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Abstract
Strong coupling of a confined exciton to optical phonons in
semiconductor quantum dots (QDs) leading to the formation of a
polaron is considered for a model system including two lowest exciton
states and several optical phonon modes. Both intra- and inter-level
terms are taken into account. The Hamiltonian has been exactly
diagonalized including a finite number of phonons allowed for each
mode, large enough to guarantee that the result can be considered exact in
the physically important region of energies. Based on this polaron
spectrum, the Raman scattering probability is obtained, which is compared
with the one calculated using the standard perturbation theory approach. It
is shown that, when either diagonal or non-diagonal coupling is
sufficiently strong, the Raman spectrum line shape and especially its
resonant behaviour differ considerably from the perturbation theory
predictions. The dependence of the scattering intensity on the excitation
wavelength contains features similar to those expected in the optical
absorption spectra of QDs.

1. Introduction

In the last few years there has been increased interest in
studying the properties of quantum dot (QD) systems using
optical absorption and photoluminescence (PL) spectroscopy,
Raman scattering, FIR absorption and other experimental
techniques [1]. These studies emphasized the important
role that phonons play in the processes which determine the
corresponding QD properties. As known, because of the
electron confinement in the dot, a strong electron–phonon
interaction, and accordingly, multi-phonon processes taking
place in all these optical phenomena can be expected. Even
though the Fröhlich-type coupling of optical phonons to an
exciton confined in a QD is reduced owing to the partial
compensation of the phonon interactions with the electron
and the hole, it still can be quite strong [2]. Phonon-mediated
inter-level coupling can be even stronger because there should
be little compensation effect for it. Owing to the intensity
of this interaction, the very idea of an electron emitting or
absorbing a phonon, based on the perturbation theory concept,
is probably wrong in a QD [3, 4]. The situation is more
likely described by polaronic quasi-particle excitations, which

require a non-adiabatic and non-perturbative treatment of the
many-body interactions taking place in these systems.

Raman scattering is known to be a powerful tool for
studying not only the phonons but also the underlying
electronic structure of the scattering medium. It has been
applied to systems containing self-assembled and spherical
QDs in many works (e.g. [5–8]) with the objective of probing
phonon confinement [5], strain [6] or disorder effects [7].
Resonant behaviour of the scattering was also studied [8],
although without much interpretation of the experimental
results. Meanwhile, it could help to assess the confined
exciton states participating in the resonant scattering, which
would be particularly useful for self-assembled QDs where
optical absorption measurements are not directly possible.
These states themselves are affected by the electron–phonon
interaction (in fact, the incident light creates not an exciton but
a polaron). The importance of taking into account this non-
adiabaticity while considering effects such as PL or Raman
scattering was pointed out by Fomin et al [9]. The aim of
the present paper is to demonstrate what kind of effect one
can expect in the Raman scattering when the electron–phonon
interaction in QDs is considered exactly, without making the
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Figure 1. Resonance behaviour of the Raman scattering probability calculated using equation (2) (upper curve in each plot) for a QD with
two optically active exciton levels (E1 = 2.0 eV and E2 = 2.1 eV, p01 = p02) considering a single optical phonon mode h̄ω0 = 30 meV. For
comparison, spectra obtained using equation (3) (and the same parameters) are also presented (lower curve in each plot). Graphs (a)–(d)
correspond to different sets of the exciton–phonon interaction constants as given on the figure.

adiabatic approximation and virtually including all the multi-
phonon processes.

2. Model and formalism

Our model system consists of two electronic levels
representing the ground and first excited states of, for instance,
a hole in a chemically grown spherical CdSe QD or electrons
in self-assembled InAs QDs possessing two split levels due
to anisotropy in the growth plane. Both levels are coupled
to N phonon modes characterized by different harmonic
oscillator frequencies within the optical phonon band of the
corresponding bulk material. The system is described by the
Hamiltonian,

H =
2∑

i=1

εic
+
i ci +

N∑
ν=1

h̄ωνb
+
ν bν +

2∑
i,j=1

N∑
ν=1

αν
ij c

+
i cj

(
b+

ν + bν

)
,

(1)

where c+
i , ci are the fermion creation and annihilation operators

for electrons (or holes) and b+
ν , bν are the operators for

phonons and αν
ij are the respective electron–phonon interaction

constants [2]. In order to diagonalize this Hamiltonian, we
consider a basis of uncoupled states, |n1n2{mν}〉, where nr =
0, 1 is the number of fermions on level r and mν = 0, 1, 2, . . .

is the number of phonons of mode ν. In principle, the
Hamiltonian matrix is infinite but one can truncate the Hilbert
space by allowing a certain maximum number of phonons for
each mode and obtain a very accurate solution as shown in
[2]. Since we are interested in the case when there is a single
fermion in the dot, it is necessary to consider only the states
|10{mν}〉 and |01{mν}〉. Then the Hamiltonian matrix has the
dimension 2m1m2 · · ·mN . For a small number of modes and
a reasonable number of phonons for each mode, it can be
easily diagonalized numerically yielding the polaron states of
the QD. Given the eigenvalues (Ek) and eigenvectors of the
Hamiltonian (1) (denoted by |k〉), we can calculate different
observable quantities for the QD, such as the electronic spectral
function and the optical absorption and emission spectra (by
using the Kubo formula [10]).

In this paper, we limit ourselves to calculating the one-
phonon Raman scattering probability. The eigenstates of the
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Figure 2. Resonant Raman scattering spectra calculated using equation (2) (upper curve in each plot) for a QD with the same exciton
parameters as for figure 1 but including two optical phonon modes with the energies h̄ω1 = 32 meV and h̄ω2 = 30 meV. Each phonon mode
was described by a Lorentzian with a (homogeneous) width of 1 meV. Lower curves in all plots were calculated using equation (3). Graphs
(a)–(d) correspond to two different excitation energies ((a), (c) and (b), (d)) and two sets of the exciton–phonon interaction constants which
are given in the figure for the phonon mode 1. For the phonon mode 2 all the interaction constants are 50% smaller.

Hamiltonian (1) are now interpreted as the excited states of the
exciton–polaron. The ground state (exciton vacuum) contains
only phonons. Using the second-order perturbation theory for
the light–polaron interaction, the (Stokes process) scattering
probability is

w(�I , ω) = (2π)3

V 2�I�S

(
e

meη

)4 1

Z

∑
{mν }

exp

(
−β

∑
ν

mνh̄ων

)

×
∑
ν ′

∣∣∣∣∣
∑

k

∑
l,l′ p0lp

∗
0l′

(
Ck

l ({mν})
)∗

Ck
l′({mν ′ }′)

Ek − ∑
ν mνh̄ων − h̄�I

∣∣∣∣∣
2

× δ(ων ′ − ω) (2)

where �I and �S are the frequencies of the incident and
scattered light, respectively, ω = �I − �S is the Raman
shift, V the scattering volume, η the refractive index, me the
free electron mass, Z = ∑

{mν } exp
(−β

∑
ν mνh̄ων), β =

1/(kBT ), Ck
i ({mν}) are the eigenvectors expressed in terms of

the basis vectors |10{mν}〉 (l = 1) and |01{mν}〉 (l = 2), p0l

is the momentum matrix element between the exciton vacuum
and state l and {mν ′ }′ = {m1,m2, . . . , mν ′ + 1, . . . , mN }.

For comparison, we also present below the scattering
probability calculated using the standard perturbation-theory
expression (see e.g. [11]),

w(�I , ω) = (2π)3

V 2�I�S

(
e

meη

)4 ∑
ν

[n(ων) + 1]

×
∣∣∣∣∣
∑
l,l′

p0lp
∗
0l′α

ν
ll′

(El′ − h̄�I )(El − h̄�S)

∣∣∣∣∣
2

δ(ων − ω) (3)

where n(ων) is the Bose factor.

3. Results and discussion

We applied the formalism outlined in the previous section to
the calculation of the resonance behaviour (dependence on
�I ) and line shape (dependence on ω) of the Raman scattering
probability for a model QD with two lowest optically active
exciton levels separated by the energy 
 = E2 − E1 of the
order of several tens of meV. The exciton–phonon interaction
constants have been calculated in [2] for a spherical QD taking
into account the electrostatic mechanism and the effects of hole
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bands mixing and phonon confinement. For the QD size in
the range of 2–3 nm, the non-diagonal interaction constant
(hereafter we refer to dimensionless values, βν

ij = αν
ij

/
(h̄ων))

was found to be of the order of the bulk Fröhlich constant (e.g.,
0.4 for CdSe). The calculated diagonal coupling constants
are smaller, as mentioned in the introduction, however, the
deformation potential mechanism can contribute significantly
to the diagonal interaction, especially for III–V materials. In
the present calculations, the coupling constants were varied
in the range of 0–0.6 in order to see where the polaron
effect becomes important for the Raman scattering. Some
of the results calculated for room temperature are presented in
figures 1 and 2.

The dependence of the scattering probability on �I

for small values of βij (figures 1(a), (b)) has two pairs of
peaks known as incoming and outgoing resonances [11] for
each bare exciton level. For the case of only intra-level
interactions (β12 = 0, not shown here) all the resonances have
similar intensities (in fact, they are exactly equal according to
equation (3) and only slightly different according to
equation (2)). ‘Switching on’ the inter-level coupling changes
the situation, the intensities of different resonances become
rather different depending on all βij (note, however, the
symmetry of the spectra with respect to the mid-point between
E1 and E2 + h̄ω0). With the increase in the interaction
strengths (figures 1(c), (d )), the spectra calculated using the
two approaches begin to differ substantially. When the inter-
level coupling dominates (figure 1(c)), the spectrum calculated
using equation (2) shows characteristic features similar to
those obtained in the electron spectral function and known
as Rabi splitting [2, 12]. They correspond to the exciton
oscillating between its two states and (many times) emitting
and absorbing a phonon. Note that this structure is observed
when two levels are far from resonance with the phonon
(
 � h̄ω0). In the case of strong intra-level coupling
(figure 1(d )) the spectrum resembles the Huang–Rhys
progression in absorption spectra calculated for the one-level
‘independent boson model’ [10] (by the way, this model is
commonly used for the interpretation of the QD spectra, e.g.
[13]). Of course, none of these features appear in the spectra
calculated using equation (3).

The Raman line shape is determined by relative intensities
of a small number of phonon modes confined in the QD
[5, 7]. The strongest one usually corresponds to the spectral
maximum while the others form an asymmetrically broadened
band extending to the lower ω. We included two modes with

different βν
ij in the calculations of the line shape. Comparing

the spectra of figure 2 calculated in the framework of the
polaron concept to those obtained using the perturbation theory
expression, we note that the line shape, generally, is not
changed much. However, the weaker mode can be resonantly
enhanced (figure 2(b)) or suppressed (figure 2(c)) under certain
excitation conditions, resulting in a noticeable effect on the line
shape.

In conclusion, we proposed a non-perturbative and non-
adiabatic approach for the calculation of the polaron effect on
the Raman scattering in QDs. It becomes important for the
Raman scattering at the same conditions as for the absorption
and emission. The dependence of the scattering intensity
on the incident photon energy shows characteristic polaron-
related features and therefore can be used, along with the PLE
spectroscopy, for studying the details of the exciton spectra in
QDs.
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