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Multiphonon processes in a model quantum dot(QD) containing two electronic states and several optical
phonon modes are considered by taking into account both intra- and interlevel terms. The Hamiltonian is
exactly diagonalized, including a finite number of multiphonon processes large enough to guarantee that the
result can be considered exact in the physically important energy region. The physical properties are studied by
calculating the electronic Green’s function and the QD dielectric function. When both the intra- and interlevel
interactions are included, the calculated spectra allow several previously published experimental results ob-
tained for spherical and self-assembled QD’s, such as enhanced two-LO-phonon replica in absorption spectra
and up-converted photoluminescence to be explained. An explicit calculation of the spectral line shape due to
intralevel interaction with a continuum of acoustic phonons is presented, where the multiphonon processes also
are shown to be important. It is pointed out that such an interaction, under certain conditions, can lead to
relaxation in the otherwise stationary polaron system.
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I. INTRODUCTION

The importance of phonon influence on the properties of
semiconductor quantum dot(QD) based systems has been
demonstrated in many works reviewed in Refs. 1 and 2. The
spatial confinement effect on optical phonons in QD’s has
been studied both experimentally and theoretically.3–7Acous-
tic phonons have also received some attention in connection
with the low-frequency Raman scattering in spherical8,9 and
self-assembled10,11 QD’s, and the homogeneous broadening
of the spectral lines.12–14 Electron-phonon interaction in
QD’s remains, however, a controversial subject. While cal-
culations performed for II-VI and III-V dots generally agree
that the exciton-phonon(e-ph) coupling strength is reduced
in nanocrystals compared to the bulk, they disagree regard-
ing the numbers and trends in the scale of the interaction
with QD size.(Here electron-hole pairs will be called exci-
tons independently of the importance of the Coulomb inter-
action.) The calculated values vary substantially depending
on the approximations used, but the Huang-Rhys parameter
for the lowest exciton state usually does not exceedS
<0.1–0.2 for II-VI for spherical QD’s(Refs. 15 and 16) and
is probably an order of magnitude smaller for III-V self-
assembled dots.17

Turning to the experimental data, the exciton-optical-
phonon coupling strength is most frequently obtained using
photoluminescence(PL) spectra. Usually in small II-VI
QD’s there is a large Stokes shift of the excitonic PL band
with respect to the absorption,1,18 which can be explained by
strong exciton-phonon coupling[Huang-Rhys parameter of

the order of I (Refs. 19 and 20)]. However, as mentioned
above, the calculated values happen to be one or two orders
of magnitude smaller. Phonon replicas in the PL spectra
caused by the recombination of excitons in QD’s were found
to disagree with the well-known Franck-Condon progression,
both in their spectral positions20,21 and relative
intensities.20,22,23Although both the strong Stokes shift and
apparently large intensity of the first phonon satellite(rela-
tive to the zero phonon line) can be characteristic of the QD
size distribution and not of a single dot,18 these results indi-
cate that the e-ph interaction in QD’s must be considered
carefully. Further evidence for unexpected effects of the e-ph
interaction comes from the optical absorption measurements.
LO-phonon related features were observed in absorption
spectra of InAs/GaAs QD’s and two-LO-phonon24–27 and
even three-LO-phonon28 replicas were found to be extraordi-
narily strong compared to the one-LO-phonon satellite. At
least some of these works were performed using single QD
spectroscopy, so ensemble effects can probably be ruled out
in this case. Since no phonon replicas were found in the
corresponding emission spectra, there is no way to explain
these results in terms of the Franck-Condon progression
(with any value ofS). The temperature dependence of the
homogeneous broadening of the absorption spectra of spheri-
cal II-VI QD’s studied in Refs. 15 and 29 was found to have
a clear contribution from optical phonons. This is unex-
pected, because the coupling of optical phonons to a single
electron or exciton level should lead to the appearance of
discrete satellites and not to an overall broadening. Thinking
in terms of Fermi’s golden rule, the broadening could be a
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lifetime effect from an electron(or exciton) transition to an-
other state with emission or absorption of an optical phonon.
However, the process should strictly adhere to the conserva-
tion of energy in the electron-phonon scattering, i.e., exact
resonance between the optical phonon energy and level spac-
ing, which should be rather accidental. This argument justi-
fied the theoretical concept of “phonon bottleneck,” a very
slow carrier relaxation which should be inherent to small
QD’s.2 Nevertheless, an efficient phonon-mediated carrier re-
laxation has been reported in a number of works.21,28,30All
these experimental results imply that multiphonon processes
are important and that the e-ph interaction in QD’s must be
treated in a nonperturbative way, even for the moderate val-
ues of the coupling constants coming out from the
calculations.31 An important ingredient to be included is the
nonadiabaticity of this interaction,2,7,22 leading to a phonon-
mediated coupling of different electronic levels, even if they
are separated by an energy quite different from the optical
phonon energy. This is essential for understanding those ex-
perimental results which are in clear disagreement with the
single-level-generated Franck-Condon progression.32

Polaron effects in QD’s have been studied theoretically in
several recent papers.33–37 The model considered in these
works included two electronic levels and several Einstein
phonon modes. The one-electron spectral function was ob-
tained either applying self-consistent perturbation theory
approximations33,34 or exactly, using a combined analytical
and numerical approach.35 The results calculated using the
perturbation theory approaches show shift and broadening of
the levels, even for a sufficiently large detuning[defined as
D8=D−"v0 where D=s«2−«1d, «1 and «2 are the electron
energy levels and"v0 is the phonon energy]. However, as
pointed out in Refs. 35 and 38, this broadening is an artifact
as the exact spectral function should consist ofd functions(if
no further effects are involved). Moreover, even if thesed
functions are broadened artificially, the self-consistent pertur-
bation theory approximations are not able to reproduce the
structure of the spectrum calculated exactly using the ap-
proach proposed in Ref. 35. The method of Ref. 35 based on
the Gram-Schmidt orthogonalization procedure is, however,
limited to the case when all the optical phonons have the
same energy. The same restriction was used in Ref. 36(and,
in addition, states with more than two phonons and some
virtual transitions were excluded from consideration). In re-
ality, confined optical phonon modes are characterized by
different frequencies within the band of the corresponding
bulk material. Usually there are a small number of such
modes that interact more intensely with electrons or
excitons.4,6,39The incorporation of this multiplicity seems to
be important for comparison of calculated and experimental
results. It has been possible in the approach proposed in Ref.
37 (based on the Davydov canonical transformation), which,
however, neglects multiphonon processes.

Another important issue is the role of acoustic phonons.
Even though some acoustic modes can be confined to the QD
and therefore have discrete energies, there should be a con-
tinuum of modes within a certain energy range. The interac-
tion with this continuum should smooth out the polaron spec-
trum (otherwise consisting ofd functions, as noted above).
The line shape for a QD is not expected to be a simple

Lorentzian; instead, for a discrete electronic level acoustic
phonon sidebands are formed.14,40 Considering that the si-
multaneous interaction of confined excitons with acoustic
and optical phonons can reveal some new effects, to the best
of our knowledge, this has not been performed beyond the
one-level model.41

In this paper, we propose a nonperturbative approach to
the calculation of the phonon effects on the electron spectral
function, and QD emission and absorption spectra, based on
the direct numerical diagonalization of the Hamiltonian ma-
trix including a small number of electronic levels and several
optical phonon modes of different energy. Such a straightfor-
ward method was employed in Ref. 42 for phonons strongly
coupled to an electron on a deep donor center. This approach
is developed further here, so as to allow for the incorporation
of the interaction with(virtually all) acoustic phonon modes
under the condition that the interlevel coupling mediated by
solely acoustic phonons can be neglected. We present the
calculated results which elucidate the influence of various
relevant parameters, such as interlevel spacing, coupling
strengths, and temperature, on the optical spectra of a model
QD. The paper is organized as follows. In Sec. II, we intro-
duce the Hamiltonian matrix to be diagonalized in order to
obtain the polaron states, and define the electron Green’s
function. In Sec. III, we derive the expression for the imagi-
nary part of the exciton dielectric function and present the
absorption and emission spectra calculated for different val-
ues of the relevant parameters. Section IV is devoted to the
interaction with acoustic phonons and its incorporation in the
calculation of the polaron spectra. The calculated results and
their comparison with experimental data are discussed in
Sec. V.

II. ELECTRON-OPTICAL-PHONON INTERACTION: THE
NONPERTURBATIVE SOLUTION

Our model system consists of two electronic levels, both
coupled toN phonon modes(of frequenciesvn), and is de-
scribed by the Hamiltonian,

H1 = o
i=1

2

«iai
†ai + o

n=1

N

"vnbn
†bn + o

i j

2

o
n=1

N

gij
n ai

†ajsbn
† + bnd,

s1d

where ai
† and ai are the fermion creation and annihilation

operators of the electrons(or holes) and bn
† and bn are the

operators for the phonons. The interaction with optical
phonons occurs predominantly through the Fröhlich-type
mechanism and the Hamiltonian matrix elements between
exciton statesi and j are given by4,6

gij
n = eE Ci

*srWe,rWhdffnsrWhd − fnsrWedgC jsrWe,rWhddrWedrWh, s2d

where fn is the electrostatic potential created by thenth
phonon mode andCi is the exciton wave function of statei.
In the following, we shall also use dimensionless interaction
constantsai j

n =gij
n / s"vnd and omit the superscript when only

one phonon mode is considered.
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If g12
n were equal to zero, the Hamiltonian(1) would be

exactly solvable, as there would be no interference between
two electronic levels. The one-level model(known as inde-
pendent boson model) has an analytical solution.43 The po-
laron spectrum, in the case of a single phonon mode, consists
of equidistant peaks(separated by the phonon energy"v0),
which is the origin of the Franck-Condon progression.

The case ofa12Þ0, a11=a22=0 for a single phonon
mode, in the so-called rotation wave(RW) approximation44

[which consists in neglecting virtual transitions described by
the termsa2

†a1b0
† and a2a1

†b0 in Eq. (1)], also provides an
analytical solution, with the spectrum given by

E1,2smd = sD8/2d ± ÎsD82/4d + sm+ 1dsg12d2 + sm+ 1d"v0,

s3d

wherem=0,1,2, . . . is thenumber of phonons in the mixed
state. In addition to Eq.(3), there is a state withE=0.

The general case, which is of interest here, can be treated
by mapping the many-body problem onto a single-particle
problem in a higher dimension Fock space.45,46 It is natural
to consider a basisun1n2hmnjl wherenr =0, 1 is the number of
fermions on levelr and mn is the number of phonons of
moden. In principle, the Hamiltonian matrix is infinite, but
as it will be shown below, one can truncate the Fock space
by allowing a certain maximum number of phonons for each
mode to obtain a very accurate solution. Since we are inter-
ested in the case when there is a single fermion in the dot, it
is only necessary to consider the statesu10hmnjl and
u01hmnjl. The required matrix elements are

Hij = F«idi j + o
n=1

N

mn"vnGp
n

dm
n8mn

+ o
n=1

N

gij
n fÎmn + 1dm

n8mn+1

+ Îmndm
n8mn−1g p

mÞn

dm
m8mm

,

wherei and j represent the basis vectorsu10hmnjl si =1d and
u01hmnjl si =2d. The dimension of the matrix is
2m1¯mn¯mN. For a small number of modes and a reason-
able number of phonons for each mode, it can be easily
diagonalized numerically. Given the eigenstates of the
Hamiltonian matrix(denoted byukl), we can write down the
electron Green’s function.47 In the canonical ensemble,

GijsEd =
1

Z
o
kk8

se−bEk + e−bEk8d
kkuai

†uk8lkk8uajukl
E − sEk − Ek8d − ih

, s4d

whereb=1/skBTd and Z=Tr exps−bHd. Although h in Eq.
(4) should be infinitesimal, for computational purposes we
suppose it to be a small quantity. Equation(4) can be rewrit-
ten as

GijsEd =
1

Z
o
kk8

e−bEkH kkuai
†uk8lkk8uajukl

E − sEk − Ek8d − ih

+
kkuajuk8lkk8uai

†ukl
E + sEk − Ek8d − ihJ . s5d

In the first term inside the curly brackets, the stateukl has one

electron and the intermediate stateuk8l has only phonons.
The opposite occurs in the second term. Admitting that it
uses infinite energy to create a two-electron state,u11hmnjl
cannot occur as the intermediate state in Eq.(5). Therefore,
we can write for the diagonal elements of the Green’s func-
tion

GiisEd =
1

Z
o
kk8

fe−bEk + exps− bon
mn"vndg

3
uCi

kshmnjdu2

E − SEk − o
n=1

N

mn"vnD − ih

, s6d

whereCi
kshmnjd are the eigenvectors expressed in terms of

the basis vectors. From Eq.(6), the fermion spectral density
of states(SDS) is immediately obtained,

rsEd =
1

p
Im o

i=1,2
GiisEd ; o

i=1,2
ri ,

where ri is the partial SDS corresponding to theith bare
electronic level.

The maximum number of phonons necessary to correctly
reproduce several lowest-energy eigenvalues(which are im-
portant for temperatures used in the experiments) depends on
the coupling strengths but is not large. Just taking 10 as the
maximum number of phonons allowed in the system, we
obtained the eigenvalues coinciding with the analytical re-
sults of Ref. 43(for a12=0, a11=a22=0.2−0.3) and formula
(3) (for a12=0.2−0.3, a11=a22=0 and using the RW ap-
proximation) to within 10−3 meV. For example, the SDS
spectra calculated for the latter case(but beyond the RW
approximation) are shown in Fig. 1.

FIG. 1. Calculated partial spectral densities of states correspond-
ing to two electronic levels separated byD=30 meV interacting
with one optical phonon mode with"v0=30 meV sD8=0d. Only
nondiagonal coupling was includedsa12=0.3d. T=300K. Note the
Rabi splitting in the polaron states and their shift to the lower
energies.
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III. EMISSION AND ABSORPTION SPECTRA

One can calculate the optical absorption and emission
spectra using the Kubo formula for the frequency-dependent
dielectric function.43 The imaginary part of the dielectric
function, which describes the absorption and emission prop-
erties, is related to the real part of the frequency-dependent
conductivity by the relation

Im «svd =
4p

v
Ressvd. s7d

According to the Kubo formula,

Ressvd =
e2

m0V

1

2v
E
−`

`

dteivtk j†std js0dl. s8d

We are interested in describing the transitions from an elec-
tron state(labeled 0) in the valence band(which we assume
is not phonon coupled) to the statessi =1,2d in the conduc-
tion band, andvice versa. Thus, the current operator is de-
fined as

j = o
i=1

2

p0isai
†a0 − a0

†aid, s9d

wherep0i is the momentum matrix element between the cor-
responding bare states. The current-current correlation func-
tion is

k j†std js0dl = o
i,i8=1,2

p0i
* p0i8kfa0

†stdaistd − ai
†stda0stdg

3fa0
†ai8 − ai8

† a0gl. s10d

This expression can be developed into four expectation val-
ues. However, there are only two terms which contribute to
the sum in Eq.(10). This occurs becauseaiukl vanishes ifukl,
an eigenstate of the Hamiltonian(1), is a state with zero
electrons. The nonzero terms are

ka0
†stdaistdai8

† a0l =
1

Z
o
k

e−bEkeiEktkkua0
†aie

−iHtai8
† a0ukl

and

kai
†stda0stda0

†ai8l =
1

Z
o
k

e−bEkeiEktkkuai
†a0e

−iHta0
†ai8ukl,

where ai ;ais0d. These terms can be evaluated using the
identity 1=ok8uk8lkk8u by inserting unity between thea op-
erators. The result is

k j†std js0dl =
1

Z
o

k,hmnj
o
i,i8

p0i
* p0i8e

−bEkeisEk−E0dt

3 fCi8
k*shmnjdCi

kshmnjd − Ci
k*shmnjdCi8

k shmnjdg.

s11d

Using Eq.(11), performing the Fourier transformation in Eq.

(8) and substituting in Eq.(7), we obtain the following ex-
pression for the imaginary part of the dielectric function:

Im esvd = S 2pe

m0v
D2 1

VZ8
o

i,i8=1,2
Hp0i

* p0i8

3 o
k,hmnj

expS− bo
n

mn"vnDCi
k*shmnjdCi8

k shmnjd

3 FdXv − SEk − o
n

mn"vnDC + expX− bSEk

− o
n

mn"vnDCdXv + SEk − o
n

mn"vnDCGJ ,

s12d

whereZ8=ohmnj expf−bonmn"vng. The terms in the second
line of Eq. (12) correspond to the absorption and emission,
respectively, of a photon of frequencyv. Some absorption
and emission spectra, calculated for a hypothetical QD, are
presented in Figs. 2–5(the parameters are indicated on the
figures). These demonstrate the effects of the diagonal and
off-diagonal coupling strength, interlevel spacing, and tem-
perature on the optical properties of the dot. Here we con-
sidered the lower exciton level optically active and the upper
one inactivesp02=0d. Such a situation occurs in spherical
II-VI (e.g., CdSe) QD’s (1se1S3/2 and 1se1P3/2 states,
respectively).48

IV. INTERACTION WITH ACOUSTIC PHONONS

Interaction with confined longitudinal acoustic phonons,
although mediated by a different mechanism(namely, a de-
formation potential instead of the Fröhlich potential), can be
considered in the same way as for optical phonons and
should result in series of closely spaced but still isolated
spectral peaks. However, for any kind of QD’s embedded in
a matrix, there must be a spectral region where acoustic
phonons are essentially delocalized and their energy varies in
a continuous way. If the velocity of sound in the QD and
matrix material is not very different, the density of acoustic
phonon states should be similar to that of the bulk crystals.
These states can be characterized by a wave vectorq. This is
the case of self-assembled QD’s11 and can be a reasonable
approximation for a certain fraction of acoustic phonons in a
spherical QD embedded in a dielectric matrix. In this section
we shall consider the interaction of an electron localized in
the dot with acoustic phonons which are completely delocal-
ized (see Appendix for details). The interaction, which oc-
curs only inside the QD, is weak for each phonon mode
(since it contains a factorVQD/V, V is the volume of the
whole system). However, since the number of modes is vir-
tually infinite, perturbation theory may fail and we shall
avoid using it. For this, we will have to neglect coupling
between different electronic levels through acoustic phonons
and consider a single electronic level coupled to an arbitrary
number of phonon modes. This approximation corresponds
to the independent boson model,43 which is normally consid-
ered for optical phonons(see Sec. III). Recently,14,40 it was
applied to acoustic phonons in a QD. Based on the exact
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solution of this model, we shall propose a different procedure
which will lead us directly to the self-energy function of the
electron or exciton. Later, this self-energy will be reinter-
preted for the optical-phonon polaron.

The Hamiltonian of a system consisting of one electronic
level and a continuum of acoustic phonon modes is

H2 = a†aS«0 + o
q

gqsbq
† + bqdD + o

q
"vqbq

†bq. s13d

It can be diagonalized by transformation to new bosonic
operators43

Bq = bq + aqa†a, s14d

whereaq=sgq /"vqd. The energy spectrum is given by

EshNqjd = «08 + o
q

"vqNq s15d

with «08=«0−oqaq
2"vq. Eigenstates of the Hamiltonian(13)

can be expressed in terms of the pure phonon states,

uNql8 = o
mq

CN
mumql. s16d

Acting with the operatorBq
†Bq on the wave function(16) we

can find recurrent relations for the coefficientsCN
m:

N = sm+ aq
2dsCN

md2 + aqfÎm+ 1CN
m+1CN

m + ÎmCN
m−1CN

mg.

s17d

In the linear approximation(with respect to the interaction
with a single phonon modeq), we obtain from Eqs.(16) and
(17):

uNql8 = pNq
fÎNqaquNq − 1l + uNql + ÎNq + 1aquNq + 1lg,

s18d

where

pNq
=

1

Î1 + s2Nq + 1daq
2
.

The one-electron Green’s function corresponding to the
Hamiltonian(13) can now be calculated using Eq.(4),

GsEd

=7o
hmqj

p
q

hdmq,Nq
+ aq

2fNqdmq,Nq−1 + sNq + 1ddmq,Nq+1gj

E − «08 − o
q

"vqsNq − mqd − ih

3 expF− o
q

s2Nq + 1daq
2G8 , s19d

where the angular brackets stand for the thermodynamical
average and the exponential factor arises from the product
PqpNq

. Taking into account only one-phonon processes, the
thermodynamical average approximately replacesNq’s with

the corresponding Bose factorsN̄q=fexpsb"vqd−1g−1 and
the Green’s function can be written as

FIG. 2. Calculated room temperature absorption spectra for dif-
ferent values of level spacing as indicated. All the other parameters
are the same as for Fig. 1.
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FIG. 4. Absorption(left) and emission(right) spectra calculated for different(compared to Fig. 3) values of the diagonal coupling
constants.

FIG. 3. Absorption(left) and emission(right) spectra for a system of two exciton levels separated byD=30 meV calculated for different
temperatures. The excitons interact with two optical phonon modes of the energies"v1=25 meV and"v2=25.2 meV. The electron-phonon
coupling constants are indicated in the figure. The origin of the energy axis is chosen at the energy of the lowest exciton statesE0d.
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GsEd =H 1

E − «08 − ih
+ o

q
F aq

2N̄q

E − «08 − "vq − ih

+
aq

2sN̄q + 1d
E − «08 + "vq − ih

GJF1 + o
q

s2N̄q + 1daq
2G−1

.

s20d

However, Eq.(20) can only be used for a quite weak inter-
action or at very low temperatures. Although the interaction
is weak for each phonon mode(all aq are small), the number
of modes is large and the effective electron-phonon interac-
tion is strong. A typical number of phonons interacting with

the electron can be estimated asQ=s2N̄q+1daq
2 and for the

model presented in Appendix,Q@1 for usual experimental
temperatures. Under these conditions, it is necessary to use
the general equation(19).

The evaluation of the Green’s function from Eq.(19) can
be made using a Monte Carlo procedure. Instead of summing
over all 3N configurationshmqj (N is the number of acoustic
phonon modes), one can generate someNMC most probable
configurations withmq=sNq−1d, Nq, sNq+1d, occurring with

the probabilitiesaq
2N̄qp

N̄q

2
, p

N̄q

2
, and aq

2sN̄q+1dp
N̄q

2
, respec-

tively. Averaging over a sufficiently largeNMC of such con-
figurations,GsEd is obtained including all the many-phonon
processes.

Let us define the electron self-energy taking into account
the interaction with acoustic phonons,

SsEd = E − G−1sEd. s21d

In the one-phonon approximation, the explicit expression for
the self-energy is

SsEd = «08 − sE − «08do
q

aq
2s2N̄q + 1d

+ sE − «08d
2o

q
F aq

2N̄q

E − «08 − "vq − ih

+
aq

2sN̄q + 1d
E − «08 + "vq − ih

G . s22d

The spectral dependence of the self-energy corresponding to
the Green’s function[Eq. (20)], obtained using the Monte
Carlo procedure, is presented in Figs. 6 and 7. For compari-
son, we have also calculated the self-energy using Eq.(22).
The interaction constantsaq, derived in the Appendix, were
used in these calculations and the material parameters were
those of CdSe, except for the deformation potential constant
ac, which is about 2 times smaller than the bulk value of the
relative volume deformation potential between the valence
and conduction bands.49 Such a choice is justified by the fact
that only a fraction of acoustic phonons can be described by
a propagating wave assumed in the Appendix.

Assuming that the broadening of the electronic levels pro-
duced by the interaction with acoustic phonons is small com-
pared to the electronic level spacing, it is possible to include

FIG. 5. Absorption(left) and emission(right) spectra calculated for different values of the nondiagonal coupling constant(see the
explanation to Fig. 3).
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this interaction in our scheme to consider the polaronic states
proposed in the previous sections. Let us consider now the
full Hamiltonian, which includes the interactions with both
optical and acoustic phonons,

H3 = o
i=1

2

S«i + o
q

gq
sidsbq

† + bqdDai
†ai + o

i j

2

o
n=1

N

gij
n ai

†ajsbn
† + bnd

+ o
q

"vqbq
†bq + o

n=1

N

"vnbn
†bn, s23d

wheregq
sid denotes the acoustic phonon coupling constant for

electronic leveli. The Hamiltonian(23) can be rewritten in
terms of the polaron statesukl by introducing the correspond-
ing (fermionic) annihilation and creation operatorsAk

†,Ak.
The electron–LO-phonon Hamiltonian(1) is then reduced to

H1 = o
k

EkAk
†Ak.

Using the expansion of the bare electronic states in terms of
the polaron ones,

uil = o
k

o
hmnj

fCi
kshmnjdg* ukl,

the term in Eq.(23) representing the interaction with acous-
tic phonons can be written as

FIG. 6. Imaginary(left) and real(right) parts of the self-energy for a single electronic level interacting with acoustic phonons, calculated
for different temperatures using the Monte Carlo technique explained in the text. The dashed curve was plotted using the one-electron
approximation[Eq. (22)]. The coupling constants were calculated as explained in the Appendix. The necessary material parameters were
taken as follows:r0=5.8 g/cm3, cl =3.8 km/s andac=3.5 eV. The QD radiusR=2 nm.

FIG. 7. Imaginary part of the
self-energy calculated for aR
=4 nm QD as explained in Fig. 6.
The dashed curve was plotted us-
ing one-electron approximation
[Eq. (22)].
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o
i=1,2

o
q

gq
sidsbq

† + bqdo
k,k8

o
hmnj

fCi
kshmnjdg*Ci

k8shmnjdAk
†Ak8

= o
q

gqsbq
† + bqdo

k

Ak
†Ak + o

q
Dgqsbq

† + bqdo
k,k8

tk,k8Ak
†Ak8,

s24d

wheregq=sgq
s1d+gq

s2dd /2, Dgq=sgq
s2d−gq

s1dd, and

tk,k8 = o
hmnj

hfC1
kshmnjdg*C1

k8shmnjd − fC2
kshmnjdgg*C2

k8shmnjd.

Neglecting the last term in Eq.(24), that is assuming that the
coupling to acoustic phonons is approximately the same for
both electronic levels, we arrive at the Hamiltonian

H3 = o
k

Ak
†AksEk + o

q
gqsbq

† + bqdd + o
q

"vqbq
†bq. s25d

This can be diagonalized exactly in the same way as Eq.
(13). The poles of the electron Green’s function(6) (as well
as the absorption and emission peaks) are shifted according
to the substitutionEk→Ek8,

Ek8 = Ek − o
q

aq
2"vq + ko

q
"vqsNq − mqdl,

where, as before,sNq−mqd can be considered a random vari-
able taking the values 1, 0, and −1 with the probabilities

aq
2N̄qp

N̄q

2
, p

N̄q

2
, andaq

2sN̄q+1dp
N̄q

2
, respectively. This results in

a similar broadening and a downward shift of all the polaron
states contributing to the spectral density of states, absorp-
tion, and emission, just as in the one-level independent boson
model.41 It is equivalent to ascribing a spectral variable-
dependent self-energy,SsE−Epd [given by Eq.(21) or (22)],
to each pole of Eq.(6). As before, we can reinterpret this
result for an exciton-polaron, under the condition that we
have no more than one exciton per QD. Examples of spectra
showing this effect are presented in Fig. 8. The nondiagonal
term with tk,k8 leads to an acoustic-phonon-mediated mixing
of the polaron states, which will be considered in a future
work.

V. DISCUSSION

Let us start the discussion by emphasizing that only in the
hypothetical case where the phonon-mediated coupling of
the lowest energy exciton state to all other states can be
neglected(for example, in the limit of extremely strong con-
finement, such thatD@"v0, or if a12 is small because of the
symmetry of the corresponding wave functions), can one ex-
pect to observe Franck-Condon progressions in the emission
and absorption spectra associated with this state.41 This is the
only case when the Huang-Rhys parameter describes the
spectra in the entirety. It is obvious from Eq.(2) that the
diagonal coupling is proportional to the(integrated) differ-
ence between the electron and hole charge densities, which is
nonzero mainly due to the fact that the conduction and va-
lence bands in II-VI and III-V materials have different sym-
metries. Even if some further effects(for example, a pres-
ence of defects or strain) contribute to the separation of the

electron and hole clouds in space,17 one can hardly expect an
order of magnitude increase in this parameter, compared to
the calculated values cited in the Introduction. This means
that the intensity of the LO-phonon sidebands must be rather
small and monotonically decreasing with the increase of the
number of phonons.

However, in most cases the phonon-mediated interlevel
coupling, at least between the subsequent exciton states,
should be important. The off-diagonal interaction constant is
likely to exceed the diagonal ones. For instance, if the two
exciton levels are different by the participating hole state
(e.g., 1se1S3/2 and 1se1P3/2 states in a spherical II-VI QD), it
is easy to see from Eq.(2) that (neglecting the Coulomb
interaction between the electron and hole)

g12
n = eE C1h

* srWhdfnsrWhdC2hsrWhddrWh, s26d

that is, there is no compensation effect for this interaction.
The spectra calculated assuming only the off-diagonal inter-
action(Figs. 1 and 2) show characteristic features known as
Rabi splitting, which is already present in the RW approxi-
mation[see Eq.(3)] and has been observed experimentally.31

Contrary to the RW approximation, the exact results also
show a downwards shift of the spectral lines(see Fig. 1). (In
the RW approximation, the most intense peak should be situ-
ated exactly atE−E0=0.) It has been noticed in Ref. 32 that
the nonadiabaticity results in a shift of the zero-phonon line
in the absorption spectrum towards lower energies. Here we
have shown that this effect is due to the virtual transitions
neglected in the RW approximation. Even if the upper level
is dipole forbidden, the phonon-assisted coupling to the op-
tically active level makes it possible the optical transition to

FIG. 8. Absorption spectra calculated for anR=2 nm CdSe QD
including both optical and acoustic phonons for three different tem-
peratures. Two optical phonon modes of the energies"v1

=25 meV and"v2=25.8 meV and dimensionless interaction con-
stants (divided by the corresponding phonon energies) a11

1 =
−0.015, a22

1 =0.027, a12
1 =0.295; a11

2 =0.063, a22
2 =0.053, a12

2

=0.095 calculated in Ref. 39 were used. The acoustic phonon pa-
rameters were taken as for Fig. 6. The level spacing ofD
=80 meV was assumed. The inset shows theT=300K spectrum
without the acoustic phonon contribution(at T=10 K only the main
peak is seen).
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the former.32 The presence of the optically inactive level
manifests itself by the manifolds seen in the spectra of Fig. 2.
Note that the off-diagonal coupling is not resonant as one
might expect thinking in terms of the Fermi’s golden rule.
The manifold produced by the coupling persists even for
quite a large detuningD8."v0. Curiously, it is reminiscent
of sidebands which might appear due to interaction with con-
fined acoustic phonons.

When both diagonal and off-diagonal interactions are
present, the effect is not just a sum of each of them, but also
some additional spectral features appear(see Figs. 3–5 show-
ing the effect of different parameters). This multiplicity of
allowed optical transitions is characteristic of the strong e-ph
coupling regime.36 The stronger the interactions are, the
richer the structure of the spectra. It should also be noted that
the symmetry between the absorption and emission spectra,
which is characteristic of the one-level independent boson
model (see the upper panel of Fig. 5), disappears when the
off-diagonal interaction is included. This also holds at low
temperatures where a small number of spectral features are
seen(Fig. 3, lower panel). Those belowE0 in the emission
spectrum are due to the diagonal coupling to the lowest en-
ergy exciton state. The one seen in the absorption originates
from interlevel coupling.

Let us turn to the acoustic phonons. The explicit calcula-
tion leads to a self-energy that depends on the spectral vari-
able in a sophisticated way. Accordingly, the line shape is
quite different from the simple Lorentzian.14,40. The noise
seen in the calculated spectra of the self-energy(Figs. 6 and
7) is due to the Monte Carlo procedure used, when each
configurationhmqj of phonons produces ad function and the
number of Monte Carlo runs is finite(NMC=20 000 for Figs.
6 and 7). The imaginary part of the self-energy vanishes at
«08, so, the zero-phonon line(ZPL) at low temperatures re-
mains a sharpd-like resonance situated between two asym-
metric phonon sidebands, in accordance with experiment12,13

and previous theoretical studies.14,40 Only for high tempera-
tures does the SDS generated by a single electronic level take
a bell-like shape similar to the Lorentzian. The calculated
results also confirm the statement concerning the importance
of the multiphonon processes which increase in smaller QD’s
(Fig. 6). Turning to the exciton-polaron spectrum(Fig. 8),
the acoustic phonon-related broadening smears the discrete
structure associated with optical phonons. The multiplicity of
the confined optical phonon modes also helps this. Below,
we shall explain some previously published experimental
findings, which were not clearly understood before, in terms
of our calculated results.

A. “Strange” phonon replicas

Experimental evidence for spectral features whose dis-
tance from ZPL is smaller than the LO-phonon energy was
found in several works.20,21,24,50Thinking in terms of the
Franck-Condon progression, such peaks were attributed to
additional (interface or disorder-activated acoustic) phonon
modes, for some reason strongly coupled to the exciton.50 As
can be seen from Figs. 3–5, in the presence of interlevel
coupling, there are many spectral features that are not sepa-

rated from the ZPL(the most intense peak in all spectra) by
(a multiple of) the optical phonon energy. Some of them
persist at low temperatures. Such “strange” replicas can be
generated by asingle phonon mode(long-wavelength LO
phonon, neglecting its confinement) and their spectral posi-
tions are determined by the e-ph coupling constants. Thus,
there is no need to invoke extra modes(for which their
strong coupling to the exciton it would be hard to justify) in
order to explain these spectral features. The phonon-
mediated interlevel coupling provides a simpler and more
plausible explanation.

B. Anomalously strong two-LO-phonon satellite

As mentioned in the Introduction, several groups have
observed apparently phonon-related features in the absorp-
tion (but not in the emission) spectra of resonantly excited
self-assembled QD’s.24–28Given the relative weakness of the
exciton-phonon interaction in such dotssS!1d, difficulties
arise explaining the fact that the most intense satellite was
not the one-LO-phonon sideband but rather the two-LO pho-
non or three-LO one. This effect was qualitatively under-
stood as arising from a resonant coupling of the correspond-
ing phonon replica of the ground state to the excited state of
the exciton.26 Considering a QD ensemble, one can think in
terms of a multiphonon “filtering” of inhomogeneously dis-
tributed excited states.27 However, when single QD spectros-
copy is used,26 such a resonance of the interlevel spacing
with a multiple of the phonon energy is rather improbable.
(Even though there are several confined optical phonon
modes with slightly different energies, capable of consider-
able coupling to the exciton, this dispersion is only of the
order of 1 meV.) The assumption of a reasonably strong off-
diagonal coupling of the lowest and higher exciton states
(not in a close resonance with a certain number of phonons)
can account for anomalously strongn-LO-phonon sidebands.
Figure 9 shows how peaks separated by energies approxi-
mately equal to that of the optical phonon can appear in the
absorption spectra. We took a value ofD=55 meV, typical of
InAs/GaAs self-assembled QD’s, and considered two optical
phonon modes with the energies of 32 and 30 meV in order
to simulate the experimental result of Lemaitreet al.26 (The
two modes can be interpreted as a LO phonon in pure InAs
and an InAs-like LO phonon in the InxGa1−xAs alloy near the
QD boundary, respectively.) The values ofa12

n =0.2 and 0.15
used in this calculation do not look extraordinarily high tak-
ing into account the argument presented above[see Eq.(26)]
and the possible contribution of the optical deformation po-
tential mechanism in this interaction. A similar valuesa12

=0.15d was used in Ref. 31 to explain the experimentally
observed anticrossing of interlevel electron transitions with
LO phonons in InAs QD’s. We chosep02=p01 in the calcu-
lation since the upper level is also optically active in this
case(notice that the relative value ofp02 does not affect the
positions of spectral features, just their intensities). As can be
seen from Fig. 9, the second strong absorption peak isnot
separated from the ZPL by the energyD and can be called
“two-LO satellite,” since the weaker one-LO and three-LO
replicas also show up in the spectrum. The calculated spec-
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trum is in good agreement with the experimental observation
of Ref. 26.

C. Homogeneous broadening of absorption lines

In structures of higher dimensionality the temperature de-
pendence of the homogeneous linewidth is described by the
following relation:

GsTd − Gs0d = gacnacsTd + gLOnLOsTd, s27d

wheregac and gLO are constants andnac and nLO the Bose
factors for the acoustic and optical phonons, respectively.
There is no reason for Eq.(27) to be a good approximation
for QD’s, because it relies on the existence of a continuum of
electronic states and also is limited to one-phonon scattering
processes. Still it has been used in Refs. 15 and 19 and some
other publications to qualitatively describe the dependence
GsTd extracted from experimental absorption spectra of
spherical QD’s. It was found that this dependence, in the
region from 77 to 300 K, is much stronger than linear, simi-
lar to that predicted by the second term in Eq.(27), suggest-
ing that there is some broadening related to the optical
phonons. As has been pointed out in the Introduction, the
interaction of localized electrons with optical phonons only
produces additional discrete spectral lines. Consequently, the
optical-phonon-related part of the broadening should not be
taken literally; strictly speaking, the broadening occurs only
because of the continuum of acoustic phonons. Our calcula-
tions in Fig. 8, where the interaction constants were taken as
those for a typical spherical CdSe QD studied in Ref. 29,
demonstrates this effect. The interaction with several optical
phonon modes results in a series of closely spaced discrete
peaks[see inset in Fig. 8] that is camouflaged by the acoustic

phonons. The effective homogeneous broadening of the
spectral lines may apparently depend on the equilibrium
number of acoustic and optical phonons. Nevertheless, Eq.
(27) is too simple to describe this effect even qualitatively, as
found in Ref. 51 using single QD spectroscopy.

Owing to the apparent similarity with systems of higher
dimensionality, some authors associate the broadening dis-
cussed above with the optical-phonon-assisted carrier relax-
ation. However, it has been pointed out33,38 that this is not a
lifetime (or irreversible scattering) effect. Indeed, the polaron
states considered here are stationary states. The phonon-
assisted relaxation can probably occur through an anhar-
monic decay of the phonons participating in the formation of
the polaronic states, as suggested in Refs. 38 and 52 and
calculated in Ref. 36 and 53. Our consideration of the po-
laron spectrum in the presence of acoustic phonons shows,
however, another possibility, namely, the acoustic-phonon-
mediated transitions between different polaron states owing
to the nondiagonal term in Eq.(24). The next step should
consist of analyzing the efficiency of this mechanism. It is
worth noting at this point that, contrary to the opinion of the
authors of Ref. 37, such acoustic-phonon-mediated transi-
tions in the polaron spectrum should not be subject to pho-
non bottleneck, because there are plenty of polaron states
due to different optical phonon modes coupled differently to
the exciton. Many of them(which do not necessarily show
up in the spectra corresponding to thermal equilibrium) are
separated by small energies within the band of acoustic
phonons efficiently interacting with the polaron.

D. Up-converted PL

The up-converted or anti-Stokes photoluminescence
(ASPL) involves the emission of photons with energies
higher than the excitation energysEexcd. This effect was ob-
served for colloidal II-VI QD’s and discussed in several re-
cent publications.54–56 Additional information can be found
in Ref. 57. The ASPL occurs when an ensemble of QD’s is
excited at the very edge of the absorption spectrum, below
the normal(i.e., excited with high-energy photons) PL band.
The principal experimental facts concerning this effect are
the following:

(i) The ASPL intensity increases linearly with the excita-
tion power,55 which can be rather low.

(ii ) The blue(anti-Stokes) shift between the ASPL peak
andEexc does not significantly depend upon the QD size, if
Eexc is chosen proportionally to the absorption peak energy
(which depends upon the size).55 However, the shift in-
creases with temperature and can range from
20 to 150 meV.57

(iii ) If Eexc increases(approaching the absorption peak)
the ASPL also moves continuously towards higher
energies.55 Its intensity increases, and finally the spectrum
transforms into the normal PL band.57

(iv) The ASPL intensity increases strongly with tempera-
ture.

Possible ASPL mechanisms were discussed in Refs.
54–56, but no definite conclusion was made. According to
(i), processes like two-photon absorption and(since the pos-

FIG. 9. Low-temperature absorption spectrum calculated for an
InAs QD with the level spacing ofD=55 meV assuming two opti-
cal phonon modes(the energies are given on the figure) and ne-
glecting coupling to acoustic phonons. The interaction constants
used in this calculation area11

1 =0.005,a22
1 =0.005,a12

1 =0.2; a11
2

=0.005,a22
2 =0.005,a12

2 =0.15. Notice that three features above the
zero-phonon line are separated by nearly the same energy, approxi-
mately equal to 31 meV. The inset shows the corresponding emis-
sion spectrum.
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sibility of emergence of more than one exciton per QD is
negligible) Auger excitation can be excluded in this case.
Therefore, it was suggested that incident photons excite elec-
trons to some intermediate subgap states from which they
eventually proceed to the higher energy(luminescent) states
through a thermal effect. Some obscure surface states(SS’s)
for which, as admitted by the authors of Ref. 56, there is not
any direct evidence, were suggested as being responsible for
the subgap absorption.55,56

From our point of view, the participation of subgap SS’s
(even if they exist in the passivated colloidal QD’s) is un-
likely in virtue of the experimental results(ii ) and (iii ). In
fact, it would require the SS’s energy to have approximately
the same dependence on the QD size as that of the confined
electronic states in the dots, in obvious contradiction with
what should be expected from the general point of view. At
the same time, naturally formed subgap states exist, which
are separated from the fundamental absorption line(i.e.,
ZPL) by energies which are only weakly dependent on the
QD size. These are the redshifted optical phonon replicas. In
order to demonstrate this, we calculated polaron spectra of a
spherical QD taking into consideration the 1se1S3/2 and
1se2S3/2 bare exciton states separated by some 100 meV, in-
teracting with three strongest confined phonon modes with
angular momental =0,2 (the coupling constants were taken
approximately two times larger than the calculated values39

in order to take into account other phonon modes not in-
cluded explicitly). Figure 10(a) presents the lower-energy

side of a calculated QD absorption spectrum showing two
subgap bands(designated as “-1LO” and “-2LO”) through
which the dot can be excited. The excited QD then will emit
a photon, most likely having the ZPL energy. The probability
of such an up-conversion process increases with temperature
because the integrated intensity of “-1LO” and “-2LO” ab-
sorption bands[shown calculated in Fig. 10(b)] also in-
creases. The experimental temperature dependence of the
ASPL intensity measured in Ref. 55 can be understood tak-
ing into account that, at a certain temperature, further red-
shifted satellites(whose intensity depends more strongly on
the temperature) become more efficient. The situation is
complicated by the distribution of the QD size, so thatEexc
can match different “-nLO” bands of dots of several different
sizes. This agrees qualitatively with the experimentally ob-
served increase in the anti-Stokes shift with temperature.57

Modeling of the ensemble effects involved in the ASPL phe-
nomenon is beyond the scope of this paper and will be con-
sidered in a future work. Nevertheless, we believe that our
model explains, at least qualitatively, the principal experi-
mental facts concerning ASPL.

In conclusion, we have proposed a nonperturbative ap-
proach for the calculation of the polaronic effects in QD’s,
which allows for the consideration of electronic levels
coupled through the interaction with several confined phonon
modes. Using this approach, we were able to show that the
polaronic effects are significant, even when the interlevel
spacing is quite far away from resonance with the optical

FIG. 10. (a) Low-energy part of the absorption and emission spectra calculated for a hypothetical CdTe QD considering three optical
phonon modes with parameters given on the figure. The acoustic phonon parameters were taken as for Fig. 6. The level spacingD
=100 meV, temperature 300K. (b) Temperature dependence of the integrated intensity of two subgap bands in the absorption spectrum(a)
(lines) and experimental data of Ref. 55(points) showing the temperature dependence of the ASPL peak amplitude.
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phonon energies. We have demonstrated that this opens the
possibility to account for some previously published and not
clearly understood phenomena in experimental data. We
have also presented an explicit calculation of the spectral line
shapes because of the diagonal interaction of acoustic
phonons with the original electronic levels and suggest that
the same interaction may be responsible for relaxation of the
polaron entity to lower energies.
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APPENDIX: ELECTRON–ACOUSTIC-PHONON
COUPLING RATES

The following simple model was used to estimate the
rates aq of electron coupling to longitudinal acoustic
phonons. Assuming that LA phonons are completely delocal-
ized, that is, neglecting acoustic impedance at the interface
between the QD and matrix, the displacement can be written
as

uz = S "

2vqr0V
D1/2

Reeisqz−vqtd,

wherer0 is the density. For the deformation potential inter-
action mechanism the dimensionless coupling constant is49

aq =
ac

"vq
E ucu2div usqddV,

whereac is the bulk deformation potential andc the electron
wave function. Considering the lowest conduction band state
in a spherical QD of radiusR, with infinite barriers, the wave
function is48

c =Î 1

2pR

sinspr/Rd
R

sr ø Rd.

Using these expressions, we obtain

aq = acS 1

2"vqr0Vcl
2D1/2

IsqRd, sA1d

wherecl is the longitudinal sound velocity,

Isyd = 2p2E
0

1

j0syxd j0
2spxdx2dx, sA2d

and j0 is the spherical Bessel function. The integral in(A2)
can be expressed in terms of the integral sinus as

1

2
HSisyd −

1

2
fSisy + 2pd + Sisuy − 2pudgJ .

The functionIsyd decreases from 1 fory=0 to nearly zero for
yù5.
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