das condições de repetibilidade e de reprodutibilidade.

REFERÊNCIAS

BS DD 213, Method for determination of the indirect tensile stiffness modulus of bituminous mixtures, British Standards Institution, London (1993).

EN 12697-26, Bituminous mixtures – Test methods for hot mix asphalt – Part 26: Stiffness, European Committee for Standardisation (2004).

ISO 5725-2, Accuracy (trueness and precision) of measurement methods and results – Part 2: Basic method for the determination of repeatability and reproducibility of a standard measurement method, International Organization for Standardization, Genève (1994).

JAE/IST, Determinação da rigidez de misturas betuminosas através de ensaios cíclicos de compressão diametral e de métodos previsionais, Relatório do Centro de Geotecnia, Instituto Superior Técnico, Lisboa (1995).

Neves, J.M.C., Contribuição para a modelação do comportamento estrutural de pavimentos rodoviários flexíveis, Dissertação apresentada à Universidade Técnica de Lisboa para obtenção do grau de Doutor em Engenharia Civil, Lisboa (2001).