
A First-Order ε-Approximation Algorithm for
Linear Programs and a Second-Order

Implementation

Ana Maria A.C. Rocha1, Edite M.G.P. Fernandes1, and João L.C. Soares2

1 Departamento de Produção e Sistemas, Universidade do Minho, Portugal,
{arocha;emgpf}@dps.uminho.pt

2 Departamento de Matemática, Universidade de Coimbra, Portugal,
jsoares@mat.uc.pt

Abstract. This article presents an algorithm that finds an ε-feasible
solution relatively to some constraints of a linear program. The algo-
rithm is a first-order feasible directions method with constant stepsize
that attempts to find the minimizer of an exponential penalty function.
When embedded with bisection search, the algorithm allows for the ap-
proximated solution of linear programs. We present applications of this
framework to set-partitioning problems and report some computational
results with first-order and second-order implementations.

1 Introduction

Set-covering, -partitioning and -packing models arise in many applications like
crew scheduling (trains, buses or airplanes), political districting, protection of
microdata, information retrieval, etc. Typically these models are suboptimally
solved by heuristics because an optimization framework (usually of the branch-
and-price type) has to be rather specialized, if feasible at all. Moreover, a branch-
and-price framework requires the solution of large linear programs at every node
of the branch-and-price tree and these linear programs may take a long time and
storage to be solved to optimality.

Our framework attempts to find reasonable approximate solutions to those
models quickly and without too much storage, along the lines of Lagrangian
relaxation. The approximation obtained may serve the purpose of speeding-up
the optimal basis identification by simplex-type algorithms. We will be looking
for an approximated solution of a linear program in the following form

z∗ ≡ min cx
s.t. Ax ≥ b ,

x ∈ P ,
(1)

where A is a real m × n matrix, b is a real m-dimensional vector and P ⊆ IRn

is a compact set (possibly, a lattice) over which optimizing linear programs is
considered ”easy”. For example, in a set-covering model, A is a matrix of zeros

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/55606418?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

and ones, b is a vector of all-ones, and the set P is the lattice {0, 1}n, or the
hypercube [0, 1]n in the fractional version. If P includes a budget constraint then
P becomes the feasible region of a 0− 1 knapsack problem or a fractional 0− 1
knapsack problem, respectively. We also assume that conv(P) is a polyhedron.

In recent years, several researchers have developed algorithms (see [3,4,2])
that seek to produce approximate solutions to linear programs of this sort, by
constructing an exponential potential function which serves as a surrogate for
feasibility and optimality.

We focus on obtaining a reasonable approximation to the optimal solution
of (1) by an ε-feasible solution. We say that a point x is ε-feasible relatively to
the constraints Ax ≥ b if

λ(x) ≡ max
i=1,...,m

(bi − aix) ≤ ε , (2)

where ai denotes the ith row of the matrix A. To achieve this, we will attempt
to solve the following convex program

Φ(α, z) = min φα(x) ≡
m∑

i=1

exp (α (bi − aix))

s.t. x ∈ P ′(z) ≡ conv (P ∩ {x : cx ≤ z})
(3)

where conv(·) denotes convex hull, for several adequate values of the parameters
α and z. The scalar α is a penalty parameter and z is a guess for the value of z∗.
To solve the nonlinear program (3) we propose a first-order feasible directions
method with constant stepsize whose running time depends polynomially on 1/ε
and the width of the set P ′(z) relatively to the constraints Ax ≥ b. Significantly,
the running time does not depend explicitly on n and, hence, it can be applied
when n is exponentially large, assuming that, for a given row vector y, there
exists a polynomial subroutine to optimize yAx over P ′(z).

This paper is organized as follows. In Sect. 2 we describe the ε-approximation
algorithm used in this work. Then, in Sect. 3 we present the first-order algorithm
with fixed stepsize. Our computational experience on set-partitioning problems
is presented in Sect. 4 and Sect. 5 contains some conclusions and future work.

2 Main ε-Approximation Algorithm

If x is feasible in (1) then φα(x) ≤ m, while if x is simply ε-feasible then φα(x) ≤
m exp(αε). On the other hand, if x is not ε-feasible then φα(x) > exp(αε). We
will choose α so that it may be possible to assert whether x is ε-feasible from
the value of φα(x), as formally stated in the next lemma.

Lemma 1. If α ≥ ln((1 + ε)m)/ε then,

1. if there is no ε-feasible solution relatively to ’Ax ≥ b’ such that x ∈ P ′(z)
then Φ(α, z) > (1 + ε)m.

2. if φα(x) ≤ (1 + ε)m then x is an ε-feasible solution relatively to ’Ax ≥ b’.

3

Proof. If there is no ε-feasible solution relatively to ’Ax ≥ b’ such that x ∈ P ′(z)
then ε < ε′ ≡ min{λ(x) : x ∈ P ′(z)}. Thus, Φ(α, z) > exp (αε′) ≥ (1 + ε)m. If
φα(x) ≤ (1 + ε)m then exp (α (bi − aix̄)) ≤ (1 + ε)m, for any i = 1, . . . ,m.
Equivalently, bi − aix̄ ≤ ln((1 + ε)m)/α ≤ ε, for any i = 1, . . . , m. ut

Keeping the value of α fixed, we will use bisection to search for the minimum
value of z such that P ′(z) ∩ {x : Ax ≥ b} is nonempty, being driven by (3). The
bisection search maintains an interval [za, zb] such that P ′(za) ∩ {x : Ax ≥ b} is
empty, and there is some x ∈ P ′(zb) that is ε-feasible relatively to ’Ax ≥ b’. The
search is interrupted when zb − za is small enough to guarantee zb ≤ z∗. This
does not imply any bound on how much zb differs from z∗. It may be possible
that zb is much less than z∗ though very unlikely for α large, as it is implicit
from Proposition 1 below.

Proposition 1. Let the sequence {αk} be such that limk αk = +∞ and yk be a
vector defined componentwise by

yk
i = αk exp

(
αk

(
bi − aix

k
))

(i = 1, 2, . . . , m) , (4)

where xk is optimal in Φ(αk, z∗). Then, for every accumulation point (x̄, ȳ) of
the sequence {(xk, yk)}, x̄ is optimal for program (1).

Proof. Assume limk∈K(xk, yk) = (x̄, ȳ). Since P is closed, x̄ ∈ P ′(z∗). If we show
that Ax̄ ≥ b then x̄ must be optimal in (1). Since limk∈K αk exp

(
αk

(
bi − aix

k
))

exists then ȳi = limk∈K αk exp (αk (bi − aix̄)) , from where we conclude that
aix̄ ≤ bi, for every i = 1, 2, . . . , m. ut

If [zk
a , zk

b] is the last bisection interval of the search for a given εk then, we
may restart the bisection search with [zk

b , zb] for some εk+1 < εk, for example,
εk+1 = εk/2. The value of zb denotes a proven upper bound on the value of z∗.
Note that an εk-feasible solution is known at the left extreme of the new interval
and furthermore it belongs to P ′(z), for any z ∈ [zk

b , zb]. Thus, it may serve as
initial solution for the minimization of φα when ε = εk+1 and will not overflow
the exponential function evaluations.

Each iteration of our main algorithm consists of a number of iterations of
bisection search on the z value for a fixed value of the parameter ε. Then, ε is
decreased, the bisection interval is updated and bisection search restarts. This
process is terminated when ε is small enough.

From Lemma 1, if Φ (ε, z) ≤ (1 + ε) m then there is x ∈ P ′(z) that is ε-feasible
relatively to ’Ax ≥ b’ (for example, the optimal solution); otherwise, there is no
feasible solution x in (1) satisfying cx ≤ z. The new interval [zk+1

a , zk+1
b] is

adequately updated and k is increased by one unit. Termination occurs when
zk
b − zk

a is small enough. The algorithm is formally described in Algorithm 1.
Step 2 of the algorithm Bisection search involves applying an off-the-shelf
convex optimization method to (3). Note that, we always have xk

a ∈ P ′(z) which
makes it a natural starting point for the corresponding optimization algorithm.

4

Algorithm 1. Bisection search (ε, xa, za, xb, zb)
Given 0 < ε, and xa ∈ P ′(za), xb ∈ P ′(zb) such that

Φ (ε, zb) ≤ φε (xb) ≤ (1 + ε)m < Φ (ε, za) ≤ φε (xa) . (5)

Initialization: Set (x0
a, z0

a, x0
b , z

0
b) := (xa, za, xb, zb) and k := 0.

Generic Iteration k:
Step 1: If zk

b − zk
a = 1 then set (xa, za, xb, zb) := (xk

a, zk
a , xk

b , zk
b) and STOP.

Step 2: Set z := d(zk
a + zk

b)/2e and obtain x̄ ∈ P ′(z) such that

either Φ (ε, z) ≤ φε (x̄) ≤ (1 + ε)m , (6)
or (1 + ε)m < Φ (ε, z) ≤ φε (x̄) . (7)

Step 3: Set (xk+1
a , zk+1

a , xk+1
b , zk+1

b) :=
{

(xk
a, zk

a , x̄, z) if (6) holds,
(x̄, z, xk

b , zk
b) if (7) holds.

Set k := k + 1.

We may now present a formal description of the Main algorithm (see Al-
gorithm 2). On entry: za = dmin{cx− y(Ax− b) : x ∈ P}e is an integral lower
bound on the value of z∗, for some fixed y ≥ 0; xa ∈ P ′(za) and ∆ is a positive
integer related to the initial amplitude of the starting intervals in each bisection
search. Overall, we have the following convergence result. After a finite number
of calls, the last interval [zb−1, zb] of the Bisection search routine is such that
zb = dz̄e, where z̄ = min{z : x ∈ P ′(z), Ax ≥ b}. In general z̄ ≤ z∗, with equality
if P is a polyhedron.

Algorithm 2. Main (za, xa, zb, xb,∆)
Given za ≤ z∗, xa ∈ P ′(za) and a positive integer ∆.
Initialization:
Choose ε > 0 so that xa do not overflow φε(xa) and Φ(ε, za) > (1 + ε)m.
While Φ(ε, za + ∆) > (1 + ε)m redefine xa and set za := za + ∆.
Define xb as the last solution found and set zb := za + ∆.

Generic Iteration:
Step 1: Call Bisection search (ε, xa, za, xb, zb).
Step 2: While (Φ(ε/2, zb) ≤ (1 + ε/2)m and ε is not small enough)

redefine xb and set ε := ε/2.
If (ε is small enough)
Then set xb as the last solution found and STOP.

Step 3: Set xa := xb and za := zb.
While (Φ(ε, zb + ∆) > (1 + ε)m) redefine xa, za and set zb := zb + ∆.
Set xb as the last solution found and set zb := zb + ∆.
Repeat Step 1.

3 A First-Order Algorithm with Fixed Stepsize

Our conceptual algorithm to solving (3) is a first-order iterative procedure with
a fixed stepsize. The algorithm coincides with the algorithm Improve-Packing

5

proposed in [5] but the stepsize and the stopping criterion are different. The
direction of movement at a generic iterate x̄ ∈ P ′(z), that is not ε-feasible
relatively to the constraints ’Ax ≥ b’, is determined from solving the following
linear program

min φε(x̄) +∇φε(x̄)(x− x̄)
s.t. x ∈ P ′(z) .

(8)

If x̂ is optimal in (8) then we reset x̄ to x̄+ σ̂(x̂− x̄), for some fixed stepsize σ̂ ∈
(0, 1], and proceed analogously to the next iteration. The conceptual algorithm is
halted when φε(x̄) ≤ (1+ε)m or a maximum number of iterations is reached. Of
course, in practice other stopping criteria should be accounted for. For example,
notice that (8) is equivalent to

max (ȳA)x
s.t. cx ≤ z ,

x ∈ P ,
(9)

for ȳ defined componentwise by ȳi = α exp(α(bi − aix̄)), for i = 1, 2, . . . ,m.
This is essentially because ∇φε(x̄) = −ȳA. Then, since ȳ ≥ 0, the inequality
’ȳAx ≥ ȳb’ is valid for the polyhedron {x : Ax ≥ b}. Thus, if at some point of
the solution procedure of (3) we have that the optimal value of (9) is smaller
than ȳb then we may immediately conclude that P ′(z) ∩ {x : Ax ≥ b} is empty.

Theorem 1 below presents one particular choice for the fixed stepsize σ̂. It
depends on the following quantity, introduced as the width of P ′(z) relatively to
the constraints ’Ax ≥ b’ in [5],

ρ ≡
{

sup ‖Ax−Ay‖∞
s.t. x, y ∈ P ′(z)

}
=

{
max

i=1,2,...,m

(
sup | aix− aiy |
s.t. x, y ∈ P ′(z)

)}
. (10)

In [5], ρ is defined differently depending when whether the matrix A is such
that Ax ≥ 0, for every x ∈ P ′(z), or not. If yes, then the two definitions coincide
with ρ = maxi maxx∈P ′(z) aix. If not, then our definition of ρ is half of the ρ
that is proposed in [5].

Theorem 1. ([6]) Assume that z∗ ≤ z, x̄ ∈ P ′(z) and it is not ε-feasible (rela-
tively to ’Ax ≥ b’), for some ε ∈ (0, 1), x̂ ∈ P ′(z) is optimal for program (8), ρ
is given by (10) and

α ≥ max
(

ln(m(3 + ε))
ε

,
1

ρ ln 2

)
. (11)

Then, for σ̂ = 1/(αρ)2 we have that

φε (x̄ + σ̂(x̂− x̄)) <

(
1− 1

4(αρ)2
1 + ε

3 + ε

)
φε(x̄) . (12)

In summary, assuming that z∗ ≤ z, if the first k iterates are not ε-feasible
then

φε(xk+1) <

(
1− 1

4(αρ)2
1 + ε

3 + ε

)k

φε(x0) , (13)

6

where, we note, that the right hand side goes to zero as k goes to +∞. The follow-
ing corollary states a worst-case complexity bound on the number of iterations
of the algorithm.

Corollary 1. ([6]) If α satisfies (11) and ε ∈ (0, 1) then our algorithm, using
σ̂ = 1/(αρ)2 and starting from x0 ∈ P ′(z), terminates after

ln(m) + ln(1 + ε)− ln φε(x0)

ln
(
1− 1

4(αρ)2
1+ε
3+ε

) < 16α3ρ2λ(x0) (14)

iterations, with an x ∈ P ′(z) that is ε-feasible relatively to ’Ax ≥ b’ or, otherwise,
with the proof that there is no x feasible in (1) such that cx ≤ z.

Note that the right hand side of (14) isO(ln3(m)ε−3ρ2λ(x0)). If λ(x0) = O(ε)
then only O(ln3(m)ε−2ρ2) = Õ(ε−2ρ2) iterations are required. This complexity
result is related to Karger and Plotkin’s [4, Theorem 2.5] (Õ(ε−3ρ)) and Plotkin,
Shmoys and Tardos’s [5, Theorem 2.12] (Õ(ε−2ρ ln ε−1)). The result of Karger
and Plotkin is valid even if the budget constraint is included in the objective
function of (3) without counting in the definition of ρ. We recall that a function
f(n) is said to be Õ(g(n)) if there exists a constant c such that f(n) lnc(n) ≥
O(g(n)).

Given an initial point x̄ ∈ P ′(z), the Algorithm 3 contains a practical imple-
mentation of the first-order algorithm to solving (3).

Algorithm 3. Solve subproblem (x̄, flag)
Given x̄ ∈ P ′(z) and a small positive tolerance δ.
Generic Iteration:
Step 1: If (φε(x̄) ≤ (1 + ε)m)

Then set flag := CP1 and STOP;
Else If (maximum number of iterations is reached)

Then set flag := CP4 and STOP.

Step 2: Let x̂ be optimal for (9).
If (φε(x̄) +∇φε(x̄)(x̂− x̄) > (1 + ε)m)
Then set flag := CP2 and STOP;
Else If (φε(x̄) +∇φε(x̄)(x̂− x̄) > Φε(x̄)− δ))

Then set flag := CP3 and STOP;
Else If (ȳAx̂ < ȳb)

Then set flag := CP5 and STOP.
Step 3: Set x̄ := x̄ + σ∗ (x̂− x̄),

where σ∗ ∈ arg min{φε (x̄ + σ (x̂− x̄)) : σ ∈ (0, 1]}.
Repeat Step 1.

On exit of this routine, x̄ should be understood as optimal in (3) when
flag 6= CP4. When this is the case, output should be interpreted as follows:
Φ(ε, z) ≤ (1 + ε)m ⇐⇒ flag ∈ {CP1,CP3}.

Step 2 of the routine Solve subproblem requires solving a program with a
linear objective function. Interesting possibilities are: (1) P = [0, 1]n, in which

7

case (9) can be solved by a greedy type algorithm; (2) P = {0, 1}n, in which case
(9) is a 0-1 knapsack problem and can be solved by the Cplex MIP solver; (3)
P is a generic polyhedron in which case (9) can be solved by the Cplex solver.

In what follows we will expand on how the line search is performed assuming
that we are looking for an ε-feasible solution relatively to an equality system
Ax = b, as this is the case with the test problems studied. Step 3 of the algorithm
Solve subproblem aims at finding a minimizer σ∗ of the function g : [0, 1] → IR
defined by g(σ) ≡ φε (x̄ + σd) ≡ ∑m

i=1 φi(x̄ + σd) ≡ 2
∑m

i=1 cosh(aix̄ − bi +
σaid), where d = x̂ − x̄ and cosh denotes de hyperbolic cosine function. Note
that g is convex and g′(0) < 0. The numerical method of choice would be the
unidimensional Newton’s method for it is, in this case, globally convergent and
possesses locally quadratic convergence.

However, since the functions φi are defined by exponential functions, New-
ton’s method may require too many iterations to reach its region of quadratic
convergence. A method like bisection search may be more adequate at early
stages of the minimization process. Our initial bisection interval is implied by
the following result.

Theorem 2. ([6]) For every i ∈ {1, 2, . . . , m}, let Ui be an upper bound on the
value of φi(x̄ + σ∗d). Then, for every i such that aid 6= 0, the following holds,

σ∗ ≤ 1
αaid

ln

(
Ui + sgn(aid)

√
U2

i − 4
2 exp (α (aix̄− bi))

)
. (15)

where sgn(·) denotes the sign function.

The bound (15) is important for the search for σ∗ not to overflow the expo-
nential function evaluations.

Bienstock [2] proposed to use bisection search until a sufficiently small inter-
val is found and only then start with Newton’s method. We propose a slightly
different procedure. We propose to try two Newton’s steps departing from the
left limit of the current bisection interval. By using these two Newton points we
make a judgement of whether the region of quadratic convergence for Newton’s
method was achieved. If yes, we switch to the pure Newton’s method. More pre-
cisely, if σN1 is the first Newton point and σN2 is the second Newton point then
we consider that the region of quadratic convergence is achieved if
(
c1g

′(σN2)2 ≤ |g′(σN1)| if |g′(σN2)| > 1
)
or

(|g′(σN2)| ≤ c2g
′(σN1)2 if |g′(σN2)| ≤ 1

)
(16)

where c1, c2 are positive constants. Otherwise, the interval is updated by using
the information on these points, the midpoint σmid is also tried and the bisection
interval is again updated. The process restarts.

4 Computational Results with Set-Partitioning Problems

In this section we report computational results for the first-order method pre-
viously discussed and with a second-order nonlinear programming package. The

8

computational tests were performed on a PC with a 2.66GHz Pentium IV mi-
croprocessor and 512Mb of memory running RedHat Linux 8.0. The algorithm
was implemented in AMPL (Version 7.1) modeling language.

Here, we are looking for finding ”good” ε-feasible solutions of fractional set-
partitioning problems arising in airline crew scheduling. Some of these linear
programs are extremely difficult to solve with traditional algorithms. Generically,
fractional set-partitioning problems are of the form

min cx
s.t. Ax = 1l

x ∈ [0, 1]n ,
(17)

where A is a m×n matrix, with 0-1 coefficients, and 1l denotes a vector of ones.
Our framework was tested on real-world set-partitioning problems obtained from
the OR-Library (http://www.brunel.ac.uk/depts/ma/research/jeb/info.html).

Before a call to Main algorithm we apply the volume algorithm, developed by
Barahona and Anbil [1], that is an extension of the subgradient algorithm, which
produces approximate feasible primal and dual solutions to a linear program,
much more quickly than solving it exactly. This algorithm approximately solves
the Lagrangian relaxation of the problem (17), i.e.,

max min {cx− y (Ax− 1l) : x ∈ [0, 1]n}
s.t. y ∈ IRm

requiring a not too demanding number of iterations.
The main characteristics of the selected problems are described in Table 1.

Table 1. Set-partitioning problems

Name m n zLP Vol Vol Vol Vol Vol
It. Dual Primal Viol. Time

sppnw08 24 434 35894 356 35894.0 36188.0 0.01889 0.02
sppnw10 24 853 68271 501 68146.8 68510.8 0.01974 0.04
sppnw12 27 626 14118 447 14101.4 14222.6 0.01859 0.03
sppnw15 31 467 67743 483 67713.8 67407.0 0.01934 0.03
sppnw20 22 685 16626 408 16603.4 16645.2 0.01991 0.02
sppnw21 25 577 7380 358 7370.8 7387.1 0.01875 0.03
sppnw22 23 619 6942 340 6916.8 6917.4 0.01903 0.02
sppnw23 19 711 12317 357 12300.1 12412.8 0.01971 0.03
sppnw24 19 1366 5843 313 5827.8 5885.3 0.01924 0.04
sppnw25 20 1217 5852 305 5829.8 5851.3 0.01763 0.04
sppnw26 23 771 6743 304 6732.8 6742.4 0.01584 0.03
sppnw27 22 1355 9877.5 363 9870.0 9934.8 0.01933 0.05
sppnw28 18 1210 8169 342 8160.1 8167.5 0.01995 0.04
sppnw32 19 294 14570 430 14559.9 14559.6 0.01748 0.01
sppnw35 23 1709 7206 334 7194.0 7262.6 0.01633 0.06
sppnw36 20 1783 7260 631 7259.2 7225.3 0.01995 0.13
sppnw38 23 1220 5552 321 5540.5 5526.0 0.01951 0.04

The first four columns of this table identify the problem by its name, m, n,
and zLP, the known optimal value of the linear programming relaxation. The

9

remaining columns are related to the volume algorithm [1], namely, the number
of iterations up to finding a primal vector where each constraint is violated by at
most 0.02 or the difference between the dual lower bound and the primal value
is less than 1%. We also present the time required by the volume algorithm (in
seconds).

From the (dual) lower bound derived from volume algorithm we obtain an
integral lower bound za on the value of z∗. The initial xa was set to all-zeros
because often the primal solution obtained through the volume algorithm would
not satisfy cx ≤ za. Note that, since c > 0, xa ∈ P ′(za). In our experiments we
have chosen to set ∆ = 1.

We implemented the first-order feasible directions minimization algorithm,
presented in Sect. 3, to solve the nonlinear problem (3). In Step 2 of the Solve
subproblem algorithm we used the software Cplex (version 7.1) to get an
optimal solution for the linear problem.

Table 2 is divided into four parts. The first part identifies the set-partitioning
problem. Next, we have the initial value for za (input to Main), that is the lower
bound found by volume algorithm.

Table 2. Results of solving (3) with first-order and second-order implementations

Name
First-order Second-order

Initial Final Max. Out. Time Max. Out. Time
za ε Viol. It. (sec.) Viol. It. (sec.)

sppnw08 35894 6.10E-05 4.20E-07 1 469.86 1.28E-14 1 21.48
sppnw10 68147 0.01563 0.00269 4* 26404.26 9.15E-10 6 3546.41
sppnw12 14102 0.00781 0.00121 3* 17301.78 7.41E-14 4 134.80
sppnw15 67714 0.03125 0.00521 1* 4522.86 5.79E-09 5 124.87
sppnw20 16604 0.03125 0.00819 1* 5653.53 9.88E-09 4 275.65
sppnw21 7371 0.03125 0.00573 1* 4752.56 8.96E-10 4 110.24
sppnw22 6917 0.01563 0.00470 3* 7919.76 2.68E-10 5 230.26
sppnw23 12301 0.01563 0.00385 2* 9034.06 2.74E-11 5 15173.3
sppnw24 5828 0.01563 0.00296 3* 44584.35 1.38E-09 4 2107.83
sppnw25 5830 0.01563 0.00280 6* 59902.49 1.14E-09 5 1718.74
sppnw26 6733 0.01563 0.00308 3* 16722.60 1.91E-08 4 275.63
sppnw27 9871 0.00781 0.00175 3* 23535.21 2.18E-14 5 1588.36
sppnw28 8161 0.00781 0.00104 4* 23150.30 8.65E-15 4 1147.54
sppnw32 14560 0.01563 0.00296 3* 3059.28 8.72E-10 4 12.51
sppnw35 7194 0.01563 0.00393 2* 19234.21 1.92E-09 5 5420.31
sppnw36 7260 0.01563 0.00302 1* 32498.39 4.23E-13 1 3049.8
sppnw38 5541 0.01563 0.00457 2* 26496.43 1.43E-10 4 1677.83

In the third part, we present the results of the first-order implementation.
For all these problems the initial value for ε is 1, because at the beginning of the
algorithm the primal vector xa is a vector of zeros and ε = ‖1l−Axa‖∞ = 1. We
exhibit the final value for ε, the maximal violation obtained for the constraints,
the number of outer iterations, which corresponds to the number of bisection
calls, and the time (in seconds) required. For all problems, except sppnw08,
no optimal x̄ was found (flag=CP4), as the maximum number of iterations

10

(set to 20000) was reached, as pointed out with the character ∗ in the table.
Nevertheless, the maximal constraint violation obtained is reduced at least 60%
(compare with Table 1).

Then we analyze the strategy of solving the nonlinear subproblem (3) using
solver Loqo 6.0. Loqo is an implementation of a primal-dual interior point
method for solving nonlinear constrained optimization problems. The fourth part
of Table 2 summarizes the results. We remark that, for all the problems, the al-
gorithm halted because the stopping criterion in the Main algorithm (ε < 10−4)
was achieved. The maximal violation of the constraints is now much smaller than
the one obtained with the volume algorithm. A different ε reduction scheme
(ε := ε/10) in the Step 2 of the Main algorithm was tried and, in general, the
number of outer iterations decreased by one or two units and the time spent was
smaller in 71% of the problems.

5 Conclusions

In this paper we propose an algorithm for finding an ε-feasible solution relatively
to the constraints of a linear program. The first-order version of the algorithm
attempts to minimize a linear approximation of an exponential penalty function
using feasible directions and a constant stepsize. The second-order implementa-
tion uses the software Loqo to minimize the exponential function.

Our preliminary computational experiments show that the first-order method
does not perform as expected when solving set-partitioning problems. In parti-
cular, the algorithm converges very slowly and does not reach an ε-approximate
solution, for ε < 10−4, for all tested problems but for sppnw08.

We may also conclude that the second-order implementation of the algorithm
works quite well, specially for problems that are not large-scale, finding an ε-
feasible solution in (1) satisfying cx < z, for a small and adequate ε value. Future
developments will focus on improving convergence of the first-order algorithm.

References

1. Barahona, F., Anbil, R.: The volume algorithm: Producing primal solutions with
a subgradient method. Math. Prog. 87 (2000) 385–399

2. Bienstock, D.: Potential Function Methods for approximately solving linear pro-
gramming problems: theory and practice. Kluwer Academic Publishers (2002)

3. Grigoriadis, M.D., Khachiyan, L.G.:Fast approximation schemes for convex pro-
grams with many blocks and coupling constraints. SIAM J. Optim. 4 1994 86–107

4. Karger, D., Plotkin, S.: Adding multiple cost constraints to combinatorial opti-
mization problems, with applications to multicommodity flows. Proceedings of the
27th Annual ACM Symposium on Theory of Computing (1995) 18 – 25

5. Plotkin, S., Shmoys, D.B., Tardos, E.: Fast approximation algorithms for fractional
packing and covering problems. Math. Oper. Res. 20 (1995) 495–504

6. Rocha, A.M.: Fast and stable algorithms based on the Lagrangian relaxation. PhD
Thesis (in portuguese), Universidade do Minho, Portugal (2004) (forthcoming)

