

Accepted Manuscript

Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels

Cristovao F. Lima, Manuel Fernandes-Ferreira, Cristina Pereira-Wilson

PII: S0024-3205(06)00518-2 DOI: doi:10.1016/j.lfs.2006.06.042

Reference: LFS 11428

To appear in: Life Sciences

Received date: 1 March 2006 Revised date: 22 June 2006 Accepted date: 30 June 2006

Cite this article as: Lima, Cristovao F., Fernandes-Ferreira, Manuel, Pereira-Wilson, Cristina, Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of glutathione levels, *Life Sciences* (2006), doi:10.1016/j.lfs.2006.06.042

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Phenolic compounds protect HepG2 cells from oxidative damage: Relevance of
2	glutathione levels
3	
4	Cristovao F. Lima, Manuel Fernandes-Ferreira, Cristina Pereira-Wilson*
5	
6	Department of Biology, Centre of Biology, School of Sciences, University of Minho,
7	4710-057 Braga, Portugal
8	
9	Corresponding author: * Cristina Pereira-Wilson
10	Department of Biology, Centre of Biology, School of Sciences, University of Minho
11	4710-057 Braga, Portugal
12	telephone +351 253604318; fax +351 253678980; e-mail cpereira@bio.uminho.pt
13	
14	Abstract
15	In the present work, the potential hepatoprotective effects of five phenolic compounds
16	against oxidative damages induced by tert-butyl hydroperoxide (t-BHP) were evaluated
17	in HepG2 cells in order to relate in vitro antioxidant activity with cytoprotective effects.
18	t-BHP induced considerable cell damage in HepG2 cells as shown by significant LDH
19	leakage, increased lipid peroxidation, DNA damage as well as decreased levels of
20	reduced glutathione (GSH). All tested phenolic compounds significantly decreased cell
21	death induced by t -BHP (when in co-incubation). If the effects of quercetin are given
22	the reference value 1, the compounds rank in the following order according to inhibition
23	of cell death: luteolin (4.0) > quercetin (1.0) > rosmarinic acid (0.34) > luteolin-7-
24	glucoside (0.30) > caffeic acid (0.21) . The results underscore the importance of the
25	compound's lipophilicity in addition to its antioxidant potential for its biological

26	activity. All tested phenolic compounds were found to significantly decrease lipid
27	peroxidation and prevent GSH depletion induced by t-BHP, but only luteolin and
28	quercetin significantly decreased DNA damage. Therefore, the lipophilicity of the
29	natural antioxidants tested appeared to be of even greater importance for DNA
30	protection than for cell survival. The protective potential against cell death was
31	probably achieved mainly by preventing intracellular GSH depletion. The phenolic
32	compounds studied here showed protective potential against oxidative damage induced
33	in HepG2 cells. This could be beneficial against liver diseases where it is known that
34	oxidative stress plays a crucial role.
35	
36	Keywords: Phenolic compounds; Liver; Oxidative stress; HepG2 cells; <i>tert</i> -butyl
37	hydroperoxide; Antioxidants

Introduction

38

39	An overall increase in cellular levels of reactive oxygen species (ROS) above the cells'
40	defenses results in oxidative stress that can ultimately cause cell death. Oxidative stress has
41	been recognized to be involved in the etiology of several age-related and chronic diseases
42	such as cancer, diabetes, neurodegenerative and cardiovascular diseases (Tiwari, 2004; Cui
43	et al., 2004; Ceriello and Motz, 2004; Klaunig and Kamendulis, 2004; Willcox et al., 2004;
44	Ballinger, 2005; Gibson and Huang, 2005). In particular with respect to liver diseases such
45	as hepatocellular carcinoma, viral and alcoholic hepatitis and non-alcoholic steatosis, it is
46	known that ROS and reactive nitrogen species play a crucial role in disease induction and
47	progression (Adachi and Ishii, 2002; Loguercio and Federico, 2003; Vitaglione et al.,
48	2004). The liver is particularly susceptible to toxicants since the portal vein brings blood to
49	this organ after intestinal absorption. The absorbed drugs and xenobiotics in a concentrated
50	form can cause ROS- and free radical-mediated damage that may result in inflammatory
51	and fibrotic processes (Jaeschke et al., 2002).
52	Because oxidative stress plays a central role in liver diseases pathology, dietary
53	antioxidants have been proposed as therapeutic agents to counteract liver damage
54	(Vitaglione et al., 2004). This same idea has also been suggested for other oxidative stress-
55	based chronic diseases (Tiwari, 2004; Willcox et al., 2004). In fact, several
56	epidemiological studies have shown that diets rich in fruit and vegetables and other plant
57	foods (including tea and wine) are associated with a decreased risk of premature death and
58	mortality from chronic diseases, such as cardiovascular diseases and some types of cancer
59	(Stanner et al., 2004; Scalbert et al., 2005). Phenolic compounds (PhC), and in particular
60	polyphenols, are believed to be, at least in part, responsible for such effects. Results from
61	some human clinical trials support the role of these compounds in prevention of some

62 chronic diseases (Ren et al., 2003; Spencer et al., 2004; Tiwari, 2004; Willcox et al., 2004; 63 Scalbert et al., 2005). 64 Today much is known about the chemistry and antioxidant potential of PhC as a result of 65 in vitro chemical and sub-cellular studies (Rice-Evans et al., 1997; Croft, 1998). However, 66 besides their strong free radical scavenging activity, PhC can also act as antioxidants by 67 chelating metal ions, preventing radical formation, and indirectly by modulating enzyme 68 activities and altering the expression levels of important proteins, such as antioxidant and 69 detoxifying enzymes (Ferguson, 2001; Ross and Kasum, 2002; Ferguson et al., 2004). Few 70 studies, however, address the biological effects of PhC, and the ones performed using 71 cellular and in vivo models indicate a poor correlation between the antioxidant potency of 72 PhC measured in vitro and the compound's biological activity. The biological effect of 73 PhC and their in vivo circulating metabolites will ultimately depend on their cellular 74 uptake and/or the extent to which they associate with cell membranes (Spencer et al., 75 2004). 76 HepG2 cells, a human hepatoma cell line, are considered a good model to study in vitro 77 xenobiotic metabolism and toxicity to the liver, since they retain many of the specialized 78 functions which characterize normal human hepatocytes (Knasmuller et al., 1998). In 79 particular, HepG2 cells retain the activity of many phase I, phase II and antioxidant 80 enzymes ensuring that they constitute a good tool to study cytoprotective, genotoxic and 81 antigenotoxic effects of compounds (Knasmuller et al., 2004; Mersch-Sundermann et al., 82 2004). Recently, studies of cytoprotection by natural antioxidants in HepG2 cells have 83 increasingly been using *tert*-butyl hydroperoxide (*t*-BHP), an organic hydroperoxide, as the 84 toxic agent (Thabrew et al., 1997; Kinjo et al., 2003; Mersch-Sundermann et al., 2004; Lee 85 et al., 2005a, 2005b; Alia et al., 2006). t-BHP can be metabolized in the hepatocyte by 86 glutathione peroxidase, generating oxidized glutathione (GSSG) (Sies and Summer, 1975;

87	Rush et al., 1985). GSSG is converted back to reduced glutathione (GSH) at the expense of
88	NADPH by glutathione reductase (GR). Depletion of GSH and NADPH oxidation are
89	associated with altered calcium homeostasis, leading to loss of cell viability (Bellomo et al
90	1982; Martin et al., 2001). Alternatively, t-BHP can be converted into its peroxyl and
91	alkoxyl free radicals by cytochrome P450 enzymes and by free iron-dependent reactions.
92	These free radicals can subsequently initiate lipid peroxidation, form covalent bonds with
93	cellular molecules (such as DNA and proteins) and further decrease GSH levels. The latter
94	effect, in addition to altering calcium homeostasis, affects mitochondrial membrane
95	potential, eventually causing cell death (Rush et al., 1985; Nicotera et al., 1988; Masaki et
96	al., 1989; Davies, 1989; Buc-Calderon et al., 1991; Kass et al., 1992; VanderZee et al.,
97	1996; Hix et al., 2000).
98	In this study we evaluate hepatoprotective effects of PhC against t-BHP-induced oxidative
99	damage in HepG2 cells, in order to relate in vitro antioxidant activity with cytoprotective
100	effects. Two phenolic acids, caffeic acid and rosmarinic acid (an ester of caffeic acid and
101	3,4-dihydroxyphenyllactic acid), and three flavonoids, luteolin (flavone), luteolin-7-
102	glucoside (flavone glycoside) and quercetin (flavonol), were used (Fig. 1). Firstly, the
103	concentrations of PhC that protected by 50% (IC ₅₀) against t-BHP-induced cell death were
104	determined. Based on the IC $_{50}$ values for each compound, biological activity was related to
105	both antiradical efficiency and hydrophobicity. Subsequently, IC ₈₀ values, a concentration
106	that effectively protects 80% of the cells against t-BHP-induced cell death, were used to
107	evaluate the effects of each compound on several markers of oxidative damage, such as
108	intracellular glutathione, lipid peroxidation, glutathione-related enzyme such as
109	glutathione-S-transferase (GST), GR and glutathione peroxidase (GPox), as well as on
110	DNA damage. The relative importance of effects of PhC on these parameters to protection
111	against <i>t</i> -BHP-induced cell death is discussed.

112	
113	Materials and methods
114	Chemicals
115	Minimum Essential Medium Eagle (MEM), tert-butyl hydroperoxide, quercetin,
116	rosmarinic acid, caffeic acid and Bradford reagent were purchased from Sigma-Aldrich
117	(St. Louis, MO, USA). Fetal bovine serum (FBS) was obtained from Biochrom KG
118	(Germany). Luteolin and luteolin-7-O-glucoside were purchase from Extrasynthese
119	(Genay, France). All other reagents were of analytical grade.
120	
121	Cell culture
122	HepG2 cells (hepatocellular carcinoma cell line), obtained from the American Type
123	Culture Collection (ATCC), were maintained in culture in 75 cm ² polystyrene flasks
124	(Falcon) with MEM containing 10% FBS, 1% antibiotic -antimycotic solution, 1 mM
125	sodium pyruvate and 1.5 g/l sodium bicarbonate under an atmosphere of 5% CO ₂ at 37°C.
126	
127	Assay for t-BHP cytotoxicity and protection by phenolic compounds
128	HepG2 cells were plated in 24-multiwell culture plates at 2.5×10 ⁵ cells per well. To study
129	t-BHP cytotoxicity, forty hours after plating, the medium was discarded and fresh medium
130	containing t-BHP at various concentrations was added. At different time points, cellular
131	viability was determined by the MTT assay (Mosmann, 1983) and by lactate
132	dehydrogenase (LDH) leakage assay (Lima et al., 2005). In order to determine the
133	concentration of PhC that protects 50% of the cells from damage induced by the toxicant
134	(IC ₅₀), cells were incubated with 2 mM of <i>t</i> -BHP for 5 h to induce significant cell death.
135	The prevention of LDH leakage (cell death) was measured in co-incubations with PhC
136	dissolved in DMSO (1% v/v final concentration, controls with DMSO only) at several

137	concentrations. The IC_{50} and the Hill slope – the slope of the PhC concentrations (in
138	logarithm) plotted versus cell death protection relative to the control (2 mM t-BHP, 5 h) –
139	were calculated graphically using a computer program (GraphPad Prism, version 4.00,
140	GraphPad Software Inc.). Based on the dose–response curves of cell death protection by
141	PhC against the t-BHP-induced oxidative damage in HepG2 cells, the IC ₈₀ concentrations
142	were estimated and used in the following experiments to evaluate the protective potential
143	of the compounds on several cellular parameters.
144	
145	Evaluation of the effects of t-BHP and PhC at the IC_{80} concentration on lipid peroxidation,
146	glutathione levels and glutathione-related enzyme activities in HepG2 cells
147	HepG2 cells were plated in 6-multiwell culture plates at 7.5×10 ⁵ cells per well. Forty hours
148	after plating, the medium was discarded and fresh medium containing 2 mM t-BHP and/or
149	the IC_{80} concentration of each PhC was added. Five hours later, cell culture medium and
150	cell scrapings were harvested and kept at -80°C for following quantification of several
151	parameters. Cell scrapings were harvested in lysis buffer (25 mM KH ₂ PO ₄ , 2 mM MgCl ₂ ,
152	5 mM KCl, 1 mM EDTA, 1 mM EGTA, 100 μ M PMSF, pH 7.5) after rinsing the cells
153	with PBS (137 mM NaCl, 2.7 mM KCl, 8.5 mM Na ₂ HPO ₄ , 1.5 mM KH ₂ PO ₄ , pH 7.4).
154	
155	Evaluation of the effects of t-BHP and PhC at the IC $_{80}$ concentration on DNA damage in
156	HepG2 cells
157	HepG2 cells were plated in 6-multiwell culture plates at 5×10^5 cells per well. To study t -
158	BHP-induced DNA damage, 16 h after plating, the medium was discarded and fresh
159	medium containing t-BHP at various concentrations was added. After 1 hour of incubation,
160	cells were rinsed in warm PBS and then incubated for 5 min with 0.125% (w/v) trypsin in
161	PBS. The cells were then harvested in PBS to be used in the alkaline version of the comet

162	assay for evaluation of DNA damage. To study the protective potential of PhC at IC_{80}
163	concentration on t-BHP-induced DNA damage, cells were incubated with 200 µM t-BHP
164	for 1 h to induce significant DNA damage. For that, sixteen hours after plating, the
165	medium was discarded and fresh medium containing 200 μM t-BHP and/or the IC $_{80}$
166	concentration of each PhC was added to the cells. After 1 h incubation, cells were treated
167	as above to carry out the comet assay.
168	
169	Comet assay
170	The single cell gel electrophoresis (comet) assay was performed based on previous
171	descriptions (Klaude et al., 1996; Uhl et al., 1999, 2000) with slight modifications. Briefly,
172	40,000 cells in PBS were centrifuged (80 $\times g$, 2 min), the pellet was mixed with 100 μl of
173	low melting agarose 0.5% (w/v) in PBS, at 37°C and spread on agarose coated slides. The
174	agarose was allowed to set at 4°C for 10 min, and then the slides were immersed in lysis
175	buffer (2.5 M NaCl, 100 mM EDTA, 10 mM Tris, pH 10 with NaOH, triton X-100 1% v/v
176	added fresh) at 4°C for 2 h. After being rinsed with distilled water, the slides were
177	immersed in a horizontal electrophoresis tank with electrophoresis buffer (300 mM NaOH,
178	1 mM EDTA, pH >13) at 4°C and exposed for 40 min to allow alkaline unwinding.
179	Afterwards, electrophoresis was carried out under alkaline conditions for 20 min, 300 mA,
180	at 0.8 V/cm in a cold room (4°C). Finally, the slides were neutralized by washing three
181	times for 5 min each with 0.4 M Tris, pH 7.5, at 4°C, fixed with methanol and kept at 4°C
182	until evaluation. For analysis of the comet images, the DNA was stained with ethidium
183	bromide and scored under a fluorescent microscope using a computer assisted image
184	analysis system and/or a visual scoring method avoiding analyzing cells at the edges of the
185	gel. The computer image analyses were done using a public domain image -analysis
186	program – NIH image (Helma and Uhl, 2000), and the results expressed in terms of tail

187	length, tail moment and % DNA in tail of 50 cells in 4 independent experiments. In the
188	semiquantitative method of visual scoring, the comet images were classified in five classes
189	according to the intensity of fluorescence in the comet tail, attributing a value of 0, 1, 2, 3
190	or 4 from undamaged to maximal damage. In this way, the total score for 100 images can
191	range from 0 (all undamaged) to 400 (all maximally damaged, giving the overall DNA
192	damage of the cell population expressed in arbitrary units (Duthie and Dobson, 1999;
193	Duthie, 2003).
194	
195	Biochemical analyses
196	Lipid peroxidation
197	The extent of lipid peroxidation was estimated by the levels of malondialdehyde measured
198	using the thiobarbituric acid reactive substances (TBARS) assay at 535 nm following a
199	methodology previously described (Lima et al., 2005). The results are expressed as
200	nmol/mg of protein using a molar extinction coefficient of 1.56×10 ⁵ M ⁻¹ cm ⁻¹ .
201	Glutathione levels
202	The glutathione levels from the cell cultures were determined by the DTNB-GSSG
203	reductase recycling assay as previously described (Anderson, 1985), with some
204	modifications (Lima et al., 2004). The results are expressed as nmol GSH/mg of protein.
205	Glutathione-related enzyme activities
206	For measurement of the glutathione-related enzyme activities, the cell scraping
207	homogenates were centrifuged at $10,000 \times g$ for 10 min at 4°C and the supernatant
208	collected.
209	GST and GR activities were measured spectrophotometrically at 30°C as previously
210	described (Lima et al., 2005) and the results expressed in nmol/min/mg protein (mU/mg).

211	The selenium-dependent and -independent GPox activity was assayed as previously
212	described (Martin-Aragon et al., 2001) with some modifications. Briefly, GPox activity
213	was measured at 30°C following NADPH oxidation at 340 nm on a plate reader
214	spectrophotometer (Spectra Max 340pc, Molecular Devices, Sunnyvale, CA, USA) in the
215	presence of 1 mM GSH, 0.18 mM NADPH, 1 mM EDTA, 0.5 U/ml GR and 0.7 mM t-
216	BHP in 50 mM imidazole (pH 7.4). The activity was expressed as nmol of substrate
217	oxidized per minute per mg of protein (mU/mg).
218	Protein
219	Protein content was measured with the Bradford Reagent purchased from Sigma using
220	bovine serum albumin as a standard.
221	
222	Antiradical activity
223	The free radical scavenging (antiradical) activity of PhC was studied against two radicals:
224	the stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH?) and the superoxide radical.
225	For DPPH scavenging activity, after addition of different concentrations of PhC to DPPH
226	(90 μM), the percentage of remaining DPPH was determined at different times from the
227	absorbance at 515 nm using a plate reader spectrophotometer. As suggested by Sanchez-
228	Moreno and collaborators (Sanchez-Moreno et al., 1998), the amount of antioxidant
229	necessary to decrease by 50% the initial DPPH concentration (IC ₅₀) was expressed in terms
230	of initial concentration of DPPH to make the results easier comparable with other
231	published results. However, we put the results of the PhC in terms of moles instead of
232	grams to better relate the results with the chemical structures (Fig. 1) of the PhC studied.
233	We also calculated the parameter antiradical efficiency (AE) (Sanchez-Moreno et al.,
234	1998) using the estimated $T_{\text{IC}50}$ – time needed to reach the steady state at the corresponding
235	IC_{50} concentration, where $AE = 1/(IC_{50} \times T_{IC50})$. Finally, a new parameter is also shown –

236	the Hill slope, the graphically calculated slope from the plotted PhC concentration (in
237	logarithm) versus the remaining DPPH concentration (GraphPad Prism). The higher this
238	value, the narrower the concentration range from 0 to 100% of antiradical activity. This
239	graph was also used to calculate the IC ₅₀ of each compound.
240	The superoxide radical scavenging activity was determined using the phenazine
241	methosulphate-NADH nonenzymatic assay as previously described (Valentao et al., 2001).
242	As for DPPH assay, we also show the Hill slope from the graphics used to calculate the
243	IC ₅₀ (GraphPad Prism).
244	
245	Measurement of the partition coefficients
246	The degree of hydrophobicity of the PhC was examined by measuring the partition
247	coefficients taken in logarithm using an n-octanol/HEPES system (K_{ow}) as previously
248	described (Areias et al., 2001), at ambient temperature (~25°C).
249	
250	Statistical analysis
251	Data are expressed as means \pm SEM. Statistical significances were determined using a one-
252	way ANOVA followed by the Student-Newman-Keuls post-hoc test. P values = 0.05 were
253	considered statistically significant.
254	
255	Results
256	t-BHP cytotoxicity
257	The cytotoxicity of t-BHP to liver cells has been extensively studied although its
258	mechanisms of action have not been totally established (Sies and Summer, 1975; Cadenas
259	and Sies, 1982; Bellomo et al., 1982; Rush et al., 1985; Jewell et al., 1986; Nicotera et al.,
260	1988; Masaki et al., 1989; Davies, 1989; Buc-Calderon et al., 1991; Kass et al., 1992; Hix

261	et al., 2000; Martin et al., 2001). Recently, HepG2 cells have been used to study the
262	hepatotoxicity of t-BHP (Kim et al., 1998, 2000; Piret et al., 2002, 2004; Alia et al., 2005),
263	and this model suggested to evaluate the protective properties of natural compounds and
264	plant extracts against oxidative damages (Thabrew et al., 1997; Kinjo et al., 2003; Lee et
265	al., 2005a, 2005b; Alia et al., 2006). However, because the cell's response to t -BHP
266	depends on culture conditions, we first studied HepG2 cells' response to t-BHP dose (1
267	mM and 2 mM) and incubation time (1-16 h) by measuring LDH leakage and by the MTT
268	assay (Fig. 2). All our experiments with HepG2 cells were done with a culture medium
269	containing 10% (v/v) FBS. LDH leakage and MTT assay gave similar results for effects on
270	cell viability in response to t-BHP at both studied concentrations (Fig. 2). In the subsequent
271	studies, cell incubations were performed with 2 mM of t-BHP for 5 h to induce 40-50% of
272	cell death (Fig. 2) and used to evaluate the hepatoprotective potential of PhC against this
273	oxidant insult.
274	
275	Potential hepatoprotective effects of the PhC against t-BHP-induced toxicity in HepG2
276	cells
277	The potential hepatoprotective effects of the five PhC against the t-BHP-induced toxicity
278	(2 mM, 5 h) was evaluated by determining protection of cell viability, as measured by
279	LDH leakage (Fig. 3) in HepG2 cells. From the graphically computed values (Fig. 3), IC_{50}
280	and Hill slope values for each compound were obtained (Table 1). As shown in Table 1, of
281	the tested compounds, luteolin had the highest protective activity against t-BHP-induced
282	toxicity. The glycosylation of the hydroxyl group at position 7, present in luteolin-7-
283	glucoside, significantly decreased both IC_{50} and Hill slope (Table 1). Quercetin, the
284	flavonol of luteolin, in addition to a higher IC_{50} also had a lower Hill slope, indicating a
285	lower hepatoprotective potential when compared to the flavone. Rosmarinic and caffeic

286	acids had lower protective potentials against the oxidant insult to HepG2 cells when
287	compared to the flavonoids $-$ higher IC_{50} values and lower Hill slopes (Table 1).
288	Comparing the phenolic acids (Table 1), the polyphenol rosmarinic acid had higher
289	hepatoprotective potential than caffeic acid, which correlates well with the presence of one
290	more ortho dihydroxy phenolic structure (Fig. 1).
291	Based on the dose–response curves of protection from cell death, the PhC IC $_{80}$
292	concentrations were extrapolated (Table 1) and used to evaluate the effects of each
293	compound against t-BHP-induced oxidative injuries in HepG2 cells in terms of lipid
294	peroxidation, glutathione levels, glutathione-related enzyme activities and DNA damage.
295	The level of protection of cell viability obtained for each compound was correlated with
296	the effect on each of the several parameters outlined above.
297	
298	Effects of the t-BHP and PhC at the IC $_{80}$ concentration on lipid peroxidation, glutathione
299	levels and glutathione-related enzyme activities in HepG2 cells
300	The incubation of HepG2 cells with 2 mM t-BHP for 5 h decreased cell viability by 40-
301	50% (Fig. 2), along with a significant increase in lipid peroxidation and GSSG levels
302	(Table 2), as well as a decrease in GSH levels (Fig. 4). The toxicant also significantly
303	decreased the GR and GPox activities and had no significant effect on GST activity (Table
304	3).
305	All the PhC tested at IC_{80} concentration decreased significantly the t -BHP-induced
306	increase in lipid peroxidation (Table 2), caffeic acid being the most powerful with a 35%
307	reduction and the weakest being luteolin-7-glucoside with a 25% reduction. None of the
308	PhC significantly changed lipid peroxidation and GSSG levels in cells incubated alone
309	(without t-BHP) for 5 hours. As shown in Table 2, all the compounds reduced the t-BHP-
310	induced increases in GSSG levels, but the effect was significant only for rosmarinic acid.

311	The decrease in the GSH levels induced by t -BHP was significantly attenuated by all of the
312	PhC (Fig. 4). Luteolin-7-glucoside showed the best protective effect (81%) against the <i>t</i> -
313	BHP-induced decrease in GSH levels, followed by luteolin (53%), quercetin (40%), caffeic
314	acid (36%) and rosmarinic acid (34%). When HepG2 cells were incubated alone with the
315	PhC for 5 h, rosmarinic acid and the three tested flavonoids slightly decreased basal GSH
316	levels, although not significantly (Fig. 4). When this effect is taken into consideration,
317	luteolin-7-glucoside almost completely prevented the decrease of GSH induced by the
318	toxicant.
319	When incubated alone with HepG2 cells, luteolin-7-glucoside decreased significantly the
320	GST activity by 17% (Table 3). As observed in Table 3, the <i>t</i> -BHP-induced decreases in
321	GR and GPox activities were only slightly attenuated by the PhC, and only quercetin
322	showed a significant protective effect (19%) on GPox activity.
323	
324	t-BHP-induced DNA damage in HepG2 cells
325	The extent of DNA damage produced by 1-hour incubations with increasing concentrations
326	of t-BHP were determined by the comet assay and the images analyzed both by computer
327	assisted program and visual scoring. This model of t-BHP-induced DNA damage in
328	HepG2 cells has been used by other authors (Woods et al., 1999, 2001). As stated
329	previously, due to effects of culture conditions a dose–response to t-BHP on DNA damage
330	was studied. As shown in Figure 5, t-BHP concentrations of 200 µM and higher result in
331	significant DNA damage as visualized by the comet assay. The semiquantitative method of
332	visual scoring used has been extensively validated by comparison with computerized
333	image analysis systems and correlates well with more quantitative measures, such as %
334	DNA in the tail and tail moment (Duthie, 2003). Our results also showed good correlations
335	between the semiquantitative method and the parameters given by computer analysis

336	system (Fig. 5E). To evaluate the effect of the PhC at IC_{80} concentration on t -BHP-induced
337	DNA damage, HepG2 cells were co-incubated for 1 h with the different PhC plus 200 μM
338	t-BHP, and the DNA damage was assessed using the alkaline version of the comet assay
339	(results scored using the semiquantitative method). Incubation conditions of 1 h with 200
340	μM t-BHP were chosen to test the protective effects of PhC because intermediate damage
341	to the DNA was produced (~200 AU).
342	
343	Effects of PhC at the IC $_{80}$ concentration on t-BHP-induced DNA damage in HepG2 cells
344	Of the PhC tested, quercetin and luteolin conferred the best protection against t-BHP-
345	induced DNA damage (Fig. 6). Even if the IC ₈₀ concentration for luteolin is 4 times lower
346	than that for quercetin (Table 1), luteolin gave better protection than the flavonol (76% and
347	58%, respectively) (Fig. 6). Both quercetin (Fig. 7) and luteolin (data not shown) showed a
348	concentration-dependent DNA protection. As shown in Figure 7B, the protective effect of
349	quercetin was visually clear in the comet assay images. Rosmarinic acid (14%) and
350	luteolin-7-glucoside (18%) also protected significantly from DNA damages, although to a
351	much lower extent. At IC $_{80}$ concentration, caffeic acid did not show protection of the
352	DNA. None of the PhC tested induced DNA damage when incubated alone for 1 h at IC_{80}
353	concentration (Fig. 6).
354	
355	Antiradical activity
356	The antiradical activity of the PhC used in this study was evaluated by the DPPH and
357	superoxide radical scavenging assays. Figure 8 shows graphically the results from the
358	DPPH scavenging assay of caffeic acid as an example, which was used to calculate the
359	IC_{50} and the Hill slope for the compound. Rosmarinic acid had the best IC_{50} values both
360	against DPPH and superoxide radicals (Tables 4 and 5). The IC ₅₀ values in both antiradical

361	activity assays for caffeic acid were, as expected, significantly higher than those for
362	rosmarinic acid, but both compounds showed similar Hill slopes. Quercetin presented
363	lower IC_{50} values than the other flavonoids against both radicals (Tables 4 and 5). On the
364	other hand, quercetin had the lowest AE (Table 4). Comparing luteolin with its glucoside,
365	the aglycone had a slightly lower IC_{50} and a higher Hill slope against both radicals. In the
366	case of the DPPH scavenging activity, the higher AE value with a similar IC $_{50}$ means that
367	for luteolin-7-glucoside the time needed for it to reach the steady state at the corresponding
368	IC_{50} concentration was shorter than for luteolin.
369	The antiradical activity of some of these PhC has been extensively studied by many
370	authors (Sanchez-Moreno et al., 1998; Moridani et al., 2003; Butkovic et al., 2004; Parejo
371	et al., 2004; Kosar et al., 2004), and our results are, in general, in agreement with theirs.
372	
373	Partition coefficients
374	The degree of hydrophobicity of the PhC was examined by measuring the partition
375	coefficients using an n-octanol/HEPES system. Flavonoids are much more hydrophobic
376	than phenolic acids (Table 6). As expected, the glycosylation of the hydroxyl group at
377	position 7 of luteolin decreased considerably the degree of hydrophobicity of this
378	compound. Luteolin had a slightly higher PC than that of quercetin (Table 6). The
379	experimentally determined hydrophobicity of these two flavonoids has often been referred
380	in the literature, but the results are controversial. Some authors describe luteolin as more
381	hydrophobic than quercetin (Brown et al., 1998; Areias et al., 2001; Murata et al., 2004)
382	whereas others hold the opposite to be true (Moridani et al., 2003). The computer program
383	that can be accessed at http://www.esc.syrres.com, the KowWin (LogKow) software, gives
384	a lower degree of hydrophobicity for quercetin than for luteolin, 1.48 and 2.36,
385	respectively. This program uses fragmental analysis of the compound's structure for the

386	prediction and the computed values show usually a high correlation with quoted
387	experimental values ($r^2 = 0.95$).
388	
389	Discussion
390	The present work demonstrates that all the tested PhC possess protective effects against t-
391	BHP-induced cell death in HepG2 cells. Conferred protection decreased in the following
392	order: luteolin > quercetin > rosmarinic acid > luteolin-7-glucoside > caffeic acid as shown
393	by IC ₅₀ values. Considering the compounds' hydrophobicity (luteolin > quercetin >
394	luteolin-7-glucoside > rosmarinic acid > caffeic acid) and the antiradical activity evaluated
395	both for DPPH (rosmarinic acid > quercetin > caffeic acid > luteolin > luteolin -7-glucoside)
396	and superoxide radical (rosmarinic acid > quercetin > luteolin > luteolin-7-glucoside >
397	caffeic acid) scavenging activities, the results show that the hepatoprotective potential of
398	these PhC correlates primarily with their degree of hydrophobicity and only secondarily
399	with their antiradical capacity. In fact, Rice-Evans et al. (1996) and Spencer et al. (2004)
400	suggested that the antioxidant biological activity of PhC will depend more heavily on the
401	extent to which they associate, interact and permeate cell membranes than on its antiradical
402	activity alone. In agreement with this, it was only for compounds with comparable
403	hydrophobicities, such as the two tested phenolic acids, that a direct correlation between
404	biological activity and antiradical activity was obtained.
405	The importance of the compound's lipophilicity in addition to the antiradical capacity is
406	corroborated by comparisons between structurally related compounds. When luteolin is
407	glycosylated at position 7 in the A ring to become luteolin-7-glucoside, the compound's
408	hydrophobicity decreases dramatically. As a result, although the antiradical activity of
409	luteolin-7-glucoside was only slightly affected (5% to 11%), its biological activity
410	decreased dramatically (about 13 times lower) when compared with that for luteolin. The

411	results observed for quercetin and luteolin also implicate hydrophobicity as an important
412	factor for this cytoprotective antioxidant effect of compounds. The absence of the hydroxyl
413	group at position 3 (C ring) decreases the antiradical (hydrogen-donating) activity of
414	luteolin while increasing its hydrophobicity relative to quercetin. In agreement with the
415	previously stated, in co-incubations with <i>t</i> -BHP, luteolin showed the best protection with
416	an IC_{50} four times lower than that for quercetin. Also, in certain types of non cellular
417	lipophilic oxidation systems, luteolin showed higher antioxidant effects than those of
418	quercetin (Brown et al., 1998; Filipe et al., 2001; Hirano et al., 2001).
419	The importance of the compounds' hydrophobicity is also shown by comparing the results
420	between rosmarinic acid and luteolin-7-glucoside. Although rosmarinic acid had higher
421	antiradical scavenging activity, because the degree of hydrophobicity of luteolin-7-
422	glucoside was higher than rosmarinic acid, both compounds showed similar biological
423	effect (similar IC ₅₀ values).
424	Because our model of cytoprotection tests the PhC in co-incubations with the toxicant,
425	their antioxidant effects may reflect mainly their direct actions on mediators of t-BHP
426	toxicity. These direct effects include, besides the antiradical scavenging or hydrogen-
427	donating activity measured in this study, the compounds' ability to chelate metal ions
428	(Rice-Evans et al., 1996). Iron chelation could indeed be important for the protection
429	against t-BHP toxicity, which is known to be mediated by intracellular iron ions (Hix et al.,
430	2000). PhC may also indirectly act as antioxidants in cells by modulating the activity of
431	antioxidant, detoxifying and repairing enzymes as well as enzymes involved in the
432	bioactivation of xenobiotics (Ferguson, 2001; Ross and Kasum, 2002; Ferguson et al.,
433	2004). In the present study, where short term simultaneous incubations were used, PhC
434	protection through increased activity of glutathione-related enzymes seems not to be
435	relevant. In fact, the activity of GST, an important phase II detoxifying enzyme (Ferguson,

136	2001; Ferguson et al., 2004), was decreased rather than increased in controls exposed to
137	luteolin-7-glucoside, the only compound that had a significant effect on glutathione-related
138	enzymes. Longer term pre-incubations would provide the opportunity for induction of
139	proteins and enzymes, such as antioxidant enzymes, by interaction with antioxidant
140	response elements (Ferguson et al., 2004).
141	t-BHP-induced cell death was accompanied by increased lipid peroxidation and GSSG
142	levels, and DNA damage as well as decreased GSH levels and glutathione-related enzyme
143	activity. The increase in GSSG levels was not in the same range as the decrease in GSH
144	levels. This indicates that t-BHP reduced GSH levels mainly through formation of GSH
145	conjugates rather than oxidation to GSSG. These effects are in accordance with previous
146	studies in liver cells (Sies and Summer, 1975; Bellomo et al., 1982; Rush et al., 1985;
147	Jewell et al., 1986; Nic otera et al., 1988; Masaki et al., 1989; Buc-Calderon et al., 1991;
148	Kass et al., 1992; Thabrew et al., 1997; Martin et al., 2001; Kinjo et al., 2003; Alia et al.,
149	2005, 2006; Lee et al., 2005a, 2005b). However, particularly in HepG2 cells, t-BHP
150	exposure conditions are different among different studies published so far (Thabrew et al.,
1 51	1997; Kim et al., 1998, 2000; Piret et al., 2002, 2004; Kinjo et al., 2003; Alia et al., 2005,
152	2006; Lee et al., 2005a, 2005b). Previous reports indeed alert to the fact that different
153	origins of HepG2 clones, culture medium composition and cultivation time (age of cells)
154	may affect the experimental outcome through differences in sensitivity towards drugs
155	(Knasmuller et al., 2004; Mersch-Sundermann et al., 2004). It therefore becomes
156	imperative to characterize the cells' response to the toxicant as well as the experimental
157	conditions used for the detection of protective effects of test compounds.
158	In an attempt to explain the observed cytoprotective effects of the tested PhC, we looked at
159	their effects at IC_{80} concentration on several markers of cellular oxidative stress, such as
160	lipid peroxidation, glutathione levels and DNA damage.

461	t -BHP-induced lipid peroxidation in HepG2 cells was attenuated by all tested PhC at IC $_{80}$
462	concentrations to a similar extent, of about 30% (25% to 35%). A good correlation seems
463	to exist between hepatoprotective effects and the prevention of lipid peroxidation. The
464	ability of PhC to chelate metal ions and/or to act as chain breaking antioxidants by
465	scavenging (as hydrogen donors) lipid alkoxyl and peroxyl radicals (Rice-Evans et al.,
466	1996; Brown et al., 1998) could provide an explanation for the observed reduction in lipid
467	peroxidation. Nevertheless, the extent of this reduction was relatively small, only about
468	30%. This indicates that it is most likely not only through reduction of lipid peroxidation
469	that PhC protect HepG2 cells against death. In agreement with this, previous reports
470	indicated that t-BHP-induced toxicity was not mediated by lipid peroxidation (Rush et al.,
471	1985; Jewell et al., 1986; Buc-Calderon et al., 1991; Martin et al., 2001). Moreover, our
472	own observations (data not shown) and a previous work (Rush et al., 1985) reported that
473	incubations of liver cells with the oxidant pair ascorbate/iron induced massive cell lipid
474	peroxidation without significantly affecting cell viability. Preservation of cell viability
475	seems therefore to depend also on effects at other levels.
476	All tested PhC also significantly attenuate the decrease of GSH levels induced by <i>t</i> -BHP at
477	their IC 80 concentrations. GSH plays an important role in hepatocyte defence against ROS,
478	free radicals and electrophilic metabolites (Kedderis, 1996; Castell et al., 1997). A severe
479	GSH depletion leaves cells more vulnerable to oxidative damage by radicals and increases
480	protein thiolation or oxidation of SH groups that may lead to alterations in cellular calcium
481	homeostasis (Castell et al., 1997). A sustained increase in cytosolic calcium levels results
482	in activation of enzymes (phospholipases, non-lysomal proteases, endonucleases) and
483	cytoskeletal damage which ultimately causes cell death (Castell et al., 1997). The decrease
484	of GSH levels has indeed been suggested as one of the primary mechanisms of t-BHP-
485	induced toxicity in liver cells (Jewell et al., 1986; Buc-Calderon et al., 1991; Martin et al.,

186	2001) that is generally followed by an increase in the intracellular levels of calcium
187	(Bellomo et al., 1982; Nicotera et al., 1988; Buc-Calderon et al., 1991; Kass et al., 1992).
188	Thus, the potential of PhC to maintain GSH at reasonably high levels could be of great
189	importance against t-BHP-induced toxicity. Therefore, the ability of the tested PhC in
190	preventing against t-BHP-induced GSH depletion by about 40% was probably a major
191	contribution to their cytoprotective effects. In the case of luteolin-7-glucoside, there was a
192	higher protection (~80%) of GSH levels that did not reflect higher cytoprotection (all
193	compounds were tested at their IC $_{80}$ concentration). This may have been due to the
194	observed inhibitory effect of luteolin-7-glucoside on GST having a sparing effect on GSH.
195	Because protection by PhC against increases of GSSG levels induced by t-BHP was weak
196	it seems that PhC protect against the decrease of GSH levels mainly by preventing the
197	formation of GSH conjugates rather than oxidation to GSSG.
198	In spite of this general protection of GSH, when incubated alone, PhC decreased GSH
199	levels by 5% in the case of rosmarinic acid and between 10% and 14% for the tested
500	flavonoids. Although not statistically significant, this effect seems to indicate some pro-
501	oxidant activity of these compounds. Previous studies also found a decrease in GSH
502	induced by flavonoids (Duthie et al., 1997; Galati et al., 2002). For flavonoids with a 3',4'-
503	dihydroxyl group on the B ring (catechol B ring), as is the case here, the decrease of GSH
504	levels was found to be through formation of GSH conjugates instead of oxidation to GSSG
505	(Galati et al., 2002).
506	Incubations of HepG2 cells with t-BHP induced DNA damage in a concentration-
507	dependent manner, as visualized by the comet assay. Exposure to 200 μM t -BHP induced
508	significant DNA damage without inducing cell mortality (data not shown). This seems to
509	indicate that t-BHP-induced DNA damage was not implicated in the cell death induced by
510	this organic peroxide in HepG2 cells. In fact, caffeic acid, at IC ₈₀ concentration,

511	significantly decreased <i>t</i> -BHP- induced cell death without protecting DNA from damage.
512	Also, previous reports showed a dissociation between the oxidative DNA damage induced
513	by <i>t</i> -BHP from the killing of hepatocytes (Coleman et al., 1989; Latour et al., 1995).
514	Latour and collaborators (1995) ruled out both the formation of oxidized DNA bases and
515	the activation of a calcium-dependent endonuclease as mechanisms by which t-BHP
516	induces DNA single strand breaks. They showed that t-BHP causes DNA single strand
517	breaks most likely by covalent binding of free radicals to DNA by mechanisms dependent
518	on iron ions (Latour et al., 1995). Iron-dependent reactions have been proposed as the key
519	factor to the DNA damage induced by t-BHP since it can be prevented by iron chelators
520	but not by free radical scavengers, such as butylated hydroxytoluene and trolox (Coleman
521	et al., 1989; Latour et al., 1995; Guidarelli et al., 1997; Sestili et al., 1998, 2002). Recently,
522	another study using a different model showed the importance of iron chelation on DNA
523	protection over free radical scavenger activity (Melidou et al., 2005). In our study, where
524	the compounds were tested at their IC ₈₀ concentration (concentration that protected 80%
525	against cell death), only luteolin and quercetin conferred a very clear protection against
526	DNA damage. An ortho dihydroxy phenolic structure is one of the requirements for PhC
527	ability to chelate transition metal ions such as copper and iron (Rice-Evans et al., 1996;
528	Williams et al., 2004). All the compounds used in this study possess this element, but only
529	luteolin and quercetin conferred noticeable protection against DNA damage. It seems
530	therefore, that even more than in the case of preserved cell viability, the degree of
531	hydrophobicity of the compound is an important factor for protecting from DNA damage,
532	since this could explain the higher effects obtained for luteolin and quercetin. Also in
533	accordance with this are the results obtained from the comparison between quercetin and
534	luteolin themselves. Metal ion chelation ability of flavonoids appears to be not only
535	dependent on the presence of the catechol B ring but also an oxo group at position 4 in C

536	ring in combination with hydroxyl group either at position 5 or 3 (Mira et al., 2002;
537	Williams et al., 2004). Therefore, quercetin probably has higher metal ion chelation ability
538	than luteolin, which lacks the OH group at position 3. In fact, previous results showed
539	higher capacity of quercetin to chelate iron and copper than luteolin (Mira et al., 2002).
540	Our results show that luteolin, although at a concentration 4 times lower, protected DNA
541	against damage better than quercetin, which emphasizes the importance of the compounds'
542	lipophilicity. Also others have already drawn attention to the fact that the biological effects
543	of a compound would be a direct function of its lipophilicity, which is expected to increase
544	the cellular uptake of these agents, as well as their subcellular localization in lipid
545	compartments (Sestili et al., 2002; Spencer et al., 2004). Studies using other models and/or
546	different cell types showed that luteolin had higher potential to decrease DNA damage than
547	quercetin (Noroozi et al., 1998; Romanova et al., 2001; Horvathova et al., 2004, 2005), or
548	the opposite—quercetin having higher ability to reduce DNA damage than luteolin
549	(Horvathova et al., 2003; Melidou et al., 2005). As well, higher cytoprotective effects of
550	luteolin over quercetin were found by some authors (Kaneko and Baba, 1999; Sasaki et al.,
551	2003), although others reported the opposite (Ishige et al., 2001). It seems, therefore, that
552	the protective potential of luteolin and quercetin is cell type specific and/or dependent on
553	the agent used to induce DNA damage. Nevertheless, although DNA damage induced by t -
554	BHP in HepG2 cells seems not to be a crucial event for cell death, this experimental model
555	can be of use to extensively study the protective potential of PhC against DNA damage. It
556	would be, for example, a good model for structure-activity relationships between several
557	classes of flavonoids.
558	In conclusion, the PhC studied here showed protective effects against oxidative damages
559	induced in HepG2 cells that could be of use against liver diseases where it is known that
560	oxidative stress plays a crucial role. Moreover, their protective potential seems to be

561	dependent on the compound's lipophilicity in conjunction with its antioxidant activity.
562	Their effects on protection against t-BHP-induced GSH depletion seem to be an important
563	factor for preserving cell viability.
564	
565	Acknowledgements: CFL is supported by the Foundation for Science and Technology,
566	Portugal, grant SFRH/BD/6942/2001. This work was supported by the Foundation for
567	Science and Technology, Portugal, research grant POCTI/AGR/62040/2004.

References

- Adachi, M., Ishii, H., 2002. Role of mitochondria in alcoholic liver injury. Free Radical Biology and Medicine 32(6), 487-491.
- Alia, M., Ramos, S., Mateos, R., Bravo, L., Goya, L., 2005. Response of the antioxidant defense system to *tert*-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2). Journal of Biochemical and Molecular Toxicology 19(2), 119-128.
- Alia, M., Ramos, S., Mateos, R., Granado-Serrano, A.B., Bravo, L., Goya, L., 2006.

 Quercetin protects human hepatoma HepG2 against oxidative stress induced by
 tert-butyl hydroperoxide. Toxicology and Applied Pharmacology 212, 110-118.
- Anderson, M.E., 1985. Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology 113, 548-555.
- Areias, F.M., Rego, A.C., Oliveira, C.R., Seabra, R.M., 2001. Antioxidant effect of flavonoids after ascorbate/Fe(2+)-induced oxidative stress in cultured retinal cells. Biochemical Pharmacology 62(1), 111-118.
- Ballinger, S.W., 2005. Mitochondrial dysfunction in cardiovascular disease. Free Radical Biology and Medicine 38(10), 1278-1295.
- Bellomo, G., Jewell, S.A., Thor, H., Orrenius, S., 1982. Regulation of intracellular calcium compartmentation: studies with isolated hepatocytes and t-butyl hydroperoxide. Proceedings of the National Academy of Sciences of the United States of America 79(22), 6842-6846.

- Brown, J.E., Khodr, H., Hider, R.C., Rice-Evans, C.A., 1998. Structural dependence of flavonoid interactions with Cu2+ ions: implications for their antioxidant properties. The Biochemical Journal 330, 1173-1178.
- Buc-Calderon, P., Latour, I., Roberfroid, M., 1991. Biochemical changes in isolated hepatocytes exposed to *tert*-butyl hydroperoxide. Implications for its cytotoxicity. Cell Biology and Toxicology 7(2), 129-143.
- Butkovic, V., Klasinc, L., Bors, W., 2004. Kinetic study of flavonoid reactions with stable radicals. Journal of Agricultural and Food Chemistry 52(10), 2816-2820.
- Cadenas, E., Sies, H., 1982. Low-level chemi-luminescence of liver microsomal fractions initiated by *tert*-butyl hydroperoxide relation to microsomal hemoproteins, oxygen dependence, and lipid-peroxidation. European Journal of Biochemistry 124(2), 349-356.
- Castell, J.V., Gomez-Lechon, M.J., Ponsoda, X., Bort, R., 1997. In vitro investigation of the molecular mechanisms of hepatotoxicity. In: Castell, J.V., Gomez-Lechon, M.J. (Eds.), In Vitro Methods in Pharmaceutical Research. Academic Press, London, pp. 375-410.
- Ceriello, A., Motz, E., 2004. Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arteriosclerosis Thrombosis and Vascular Biology 24(5), 816-823.
- Coleman, J.B., Gilfor, D., Farber, J.L., 1989. Dissociation of the accumulation of single-strand breaks in DNA from the killing of cultured hepatocytes by an oxidative stress. Molecular Pharmacology 36(1), 193-200.

- Croft, K.D., 1998. The chemistry and biological effects of flavonoids and phenolic acids.

 Annals of the New York Academy of Sciences 854, 435-442.
- Cui, K., Luo, X.L., Xu, K.Y., Murthy, M.R.V., 2004. Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nutraceutical antioxidants. Progress in Neuro-Psychopharmacology & Biological Psychiatry 28(5), 771-799.
- Davies, M.J., 1989. Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. The Biochemical Journal 257(2), 603-606.
- Duthie, S.J., Dobson, V.L., 1999. Dietary flavonoids protect human colonocyte DNA from oxidative attack in vitro. European Journal of Nutrition 38(1), 28-34.
- Duthie, S.J., Johnson, W., Dobson, V.L., 1997. The effect of dietary flavonoids on DNA damage (strand breaks and oxidised pyrimdines) and growth in human cells.Mutation Research 390(1-2), 141-151.
- Duthie, S.J., 2003. The comet assay: protective effects of dietary antioxidants against oxidative DNA damage measured using alkaline single cell gel electrophoresis.

 In: Cutler, R.J., Rodriguez, H. (Eds.), Critical Reviews of Oxidative Stress and Aging: Advances in Basic Science, Diagnostics and Intervention. World Scientific, Singapore, pp. 309-323.
- Ferguson, L.R., 2001. Role of plant polyphenols in genomic stability. Mutation Research 475(1-2), 89-111.

- Ferguson, L.R., Philpott, M., Karunasinghe, N., 2004. Dietary cancer and prevention using antimutagens. Toxicology 198(1-3), 147-159.
- Filipe, P., Lanc, V., Nuno Silva, J., Morliere, P., Santus, R., Fernandes, A., 2001.

 Flavonoids and urate antioxidant interplay in plasma oxidative stress. Molecular and Cellular Biochemistry 221(1-2), 79-87.
- Galati, G., Sabzevari, O., Wilson, J.X., O'Brien, P.J., 2002. Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177(1), 91-104.
- Gibson, G.E., Huang, H.M., 2005. Oxidative stress in Alzheimer's disease.

 Neurobiology of Aging 26(5), 575-578.
- Guidarelli, A., Cattabeni, F., Cantoni, O., 1997. Alternative mechanisms for hydroperoxide-induced DNA single strand breakage. Free Radical Research 26(6), 537-547.
- Helma, C., Uhl, M., 2000. A public domain image-analysis program for the single-cell gel-electrophoresis (comet) assay. Mutation Research 466(1), 9-15.
- Hirano, R., Sasamoto, W., Matsumoto, A., Itakura, H., Igarashi, O., Kondo, K., 2001.

 Antioxidant ability of various flavonoids against DPPH radicals and LDL oxidation. Journal of Nutritional Science and Vitaminology 47(5), 357-362.
- Hix, S., Kadiiska, M.B., Mason, R.P., Augusto, O., 2000. In vivo metabolism of *tert*-butyl hydroperoxide to methyl radicals. EPR spin-trapping and DNA methylation studies. Chemical Research in Toxicology 13(10), 1056-1064.

- Horvathova, K., Chalupa, I., Sebova, L., Tothova, D., Vachalkova, A., 2005. Protective effect of quercetin and luteolin in human melanoma HMB-2 cells. Mutation Research 565(2), 105-112.
- Horvathova, K., Novotny, L., Tothova, D., Vachalkova, A., 2004. Determination of free radical scavenging activity of quercetin, rutin, luteolin and apigenin in H2O2-treated human ML cells K562. Neoplasma 51(5), 395-399.
- Horvathova, K., Novotny, L., Vachalkova, A., 2003. The free radical scavenging activity of four flavonoids determined by the comet assay. Neoplasma 50(4), 291-295.
- Ishige, K., Schubert, D., Sagara, Y., 2001. Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radical Biology and Medicine 30(4), 433-446.
- Jaeschke, H., Gores, G.J., Cederbaum, A.I., Hinson, J.A., Pessayre, D., Lemasters, J.J., 2002. Forum - Mechanisms of hepatotoxicity. Toxicological Sciences 65(2), 166-176.
- Jewell, S.A., Di Monte, D., Richelmi, P., Bellomo, G., Orrenius, S., 1986. tert-Butylhydroperoxide-induced toxicity in isolated hepatocytes: contribution of thiol oxidation and lipid peroxidation. Journal of Biochemical Toxicology 1(3), 13-22.
- Kaneko, T., Baba, N., 1999. Protective effect of flavonoids on endothelial cells against linoleic acid hydroperoxide-induced toxicity. Bioscience, Biotechnology, and Biochemistry 63(2), 323-328.

- Kass, G.E., Juedes, M.J., Orrenius, S., 1992. Cyclosporin A protects hepatocytes against prooxidant-induced cell killing. A study on the role of mitochondrial Ca2+ cycling in cytotoxicity. Biochemical Pharmacology 44(10), 1995-2003.
- Kedderis, G.L., 1996. Biochemical basis of hepatocellular injury. Toxicologic Pathology 24(1), 77-83.
- Kim, J.A., Kang, Y.S., Kim, Y.O., Lee, S.H., Lee, Y.S., 1998. Role of Ca2+ influx in the tert-butyl hydroperoxide-induced apoptosis of HepG2 human hepatoblastoma cells. Experimental & Molecular Medicine 30(3), 137-144.
- Kim, J.A., Kang, Y.S., Lee, S.H., Lee, Y.S., 2000. Inhibitors of Na+/Ca2+ exchanger prevent oxidant-induced intracellular Ca2+ increase and apoptosis in a human hepatoma cell line. Free Radical Research 33(3), 267-277.
- Kinjo, J., Hirakawa, T., Tsuchihashi, R., Nagao, T., Okawa, M., Nohara, T., Okabe, H., 2003. Hepatoprotective constituents in plants. 14. Effects of soyasapogenol B, sophoradiol, and their glucuronides on the cytotoxicity of tert-butyl hydroperoxide to HepG2 cells. Biological & Pharmaceutical Bulletin 26(9), 1357-1360.
- Klaude, M., Eriksson, S., Nygren, J., Ahnstrom, G., 1996. The comet assay: mechanisms and technical considerations. Mutation Research 363(2), 89-96.
- Klaunig, J.E., Kamendulis, L.M., 2004. The role of oxidative stress in carcinogenesis.

 Annual Review of Pharmacology and Toxicology 44, 239-267.
- Knasmuller, S., Mersch-Sundermann, V., Kevekordes, S., Darroudi, F., Huber, W.W., Hoelzl, C., Bichler, J., Majer, B.J., 2004. Use of human-derived liver cell lines

- for the detection of environmental and dietary genotoxicants; current state of knowledge. Toxicology 198(1-3), 315-328.
- Knasmuller, S., Parzefall, W., Sanyal, R., Ecker, S., Schwab, C., Uhl, M., Mersch-Sundermann, V., Williamson, G., Hietsch, G., Langer, T., Darroudi, F., Natarajan, A.T., 1998. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutation Research 402(1-2), 185-202.
- Kosar, M., Dorman, H.J.D., Baser, K.H.C., Hiltunen, R., 2004. Screening of free radical scavenging compounds in water extracts of Mentha samples using a postcolumn derivatization method. Journal of Agricultural and Food Chemistry 52(16), 5004-5010.
- Latour, I., Demoulin, J.B., Buc-Calderon, P., 1995. Oxidative DNA damage by *t*-butyl hydroperoxide causes DNA single strand breaks which is not linked to cell lysis.

 A mechanistic study in freshly isolated rat hepatocytes. FEBS Letters 373(3), 299-302.
- Lee, H.U., Bae, E.A., Han, M.J., Kim, D.H., 2005a. Hepatoprotective effect of 20(S)-ginsenosides Rg3 and its metabolite 20(S)-ginsenoside Rh2 on tert-butyl hydroperoxide-induced liver injury. Biological & Pharmaceutical Bulletin 28(10), 1992-1994.
- Lee, H.U., Bae, E.A., Han, M.J., Kim, N.J., Kim, D.H., 2005b. Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. Liver International 25(5), 1069-1073.

- Lima, C.F., Andrade, P.B., Seabra, R.M., Fernandes-Ferreira, M., Pereira-Wilson, C., 2005. The drinking of a *Salvia officinalis* infusion improves liver antioxidant status in mice and rats. Journal of Ethnopharmacology 97(2), 383-389.
- Lima, C.F., Carvalho, F., Fernandes, E., Bastos, M.L., Santos-Gomes, P.C., Fernandes-Ferreira, M., Pereira-Wilson, C., 2004. Evaluation of toxic/protective effects of the essential oil of *Salvia officinalis* on freshly isolated rat hepatocytes.
 Toxicology In Vitro 18(4), 457-465.
- Loguercio, C., Federico, A., 2003. Oxidative stress in viral and alcoholic hepatitis. Free Radical Biology and Medicine 34(1), 1-10.
- Martin, C., Martinez, R., Navarro, R., Ruiz-Sanz, J.I., Lacort, M., Ruiz-Larrea, M.B., 2001. *tert*-Butyl hydroperoxide-induced lipid signaling in hepatocytes: involvement of glutathione and free radicals. Biochemical Pharmacology 62(6), 705-712.
- Martin-Aragon, S., de las Heras, B., Sanchez-Reus, M.I., Benedi, J., 2001.

 Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Experimental and Toxicologic Pathology 53(2-3), 199-206.
- Masaki, N., Kyle, M.E., Farber, J.L., 1989. tert-butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids. Archives of Biochemistry and Biophysics 269(2), 390-399.
- Melidou, M., Riganakos, K., Galaris, D., 2005. Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: The role of iron chelation. Free Radical Biology and Medicine 39(12), 1591-1600.

- Mersch-Sundermann, V., Knasmuller, S., Wu, X.J., Darroudi, F., Kassie, F., 2004. Use of a human-derived liver cell line for the detection of cytoprotective, antigenotoxic and cogenotoxic agents. Toxicology 198(1-3), 329-340.
- Mira, L., Fernandez, M.T., Santos, M., Rocha, R., Florencio, M.H., Jennings, K.R., 2002. Interactions of flavonoids with iron and copper ions: a mechanism for their antioxidant activity. Free Radic. Res. 36(11), 1199-1208.
- Moridani, M.Y., Pourahmad, J., Bui, H., Siraki, A., O'Brien, P.J., 2003. Dietary flavonoid iron complexes as cytoprotective superoxide radical scavengers. Free Radical Biology and Medicine 34(2), 243-253.
- Mosmann, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1-2), 55-63.
- Murata, Y., Osaki, K., Shimoishi, Y., Baba, N., Tada, M., 2004. Degradation of ethyl docosahexaenoate by gamma-ray irradiation and suppression of this degradation by antioxidants. Bioscience, Biotechnology, and Biochemistry 68(3), 743-745.
- Nicotera, P., McConkey, D., Svensson, S.A., Bellomo, G., Orrenius, S., 1988.

 Correlation between cytosolic Ca2+ concentration and cytotoxicity in hepatocytes exposed to oxidative stress. Toxicology 52(1-2), 55-63.
- Noroozi, M., Angerson, W.J., Lean, M.E., 1998. Effects of flavonoids and vitamin C on oxidative DNA damage to human lymphocytes. The American Journal of Clinical Nutrition 67(6), 1210-1218.

- Parejo, I., Viladomat, F., Bastida, J., Schmeda-Hirschmann, G., Burillo, J., Codina, C., 2004. Bioguided isolation and identification of the nonvolatile antioxidant compounds from fennel (Foeniculum vulgare Mill.) waste. Journal of Agricultural and Food Chemistry 52(7), 1890-1897.
- Piret, J.P., Arnould, T., Fuks, B., Chatelain, P., Remacle, J., Michiels, C., 2004.

 Mitochondria permeability transition-dependent *tert*-butyl hydroperoxide-induced apoptosis in hepatoma HepG2 cells. Biochemical Pharmacology 67(4), 611-620.
- Piret, J.P., Mottet, D., Raes, M., Michiels, C., 2002. CoCl2, a chemical inducer of hypoxia-inducible factor-1, and hypoxia reduce apoptotic cell death in hepatoma cell line HepG2. Annals of the New York Academy of Sciences 973443-447.
- Ren, W., Qiao, Z., Wang, H., Zhu, L., Zhang, L., 2003. Flavonoids: promising anticancer agents. Medicinal Research Reviews 23(4), 519-534.
- Rice-Evans, C.A., Miller, N.J., Paganga, G., 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Biology and Medicine 20(7), 933-956.
- Rice-Evans, C.A., Miller, N.J., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends in Plant Science 2(4), 152-159.
- Romanova, D., Vachalkova, A., Cipak, L., Ovesna, Z., Rauko, P., 2001. Study of antioxidant effect of apigenin, luteolin and quercetin by DNA protective method. Neoplasma 48(2), 104-107.

- Ross, J.A., Kasum, C.M., 2002. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition 22, 19-34.
- Rush, G.F., Gorski, J.R., Ripple, M.G., Sowinski, J., Bugelski, P., Hewitt, W.R., 1985.
 Organic hydroperoxide-induced lipid-peroxidation and cell-death in isolated
 hepatocytes. Toxicology and Applied Pharmacology 78(3), 473-483.
- Sanchez-Moreno, C., Larrauri, J.A., Saura-Calixto, F., 1998. A procedure to measure the antiradical efficiency of polyphenols. Journal of the Science of Food and Agriculture 76(2), 270-276.
- Sasaki, N., Toda, T., Kaneko, T., Baba, N., Matsuo, M., 2003. Protective effects of flavonoids on the cytotoxicity of linoleic acid hydroperoxide toward rat pheochromocytoma PC12 cells. Chemico-Biological Interactions 145(1), 101-116.
- Scalbert, A., Manach, C., Morand, C., Remesy, C., Jimenez, L., 2005. Dietary polyphenols and the prevention of diseases. Critical Reviews in Food Science and Nutrition 45(4), 287-306.
- Sestili, P., Diamantini, G., Bedini, A., Cerioni, L., Tommasini, I., Tarzia, G., Cantoni,
 O., 2002. Plant-derived phenolic compounds prevent the DNA single -strand
 breakage and cytotoxicity induced by *tert*-butylhydroperoxide via an iron-chelating mechanism. The Biochemical Journal 364(Pt 1), 121-128.
- Sestili, P., Guidarelli, A., Dacha, M., Cantoni, O., 1998. Quercetin prevents DNA single strand breakage and cytotoxicity caused by *tert*-butylhydroperoxide: free radical scavenging versus iron chelating mechanism. Free Radical Biology and Medicine 25(2), 196-200.

- Sies, H., Summer, K.H., 1975. Hydroperoxide-metabolizing systems in rat liver. European Journal of Biochemistry 57(2), 503-512.
- Spencer, J.P., Abd-el-Mohsen, M.M., Rice-Evans, C., 2004. Cellular uptake and metabolism of flavonoids and their metabolites: implications for their bioactivity.

 Archives of Biochemistry and Biophysics 423(1), 148-161.
- Stanner, S.A., Hughes, J., Kelly, C.N.M., Buttriss, J., 2004. A review of the epidemiological evidence for the 'antioxidant hypothesis'. Public Health Nutrition 7(3), 407-422.
- Thabrew, M.I., Hughes, R.D., McFarlane, I.G., 1997. Screening of hepatoprotective plant components using a HepG2 cell cytotoxicity assay. The Journal of Pharmacy and Pharmacology 49(11), 1132-1135.
- Tiwari, A.K., 2004. Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. Current Science 86(8), 1092-1102.
- Uhl, M., Helma, C., Knasmuller, S., 1999. Single-cell gel electrophoresis assays with human-derived hepatoma (Hep G2) cells. Mutation Research 441(2), 215-224.
- Uhl, M., Helma, C., Knasmuller, S., 2000. Evaluation of the single cell gel electrophoresis assay with human hepatoma (Hep G2) cells. Mutation Research 468(2), 213-225.
- Valentao, P., Fernandes, E., Carvalho, F., Andrade, P.B., Seabra, R.M., Bastos, M.L., 2001. Antioxidant activity of Centaurium erythraea infusion evidenced by its superoxide radical scavenging and xanthine oxidase inhibitory activity. Journal of Agricultural and Food Chemistry 49(7), 3476-3479.

- VanderZee, J., Barr, D.P., Mason, R.P., 1996. ESR spin trapping investigation of radical formation from the reaction between hematin and *tert*-butyl hydroperoxide. Free Radical Biology and Medicine 20(2), 199-206.
- Vitaglione, P., Morisco, F., Caporaso, N., Fogliano, V., 2004. Dietary antioxidant compounds and liver health. Critical Reviews in Food Science and Nutrition 44(7-8), 575-586.
- Willcox, J.K., Ash, S.L., Catignani, G.L., 2004. Antioxidants and prevention of chronic disease. Critical Reviews in Food Science and Nutrition 44(4), 275-295.
- Williams, R.J., Spencer, J.P.E., Rice-Evans, C., 2004. Flavonoids: antioxidants or signalling molecules? Free Radical Biology and Medicine 36(7), 838-849.
- Woods, J.A., Bilton, R.F., Young, A.J., 1999. Beta-carotene enhances hydrogen peroxide-induced DNA damage in human hepatocellular HepG2 cells. FEBS Letters 449(2-3), 255-258.
- Woods, J.A., Jewell, C., O'Brien, N.M., 2001. Sedanolide, a natural phthalide from celery seed oil: effect on hydrogen peroxide and tert-butyl hydroperoxide-induced toxicity in HepG2 and CaCo-2 human cell lines. In Vitro & Molecular Toxicology 14(3), 233-240.

Results (tables)

Table 1 – Potential hepatoprotective effects of the tested PhC against *t*-BHP-induced toxicity in HepG2 cells.

TABLE

Hepatoprotective effects of PhC were tested in co-incubations with 2 mM of t-BHP (5 h) in HepG2 cells. IC $_{50}$ and the Hill slope were taken from the plotted dose–response curve (Fig. 3). IC $_{80}$ concentration was estimated from the same dose–response curve. Values are mean \pm SEM of at least 4 independent experiments.

Table 2 – Effects of t-BHP and PhC at IC $_{80}$ concentration on lipid peroxidation and oxidized glutathione levels in HepG2 cells.

TABLE

HepG2 cells were incubated with t-BHP 2 mM (5 h) and/or with individual PhC at IC₈₀ concentration and lipid peroxidation (as estimated by TBARS assay) and GSSG levels measured. Values are mean \pm SEM, n = 5 (TBARS), n = 4 (GSSG). *** P=0.001 when compared with the negative control. **P=0.05 and **** P=0.001 when compared with the t-BHP control.

Table 3 – Effects of t-BHP and PhC at IC $_{80}$ concentration on glutathione-related enzyme activities in HepG2 cells.

TABLE

HepG2 cells were incubated with t-BHP 2 mM (5 h) and/or with individual PhC at IC₈₀ concentration and the activities of GST, GR and GPox measured. Values are mean \pm SEM, n = 5. * P=0.05, ** P=0.01 and *** P=0.001 when compared with the negative control. *# P=0.05 when compared with the t-BHP control.

Table 4 – DPPH scavenging activity of the tested PhC.

TABLE

Different concentrations of each PhC were added to the ethanolic solution of DPPH and the discoloration measured spectrophotometrically at 515 nm. From the results expressed as the percentage of the remaining DPPH obtained for each PhC concentration (Fig. 8), the IC $_{50}$ and Hill slope were taken. From the results, the AE was also calculated for each PhC. Values represent mean \pm SD of 5 replicates.

Table 5 – Superoxide radical scavenging activity of the tested PhC.

TABLE

Using the phenazine methosulphate-NADH nonenzymatic assay, superoxide radicals were produced continuously and measured spectrophotometrically at 560 nm. In coincubations with individual PhC at several concentrations, the scavenging of superoxide radical was measured and from the plotted results the IC₅₀ and the Hill slope were taken.

Values represent mean \pm SD of 3 independent experiments with 3 replicates each.

Table 6 – Experimental partition coefficients values obtained for each tested PhC.

TABLE

Partition coefficient values in logarithm (K_{ow}) were measured in an n-octanol/HEPES (20 mM, pH 7.4) system. Values are mean \pm SD of 3 independent experiments.

Results (figures)

Figure 1 – Chemical structures of the phenolic compounds used in this study.

Figure 2 – t-BHP-induced toxicity in HepG2 cells. HepG2 cells were incubated with t-BHP 1 mM and 2 mM for different time periods and cell viability measured by LDH leakage (% of LDH in the extracelular medium) (**A**) and MTT assay (**B**). Time scale was logarithmized in order to obtain sigmoidal response curves. Values represent mean \pm SEM, n = 4. In **A**: * P=0.05 and *** P=0.001 when compared to the same time point in the control situation.

Figure 3 – Dose–response effect of the tested PhC against t-BHP-induced toxicity in HepG2 cells. After incubating HepG2 cells with 2 mM of t-BHP and individual PhC for 5 h, protection against cell death (as measured by LDH leakage) versus PhC concentration (in logarithm) were plotted in order to take the IC $_{50}$ and Hill slope of each compound (Table 1). Values are mean \pm SEM of at least 4 independent experiments.

Figure 4 – Effects of *t*-BHP and PhC at the IC ₈₀ concentration on reduced glutathione levels in HepG2 cells. HepG2 cells were incubated with *t*-BHP 2 mM (5 h) and/or with individual PhC (CA – caffeic acid; RA – rosmarinic acid; L-7-G – luteolin-7-glucoside;

L – luteolin; Q – quercetin) at IC₈₀ concentration and GSH levels measured. Values are mean \pm SEM, n = 5. *** P=0.001 when compared with the negative control. # P=0.05, ## P=0.01 and ### P=0.001 when compared with the *t*-BHP control.

Figure 5 – t-BHP-induced DNA damage in HepG2 cells. HepG2 cells were incubated with different concentrations t-BHP for 1 h and DNA damage assessed by the comet assay. Comet images were examined by computer assisted image analysis system ($\bf A$ – tail length; $\bf B$ – tail moment; $\bf C$ – % DNA in the tail) and by a semiquantitative method of visual scoring ($\bf D$). The correlation coefficients between the semiquantitative method and the computer assisted parameters are given in graph $\bf E$. Values are mean \pm SEM, n=4. * P=0.05, ** P=0.01 and *** P=0.001 when compared with the control.

Figure 6 – Effects of t-BHP and PhC at IC₈₀ concentration on DNA damage in HepG2 cells. HepG2 cells were incubated with t-BHP 200 μ M (1 h) and/or with individual PhC at IC₈₀ concentration and DNA damage evaluated by the comet assay. DNA damage was assessed by the semiquantitative method of visual scoring. Values are mean \pm SEM, n = 4. *** P=0.001 when compared with the negative control. ### P=0.001 when compared with the t-BHP control.

Figure 7 – Dose-dependent protection of t-BHP-induced DNA damage in HepG2 cells by quercetin (**A**). HepG2 cells were incubated with t-BHP 200 μ M (1 h) and/or with quercetin at different concentrations and DNA damage evaluated by the comet assay.

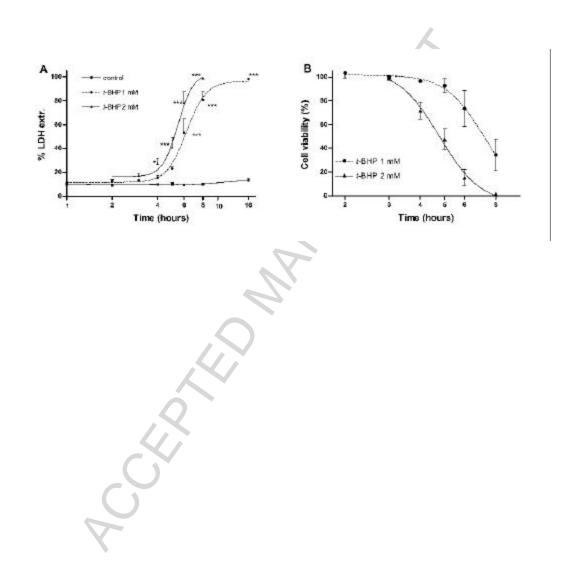
DNA damage was assessed by the semiquantitative method of visual scoring. Values are mean \pm SEM, n = 4. *** P=0.001 when compared with the negative control. ### P=0.001 when compared with the *t*-BHP control. **B** – Representative pictures of the comet assay results.

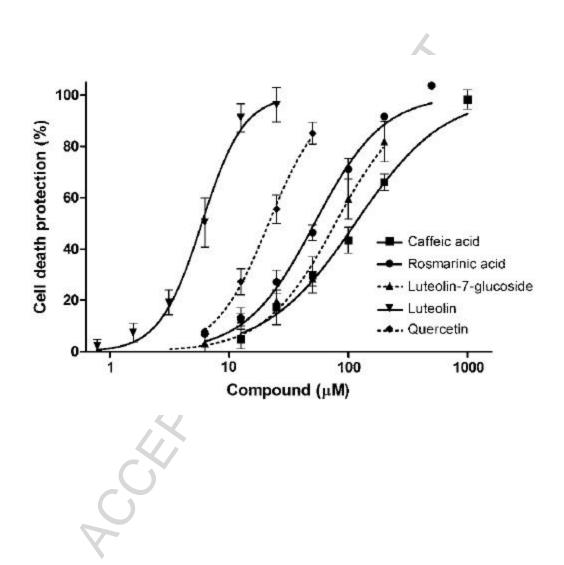
Figure 8 – Dose-dependent DPPH scavenging activity of caffeic acid. Different concentrations of caffeic acid were added to the ethanolic solution of DPPH and the discoloration measured spectrophotometrically at 515 nm. At the time point where all tested concentrations had reached the steady state (9 min), the percentages of the remaining DPPH were plotted against the corresponding caffeic acid concentrations (in logarithm). From this graph, the IC_{50} and Hill slope were taken (Table 4). Values represent mean \pm SD of 5 replicates.

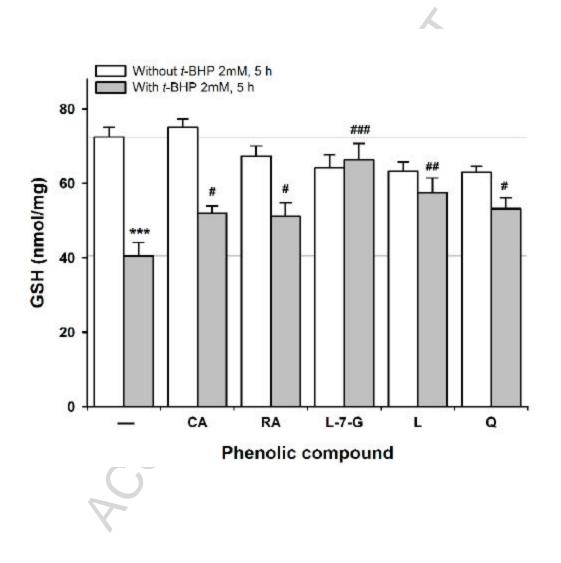
Compound	IC 50 (µM)	Hill slope	IC ₈₀ (μM)
Caffeic acid	114.1 ± 11.5	1.17 ± 0.16	370
Rosmarinic acid	69.2 ± 5.3	1.48 ± 0.16	180
Luteolin-7-O-glucoside	78.0 ± 7.6	1.47 ± 0.22	200
Luteolin	5.9 ± 0.5	2.46 ± 0.44	11
Quercetin	23.5 ± 1.4	2.12 ± 0.27	45

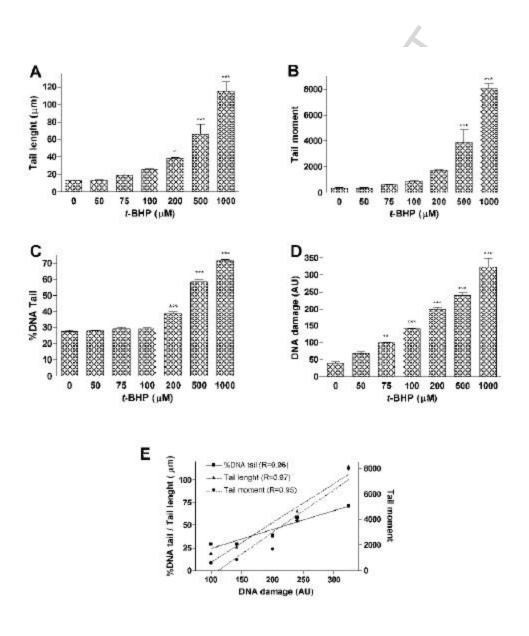

	t-BHP _	Parameter		
Phenolic compound	2 mM, ~5 h	TBARS (nmol/mg)	GSSG (nmol GSH equiv/mg)	
	_	0.20 ± 0.05	1.2 ± 0.3	
_	+	2.25 ± 0.13 ***	5.0 ± 0.4 ***	
C .cc : .1	_	0.19 ± 0.10	1.2 ± 0.4	
Caffeic acid	+	1.54 ± 0.10 ****	4.2 ± 0.1	
D '' 'I	_	0.15 ± 0.05	1.2 ± 0.3	
Rosmarinic acid	+	1.71 ± 0.08 ###	$3.5 \pm 0.3^{\#}$	
	_	0.15 ± 0.02	1.3 ± 0.2	
Luteolin-7-glucoside	+	1.74 ± 0.08 ###	3.8 ± 0.5	
	_	0.20 ± 0.07	1.6 ± 0.4	
Luteolin	+	1.66 ± 0.12 ****	4.4 ± 0.4	
	_	0.15 ± 0.06	1.5 ± 0.3	
Quercetin	+	1.64 ± 0.12 ****	4.6 ± 0.2	

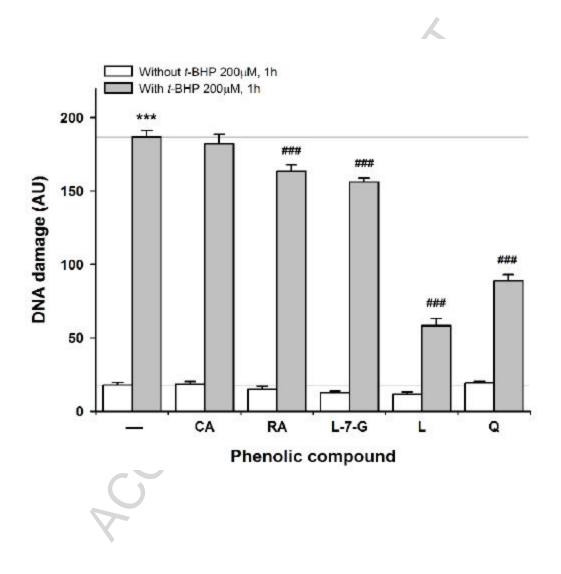
Dhanalia aannayad	t-BHP	Enzyme activity (mU/mg)		
Phenolic compound	$2 \mathrm{mM}$, $\sim 5 \mathrm{h}$	GST	GR	GPox
	_	24.7 ± 1.0	25.9 ± 0.8	18.2 ± 0.5
_	+	23.5 ± 0.5	21.8 ± 0.9 *	6.3 ± 0.6 ***
C-ff-::1	_	24.4 ± 0.8	25.6 ± 1.3	17.8 ± 0.3
Caffeic acid	+	23.1 ± 0.9	23.2 ± 0.8	7.5 ± 0.8
Danisala arti	_	23.1 ± 0.4	23.6 ± 0.4	16.1 ± 0.5
Rosmarinic acid	+	24.5 ± 0.3	21.3 ± 0.9	5.5 ± 0.5
Lutadia 7 alvassida	_	20.6 ± 0.6 **	23.6 ± 0.3	16.0 ± 0.5
Luteolin-7-glucoside	+	23.7 ± 0.6	22.7 ± 0.8	5.7 ± 0.5
T , 1'	_	22.6 ± 0.6	24.6 ± 0.3	16.1 ± 0.7
Luteolin	+	26.1 ± 0.8	23.2 ± 0.8	5.6 ± 0.7
Oversatin	_	24.0 ± 1.0	25.9 ± 1.0	17.2 ± 0.4
Quercetin	+	22.6 ± 0.8	22.9 ± 0.6	8.6 ± 1.1 [#]


Compound	IC ₅₀ (mmol/mol DPPH)	Hill slope	AE (×10 ⁻³)
Caffeic acid	179.6 ± 4.1	2.03 ± 0.06	0.81
Rosmarinic acid	102.6 ± 2.2	2.07 ± 0.09	0.53
Luteolin-7-O-glucoside	277.3 ± 14.9	1.48 ± 0.06	1.21
Luteolin	263.9 ± 11.0	1.66 ± 0.03	0.70
Quercetin	126.0 ± 2.4	1.66 ± 0.05	0.36


Compound Caffeic acid	$IC_{50} (\mu M)$	Lillalono
Caffeic acid	- 50 (1-)	Hill slope
	99.1 ± 5.3	1.02 ± 0.06
Rosmarinic acid	21.0 ± 0.9	0.95 ± 0.04
Luteolin-7-O-glucoside	50.4 ± 2.4	0.93 ± 0.05
Luteolin	45.3 ± 3.0	1.70 ± 0.19
Quercetin	35.1 ± 3.3	1.69 ± 0.25


Phenolic compound	Kow
Caffeic acid	-0.89 ± 0.10
Rosmarinic acid	-0.44 ± 0.13
Luteolin-7-glucoside	1.22 ± 0.01
Luteolin	2.68 ± 0.05
Quercetin	2.60 ± 0.09




Compound	R_1	R_2
Luteolin-7-O-glucoside	н	O-Giucosa
Luteolin	Н	OH
Quercetin	ОН	OH

