Copyright © 2015, American Society for Microbiology. All Rights Reserved.

Polymorphisms in host immunity modulating genes and risk of invasive aspergillosis: Results from the aspBIOmics consortium

7 Lupiañez CB^{1,2}, Canet LM^{1,2}, Carvalho A^{3,4}, Alcazar-Fuoli L⁵, Springer J⁶, Lackner M⁷, Segura-Catena J^{1,2}, Comino A⁸, Olmedo C⁸, Ríos R^{1,2}, Fernández-Montoya A⁹, Cuenca-Estrella M⁵, Solano C¹⁰, Miguel Ángel López-Nevot¹¹, Cunha C³, Oliveira-Coelho A³, Villaescusa T^{12, 13}, Fianchi L¹⁴, Aguado JM¹⁵, Pagano L¹⁴, López-Fernández E², Potenza L¹⁶, Luppi M¹⁶, Lass-Flörl C⁷, Loeffler J⁶, Einsele H⁶, Vazquez L¹², PCRAGA Study Group¹⁷, Jurado M^{1, 2}, Sainz J^{1,2} Genomic Oncology department, GENYO, Centre for Genomics and Oncological Research: Pfizer / University of Granada / Andalusian Regional Government, PTS Granada, Granada, Spain Hematology department, Virgen de las Nieves University Hospital, Granada, Spain Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Ma-drid, Spain Universitätsklinikum Würzburg, Medizinische Klinik II, Würzburg, Germany Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria Experimental Research Unit, Virgen de las Nieves University Hospital, Granada, Spain Blood Transfusion Regional Centre and Sectorial Tissue Bank, Granada, Spain Hematology department, Clinic University Hospital of Valencia, Valencia, Spain Immunology department, Virgen de las Nieves University Hospital, Granada, Spain Hematology department, University Hospital of Salamanca, Salamanca, Spain Hematology department, Jiménez Díaz Foundation, Madrid, Spain Istituto di Ematologia, Università Cattolica del S. Cuore, Rome, Italy. 32 Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre" (i+12), Madrid, Spain Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Poli-clinico, Modena, Italy

PCRAGA study group

Running title: Immune-modulating gene polymorphisms and IA

FUNDING

This study was supported by grants PI12/02688 from Fondo de Investigaciones Sanitarias (Madrid, Spain), PIM2010EPA-00756 from the ERA-NET PathoGenoMics (0315900A) and by the Collaborative Research Center / Transregio 124 FungiNet. Cristina Cunha is supported by the Fundação para a Ciência e Tecnologia, Portugal (SFRH/BPD/96176/2013). This study was also supported by a donation of Consuelo González Moreno, an acute myeloid leukemia survivor.

nfection and Immunity

56 57 AUTHOR'S CONTRIBUTIONS

MJ and JS conceived the study and participated in its design and coordination. CBL performed
 the genetic analyses. CBL, LMC, JSC, AO-C, AC and JS performed in vitro analyses. LA-F,
 AC, JSp, ML, ACo, CO, RR, MC-E, CS, MAL-N, AF-M, CC, TV, LF, JMA, LP, EL-F, LPo, MLu,

- 61 CL-F, JL, HE, LV, PCRAGA Study Group coordinated patient's recruitment and provided the 62 clinical data. JS analysed the data. MJ and JS drafted the manuscript. All authors read and
- 63 approved the final version of the manuscript.

64

- 6566 Corresponding author:
- 67 Juan Sainz, PhD
- 68 Genomic Oncology department
- 69 GENYO. Centre for Genomics and Oncological Research: Pfizer / University of Granada /
- 70 Andalusian Regional Government
- 71 PTS Granada
- 72 Avda. de la llustración, 114
- 73 18016 Granada, Spain
- 74 Phone: +34-958-715500
- 75 Fax: +34-958-637071
- 76 E-mail: juan.sainz@genyo.es

77 78

- 79 Word Count: Abstract 286, Text 4648, 4 Figures (+1 Supplementary Figure), 5 Tables (+3
- 80 supplementary tables)

81 ABSTRACT

82 Recent studies suggest that immune-modulating single nucleotide polymorphisms (SNPs) 83 influence the risk of developing cancer-related infections. Here, we evaluated whether 36 SNPs 84 within 14 immune-related genes are associated with the risk of Invasive Aspergillosis (IA) and 85 whether genotyping of these variants might improve disease risk prediction. We conducted a 86 case-control association study of 781 immunocompromised patients, 149 of whom were 87 diagnosed with IA. Association analysis showed that the IL4R_{rs2107356} and IL8_{rs2227307} SNPs were 88 associated with an increased risk of IA (OR=1.92, 95%CI: 1.20-3.09 and OR=1.73, 1.06-2.81) 89 whereas the $IL12B_{rs3212227}$ and $IFN_{\gamma rs2069705}$ variants were significantly associated with a 90 decreased risk of developing the infection (OR=0.60, 0.38-0.96 and OR=0.63, 0.41-0.97). An 91 allogeneic hematopoietic stem cell transplantation (allo-HSCT)-stratified analysis revealed that 92 the effect observed for the IL4R_{rs2107356} and IFN_{7fs2069705} SNPs was stronger in allo-HSCT 93 (OR=5.63, 1.20-3.09 and OR=0.24, 0.10-0.59) than in non-HSCT patients, suggesting that the 94 presence of these SNPs may render patients more vulnerable to infection especially under 95 severe and prolonged immunosuppressive conditions. Importantly, in vitro studies revealed that 96 carriers of the $IFN_{\gamma_{rs2069705C}}$ allele showed a significantly increased macrophage-mediated 97 neutralisation of fungal conidia (P=0.0003) and, under stimulation conditions, produced higher 98 levels of IFN γ mRNA (P=0.049) and IFN γ and TNF α cytokines (P_{LPS-96h}=0.057, P_{PHA-96h}=0.036 99 and PLPS+PHA-96h=0.030 and PPHA-72h=0.045, PLPS+PHA-72h=0.018, PLPS-96h=0.058 and PLPS+PHA-100 geb=0.0058, respectively). Finally, we also observed that the addition of SNPs significantly 101 associated with IA to a model including clinical variables led to a substantial improvement in the 102 discriminatory ability to predict the disease (AUC=0.659 vs. AUC=0.564, P_{LR} =5.2•10⁻⁴ and $P_{50.000Perm}$ =9.34•10⁻⁵). These findings suggest that the *IFN* $\gamma_{rs2069705}$ SNP influences the risk of IA 103 104 and that predictive models built with IFN γ , IL8, IL12p70 and VEGF α variants might be used to 105 predict disease risk and to implement risk-adapted prophylaxis or diagnostic strategies.

106

107

108

109 Keywords: Invasive Aspergillosis, infection, genetic susceptibility, immuno-modulating genes.

110 INTRODUCTION

Invasive Aspergillosis (IA) is a life-threatening infection caused by *Aspergillus spp.* that affects acute myelogenous leukemia (AML) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients (1-3). Despite recent improvements in the prophylaxis and treatment of IA, its incidence and attributable mortality rates remain unacceptably high even among those individuals who lack established risk factors (4, 5).

116

117 The initial immune response against fungal pathogens such as Aspergillus fumigatus the 118 principal pathogenic species, mainly relies on phagocytes, endothelial and epithelial cells that 119 recognize this fungal pathogen through pattern recognition receptors (PRRs) thus leading to 120 phagocytosis, antigen presentation and production of specific cytokines and chemokines (6, 7). 121 There are different families of PRRs including C-type lectin receptors (CLRs), Toll-like receptors 122 (TLRs), RIG-I-like receptors (RLRs) and NOD-like receptors (NLRs) that, in response to 123 Aspergillus pathogen-associated molecular patterns (PAMPs), activate Th₁-, Th₂- and Th₁₇-124 related signalling cascades on phagocytes and non-professional immune cells (8-12). These 125 intracellular molecular pathways culminate in the production of both pro-inflammatory (13-18) 126 and anti-inflammatory cytokines (19, 20) and certain chemokines and their receptors (21-23) as 127 well as in the release of certain proangiogenic factors such as VEGFA and bFGF (17, 24), which 128 are also key determinants in the immune response against Aspergillus spp.

129

130 Although both innate and adaptive immune responses against A. fumigatus have been 131 extensively characterized (25, 26), it remains unclear why some immunocompromised subjects 132 develop invasive or disseminated fungal infections while others in similar clinical conditions do 133 not. The remarkable genetic variation of immune genes suggests that the presence of specific 134 genetic variants in these genes may influence their biological function and, consequently, impact 135 on the risk of developing invasive fungal infections, such as IA. In support of this hypothesis, 136 recent studies on genetic susceptibility have successfully identified several genetic variants on 137 PRR genes (DC-SIGN, Dectin-1, TLRs, PTX3 and MBL) (27-40), cytokines (IL1 gene cluster, *IL10, IL12* and *IFN*_γ (32, 41-44), chemokines (*CXCL10*) (45) and immune receptors (*TNFR1* and *TNFR2*) (46, 47) as factors influencing the risk of developing IA. With this background, the purpose of this study was to comprehensively assess whether the presence of single nucleotide polymorphisms (SNPs) within 14 immune-modulating genes (*IL4, IL4R, IL8, IL8RA, IL8RB, IL10, IL12A, IL12B, IL13, IFN*_γ, *IFN*_γ*R2, CCR5, MIF and VEGF*) may influence the risk of developing IA. We also decided to evaluate the functional role of key variants in modulating immune responses and whether selected polymorphisms could be used to predict the disease risk.

145

146 MATERIAL AND METHODS

147 Study design and study population

148 Here, we analysed whether 36 SNPs within 14 immune-modulating genes were associated with 149 IA. SNPs selection was based on three criteria: (1) SNPs within immunoregulatory genes that 150 may affect immune responses, (2) SNPs having laboratory evidence of a biological function 151 and/or (3) SNPs previously reported as associated with infectious diseases (Table 1). SNPs 152 were genotyped using KASPar® assays (LGC Genomics KBioscience, London, UK) as 153 previously described in detail (28). Patient inclusion criteria were either undergoing allo-HSCT or 154 being diagnosed with acute myeloid leukaemia (AML) or acute lymphoid leukaemia (ALL) and 155 receiving intensive remission-induction chemotherapy. A total of five hundred and ninety-three 156 patients were recruited between February 2010 and March 2014 through the aspBIOmics 157 consortium (www.aspbiomics.eu) and through two Spanish medical institutions (University 158 Hospital of Salamanca and Clinic University Hospital of Valencia) and a Spanish multicentre 159 clinical trial (PCRAGA, EU clinical trial number: 2010-019406-17) (48). Based on microbiological 160 and clinical data, one hundred and thirteen patients were diagnosed with proven or probable IA 161 according to the revised EORTC/MSG criteria (2008) (49). In order to further confirm significant 162 associations identified in our population, we extended the analysis to a second patient group 163 consisting of 188 high-risk patients (36 IA patients and 152 without IA; Table 2) recruited from 164 two Italian medical institutions (Università Cattolica del S. Cuore, Rome; and University of 165 Modena and Reggio Emilia, AOU Policlinico, Modena) and from the Virgen de las Nieves

University hospital (Granada, Spain) between January 2013 and January 2015. This ambitious study design provided a population of 781 high-risk patients, 149 of whom were diagnosed with proven and probable IA (19 proven and 130 probable IA). To our knowledge, this is one of the largest population recruited so far exploring genetic susceptibility to IA. The study was approved by the ethical review boards of each participating institution.

171

172 Statistical analysis

173 The Hardy-Weinberg Equilibrium (HWE) tests were performed in the uninfected control group by 174 a standard observed-expected chi-square (χ^2) test. Logistic regression analyses adjusted for 175 age, gender, country of origin, allo-HSCT and receipt or non-receipt of anti-fungal prophylaxis 176 were performed to determine significant associations with IA risk. SNPtool (50) and Haploview 177 were used for linkage disequilibrium (LD) blocks reconstruction and haplotype association 178 statistics. Block structures were determined according to the method of Gabriel et al. (51). In 179 order to account for multiple testing, we calculated an adjusted significance level using the Meff 180 method (52), which consider the number of independent marker loci (Meffi,=31), and the number 181 of models of inheritance tested (co-dominant, dominant, recessive and log-additive). Detailed 182 information about this method of multiple testing correction is freely available online at 183 http://neurogenetics.gimrberghofer.edu.au/SNPSpDlite. Thus, the resulting threshold for the 184 main effect analysis was 0.0004 ([0.05/31]/4).

185

186 Cell isolation and differentiation

Peripheral blood mononuclear cells (PBMCs) and monocytes were isolated from whole blood collected from healthy donors after obtaining written informed consent (PI12/02688 and SECVS 014/2015 protocols). PBMCs were isolated by gradient centrifugation using Ficoll-Paque PLUS (GE Healthcare Bio-Sciences) and monocytes were isolated by immunomagnetic selection of CD₁₄⁺ cells (Miltenyi Biotec). Purity of the obtained CD₁₄⁺ population was assessed by fluorescence-activated cell sorting analysis. Monocytes were then plated at a density of 5×10^5 cells/mL in 24-well plates, cultivated for 7 days in complete RPMI 1640 medium supplemented

Infection and Immunity

with human serum and 20 ng/mL of GM-CSF to allow differentiation into macrophages. The
culture medium was replaced every 3 days. Genotyping of significant SNPs was performed and
either PBMCs or monocytes were grouped according to the genotype of interest.

197

198 Assessment of fungicidal activity

Human monocyte-derived macrophages were infected with conidia from *Aspergillus fumigatus* at an effector-to-target ratio of 1:10. To measure the fungicidal ability, macrophages were allowed to kill the ingested conidia for 2 h. Serial dilutions of macrophage lysates were plated on solid growth media and following a 2-day incubation, the number of colony-forming units (CFU) was enumerated and the percentage of CFU inhibition was calculated. In order to avoid a bias due to differences in internalization rates, the supernatants collected after the co-culture were plated and compared among different donors.

206

207 IL12p70 and IFN γ stimulation assays.

208 IL12p70 and IFN γ stimulation assays were performed in PBMCs from healthy donors according 209 to a previously reported protocol (53). PBMCs were selected according to the IL12B_{rs3212227} and 210 $IFN_{\chi_{s2069705}}$ genotypes and were cultured in 2 ml of culture medium RPMI-1640 supplemented 211 with 10% sterile heat-inactivated fetal bovine serum (FBS) and an antibiotic mixture containing 212 penicillin, streptomycin and neomycin (Gibco®/Life Technologies) at 37°C in 5% CO₂. PBMCs 213 from healthy subjects harbouring the IFN X52069705T/T (n=8), IFN X52069705C/T (n=8) and IFN X52069705C/C 214 (n=3) genotypes were incubated for 72h and 96h with phytohaemagglutinin (PHA, 2ug/ml) alone 215 or in combination with lypopolysaccharide (LPS, 100ng/ml) and IFNy, IL12p70, TNF and IL8 216 levels were determined in triplicate using the Procartaplex, Multiplex Immunoassay 217 (Affymetrix/eBioscience) according to manufacturer's recommendations. In parallel, PBMCs 218 bearing the IL12B_{rs3212227A/A} (n=13), IL12B_{rs3212227A/C} (n=3) and IL12B_{rs3212227C/C} (n=1) genotypes 219 were treated for 24h and 48h with zymosan (5µg/ml) alone or in combination with LPS 220 (100ng/ml) and correlation of cytokine levels with the IL12B_{rs321227} or IL8_{rs321227} SNPs was also Infection and Immunity

A

analysed. After the incubation period, supernatants were collected and stored at -80°C until
 cytokine measurement.

223

224 Analysis of IL4R and IFNγmRNA expression

225 We measured IL4R and IFN γ mRNA gene expression in blood samples collected from healthy 226 blood donors but also in monocyte-derived macrophages at baseline and after the stimulation 227 with conidia from A. fumigatus at an effector-to-target ratio of 1:2 for 8 h. Total RNA from blood or 228 monocyte-derived macrophages was extracted using RNeasy Mini Kit (QIAGEN) and reverse 229 transcribed with the iScript cDNA Synthesis Kit (Bio-Rad) according to the manufacturer's 230 instructions. Real-time RT-PCR was performed in an Applied Biosystems 7500HT Fast using 231 Taqman probe-based gene expression technology (Life Technologies) according to the 232 manufacturer's instructions. Statistical significance in gene expression changes was determined 233 by unpaired t test with Whelch's correction (assuming unequal variance between groups).

234

Analysis of IL4R protein expression on T- and B-lymphocytes and monocytes by flow cytometry 235 236 IL4R protein levels were determined in PBMCs carrying the wild-type IL4R_{rs2107356G/G} (n=13), 237 heterozygote IL4R_{rs2107356A/G} (n=24) or mutant IL4R_{rs2107356A/A} genotypes (n=6) by flow cytometry 238 following a slightly modified version of a previously reported protocol (54). Briefly, PBMCs (1 x 239 10⁶) were pre-incubated with PBS supplemented with 5% FBS + 2 mM EDTA for 10 minutes to 240 block Fc receptors. Subsequently, cells were stained for 45 minutes at ambient temperature with 241 mouse anti-human antibodies to determine the levels of IL4R protein expression on CD_3^+T -cells, 242 $CD_{19}^{+}B$ -cells and CD_{14}^{+} monocytes. The negative control consisted of cells incubated with a 243 mouse PE-IgG1 Kappa (BD Pharmingen). The analysis was performed according to the flow 244 cytometric cell surface staining method and the following antibodies were used: phycoerythrin 245 (PE)-conjugated CD₁₂₄⁺, Peridin chlorophyll protein (PerCP)-conjugated CD₁₄⁺, allophycocyanin (APC)-eFluor®780-conjugated CD3⁺ and fluorescein isothiocyanate (FITC)-conjugated CD19⁺ 246 247 antibodies (BD Pharmingen). Cells were acquired on a BD FACSVerse flow cytometer (BD 248 Biosciences) and the data were analysed using the FlowJo software (TreeStar Inc.). Median fluorescence intensity (MFI) of the positive population was recorded for each cell type and
statistical differences were evaluated using an unpaired t-test with Welch's correction (two-tailed
P value).

253 Predictive models and discriminative accuracy

254 The value of immune-modulating polymorphisms for prediction of IA was examined using 255 stepwise logistic regression analysis. A prediction model was built that included age, gender, 256 allo-HSCT and anti-fungal prophylactic status, and those genetic variants that showed significant 257 associations with IA in the single-SNP analysis (P<0.05; phases 1+2). Then, using p-values as a 258 selection criterion, variables with the highest p-value were dropped and analyses were finalized 259 when all variables reached statistical significance (P<0.05). A predictive model with a similar 260 number of "non-significant SNPs" (P>0.10) was also built. The area under the curve (AUC) of a 261 receiver operating characteristic (ROC) curve analysis was used to assess the discriminative 262 accuracy of each particular model compared with a reference model including only demographic 263 and clinical variables as covariates (age, gender, allo-HSCT and anti-fungal prophylaxis status). 264 A -2 log likelihood ratio (LR) test was used to determine whether predictive models including 265 genetic information were statistically different when compared with the reference model. Finally, 266 we run a randomization test to confirm whether the improved predictive ability of the model 267 including genetic variants significantly associated with IA was consistent after 50,000 iterations. 268 Further details are included in supplementary material. All analyses were performed using R 269 (http://www.r-project.org/).

270

271 RESULTS

A total of 781 patients were enrolled in this case-control study and, among them, one hundred and forty-nine were diagnosed with proven or probable IA according to the revised EORTC/MSG definitions. The remaining 632 patients showed no evidence for proven or probable IA. Baseline and clinical characteristics of IA and non-IA patient groups are summarized in Table 2. Overall, IA and non-IA patients had a similar mean age (52.67 vs. 52.79, *P*=0.935) but IA patients showed a

 \triangleleft

Infection and Immunity

significantly higher male to female gender ratio when compared with those patients with no evidence of IA (1.81 vs. 1.19, P=0.031). In addition, the percentage of patients diagnosed with ALL was significantly higher in IA compared with non-IA patients (16.11% vs. 8.23%, P=0.006) whereas the percentage of patients with AML was significantly lower in IA compared to non-IA cases (67.11% vs. 76.74%, P=0.020). Interestingly, we also observed a significantly lower proportion of IA cases among those receiving posaconazole prophylaxis (P=0.017).

283

284 Thirty-six genetic variants within 14 immune-modulating genes were initially genotyped in 593 285 high-risk patients (113 IA and 480 non-IA patients). Logistic regression analysis revealed that 286 patients carrying the IL4R_{rs2107356A/A} and the VEGFA_{rs2146323A} and VEGFA_{rs6900017T} alleles had a 287 significantly increased risk of IA (OR=2.05, 95%CI 1.24-3.40; OR=1.63, 95%CI 1.02-2.61 and 288 OR=1.76, 95%CI 1.02-3.03, respectively) whereas patients carrying the IL12B_{rs3212227C} and 289 $IFN_{\chi_{s2069705C}}$ alleles showed a significantly decreased risk of developing the disease (OR=0.57, 290 95%CI 0.35-0.93 and OR=0.56, 95%CI 0.36-0.88, respectively; Table 3). When a log-additive 291 model was assumed, we also found a significant association between the VEGFA_{rs2146323} and 292 VEGFA_{rs6900017} SNPs and an increased risk of IA (per-allele OR=1.45, 95%CI 1.04-2.03 and per-293 allele OR=1.73, 95%CI 1.08-2.77) and a statistically significant association of the IFN %52069705 294 SNP with a decreased risk of developing IA (per-allele OR=0.69, 95%CI 0.49-0.97).

295

296 In order to further confirm these significant associations, the study cohort was extended by 297 recruiting 188 additional patients, 36 of whom were diagnosed with proven or probable IA. Given 298 the low number of proven and probable IA cases, we could not consider this second population 299 as an independent population for replication. An overall association analysis including 781 300 patients (149 IA and 632 non-IA patients) confirmed that carriers of the IL4R_{IS2107356A/A} and 301 IL8_{rs2227307G/G} genotypes had a significantly increased risk of IA when compared with those 302 carrying the wild type allele (OR=1.92, 95%CI 1.20-3.09 and OR=1.73, 95%CI 1.06-2.81) whereas those subjects harbouring the $IL12B_{rs3212227C}$ and $IFN_{\gamma_{rs2069705C}}$ alleles showed a 303 304 decreased risk of developing the infection (OR=0.60, 95%CI 0.38-0.96 and OR=0.63, 95%CI

0.41-0.97, respectively). When we tested the allele-dose effect of significant SNPs, we found that the *IL12B*_{rs3212227} polymorphism was significantly associated with a reduced risk of getting the infection (per-allele OR=0.67, 95%CI 0.45-0.99; Table 3). As part of these association analyses, we also performed haplotype analysis that confirmed that none of these polymorphisms were part of risk haplotypes. We only observed a significant association with IA for a relatively rare *IFN* γ_{fc} haplotype whose effect was likely due to the *IFN* $\gamma_{fs2069705}$ SNP (OR=0.34, 95%CI 0.13-0.88; Supplementary Table 1).

312

313 Interestingly, a logistic regression analysis restricted to allo-HSCT patients and considering only 314 donor genotypes and episodes of IA that occurred after transplantation (n=171) also showed that 315 the effect of the *IL4R*₂₁₀₇₃₅₆ and *IFN* $\gamma_{rs2069705}$ SNPs on the risk of IA was considerably stronger in 316 allo-HSCT patients compared to those patients who did not undergo transplantation (OR=5.63, 317 95%CI 1.98-16.05 vs. OR=1.48, 95%CI 0.81-2.71 and OR=0.24, 95%CI 0.10-0.59 vs. OR=0.86, 318 95%CI 0.52-1.45; respectively; Table 4). In this allo-HSCT-stratified analysis, we also found that 319 allo-HSCT patients carrying the VEGFA_{rs3024994T} allele showed an increased risk of IA when 320 compared with those allo-HSCT patients carrying the wild type genotype/allele (OR=4.48, 95%CI 321 1.25-16.08; Table 4).

322

323 Although none of the reported overall, haplotype and allo-HSCT-stratified associations remained 324 significant after correction for multiple testing (P_{Meff correction}=0.0004), the association of 325 $IL4R_{rs2107356}$ and $IFN\gamma_{s2069705}$ polymorphisms showed a marginal level of significance in allo-326 HSCT patients when a recessive and dominant model were respectively assumed (P_{REC} =0.0009 327 and P_{DOM} =0.0011, respectively). Considering these results and those showing a suggestive 328 association between IL12B_{rs3212227} SNP and risk of IA, we decided to evaluate whether the 329 $IL4R_{rs2107356}$, $IL8_{rs2227307}$, $IL12B_{rs3212227}$ and $IFN_{\gamma_{rs2069705}}$ variants could have a functional effect in 330 modulating the strength of immune responses against specific Aspergillus antigens and/or 331 stimulatory molecules. For that purpose, we first investigated whether IFN Xrs2069705 and 332 IL4R_{rs2107356} but also IL12B_{rs3212227} and IL8_{rs2227307} variants correlated with the ability of monocytederived macrophages to efficiently kill fungal conidia. Interestingly, we found that macrophages from donors carrying the *IFN* $\gamma_{fs2069705C}$ allele showed a significantly increased capability to kill fungal spores that those from subjects carrying the wild type genotype (TT vs. TC, *P*=0.0043; TT vs CC, *P*=0.0012; and TT vs. TC+CC, P=0.0003; Figure 1A). No differences in killing ability were observed in macrophages from donors carrying the *IL4R*_{rs2107356A/A} and *IL8*_{rs2227307G/G} genotypes or *IL12B*_{rs3212227C} allele in comparison with their respective wild type allele/genotype (Figure 1B-D).

340

341 Motivated by these results, we also decided to investigate whether the presence of the above-342 mentioned SNPs correlated with cytokine levels after stimulation of PBMCs from healthy donors 343 with fungal antigens (zymosan) or stimulatory molecules (LPS and PHA). These in vitro 344 stimulation experiments revealed that carriers of the IFN X52069705C allele showed an increased 345 production of IFN_Y after 4 days of incubation with LPS or PHA and when both stimulating 346 reagents were used in combination (PLPS=0.057, PPHA=0.036 and PLPS+PHA=0.030; Figure 2A and 347 Supplementary Table 2). We also observed that donors carrying the $IFN_{\chi_{s2069705C}}$ allele showed 348 a drastic increase in the production of TNF at almost all time points when compared with those 349 bearing the wild type genotype (*P*_{PHA-72h}=0.045, *P*_{LPS+PHA-72h}=0.018, *P*_{LPS-96h}=0.058, and *P*_{LPS+PHA-} _{96h}=0.0058; Figure 2B and Supplementary Table 2). In addition, we observed that subjects 350 351 carrying the $IFN_{\chi_{s2069705C}}$ allele tended to have an increased production of IL12p70 when 352 compared with those carrying the wild type genotype (Figure 2C and Supplementary Table 2). 353 No correlation between IL12p70 and IL8 levels and IL12B_{rs3212227} and IL8_{rs2227307} genotypes was 354 found. These findings suggest that the $IFN_{\chi_{s2069705}}$ SNP might contribute to modulate the risk of 355 IA likely through the regulation of IFN_y mRNA levels.

356

357 In order to test this hypothesis, we measured $IFN\gamma$ mRNA expression in PBMCs from healthy 358 donors (n=21) that were grouped according to the $IFN\gamma_{s2069705}$ genotype. Importantly, we found 359 that carriers of the $IFN\gamma_{s2069705C}$ allele (C/T+CC) showed a significantly increased level of $IFN\gamma$

360 mRNA when compared with those carrying the wild type genotype (40.85±11.65 vs. 13.87±5.43, 361 P=0.049; Figure 3A and 3B). Although this result pointed toward a role of this SNP in modulating 362 $IFN\gamma$ gene expression in PBMCs, we decided to further confirm this result by looking at the 363 publicly available blood expression quantitative loci trait (eQTL) browser 364 (http://genenetwork.nl/bloodegtlbrowser/). Of note, we found that, in agreement with our gene 365 expression data, this variant located in the promoter region of the gene (but also those 366 neighboring SNPs within the same linkage disequilibrium block) showed a positive correlation with IFN γ mRNA expression level that ranged between P=1.01•10⁻³ and P=1.70•10⁻³ 367 368 (Supplementary Figure 1).

369

370 Next, we analysed the correlation between the IL4R_{IS2107356} SNP and IL4R mRNA expression 371 levels in whole blood samples collected from healthy donors (n=43) and in monocyte-derived 372 macrophages at baseline and after in vitro stimulation with A. fumigatus conidia (n=12). Gene 373 expression data in blood samples did not show differences in IL4R mRNA expression levels 374 between homozygotes (GG vs. AA, P=0.304) but they showed a significantly increased level of 375 expression in heterozygotes when were compared either with wild type or mutant homozygotes 376 (AG vs. GG, P=0.0045 and AG vs. AA, P=0.031, respectively; Figure 3C). When carriers of the 377 IL4R_{rs2107356AA} genotype were compared with those carrying the wild type allele (according to the 378 genetic model used in our genetic analysis), we failed to find statistical differences in IL4R mRNA expression levels (PAAVS.GG+AG=0.2937; Figure 3D). These findings did not support our 379 380 hypothesis suggesting a functional effect for this promoter polymorphism on mRNA expression 381 but were in agreement with those data from the blood eQTL browser that reported no 382 association of this promoter variant with IL4R mRNA expression levels in PBMCs. In line with 383 these results, we neither found any correlation between the $IL4R_{rs2107356}$ variant and IL4R mRNA 384 expression levels in monocytes-derived macrophages at baseline and after stimulation with A. 385 fumigatus conidia (Figure 3E and 3F). The lack of correlation between this promoter 386 polymorphism and IL4R protein level was also confirmed by flow cytometry analysis in different 387 immune cell types (CD₁₉⁺, CD₁₄⁺ and CD₃⁺, cells; Figure 3G). We only found a significantly

increased level of IL4R in CD_{19}^+ cells in heterozygotes when compared with those subjects carrying the AA genotype (*P*=0.032; Figure 3G), which was in line with our gene expression data in blood samples from healthy donors and confirmed that the effect attributed to this promoter variant cannot be explained by changes in mRNA or protein expression levels. Given that *IL4R* is internalized in a time-dependent manner after stimulation with *IL4*, we could not confidently measure the correlation of the *IL4R*₂₁₀₇₃₅₆ SNP and *IL4R* protein levels under stimulation conditions (data not shown).

395

396 Finally, considering the association of some of the immune-modulating SNPs with the risk of 397 developing IA and given the correlation of some of these genetic markers with cytokine levels, 398 we tested the capacity of these variants to predict with confidence the disease risk. We 399 assessed the predictive capacity of a model built with "significant SNPs" and demographic and 400 clinical variables in comparison with a reference model including only demographic and clinical 401 variables. Despite the modest population size, we found that a predictive model including 4 402 variants associated with IA, age, gender, allo-HSCT and antifungal prophylaxis status showed 403 an improvement in discriminatory ability to predict the disease when compared with the 404 reference model (AUC=0.659, 95%IC 0.596-0.722, P=0.000005 vs. AUC=0.564, 95%IC 0.499-0.630, P=0.064; P-2_log_likehood_ratio_test=0.00052; Table 5 and Figure 4). Importantly, we also 405 406 observed that a model built with a similar number of "non-significant SNPs", together with 407 demographic and clinical variables, did not show any significant change in predictive capacity 408 when compared with the reference model (Supplementary Table 3), which confirmed the utility of 409 significant SNPs in predicting IA. The consistency of the predictive results was supported 410 through a 50.000 permutation test that showed that none of the 50.000 permuted models 411 showed a better prediction capacity than our genetic model built with SNPs significantly 412 associated with IA (AUCsort-average=0.6001, SDsort-AUC=0.0158, Z score=3.7361 and Pz scorevalue (50.000perm)=9.34•10⁻⁰⁵; Table 5 and Supplementary material). 413

414

415 **DISCUSSION**

416 In this study, we report an association between genetic variants within *IL4R*, *IL8*, *IL12B* and *IFN* γ 417 genes and the risk of developing IA. Carriers of the IL4R_{rs2107356A/A} and IL8_{rs2227307G/G} genotypes 418 had a significantly increased risk of developing the infection whereas patients carrying the 419 $IL12B_{rs3212227C}$ and $IFN_{\gamma_{rs2069705C}}$ alleles showed a substantially decreased risk of IA when 420 compared with those harbouring the wild type allele/genotype. Although none of these 421 associations persisted after a restrictive correction for multiple testing, we found that the 422 association of the IL4R_{rs2107356} and IFN $\gamma_{rs2069705}$ polymorphisms reached marginal significance in 423 the allo-HSCT patient population, which pointed towards an impact of these variants in 424 modulating the risk of developing IA, particularly in high-risk populations. Based on these results 425 but also those suggesting overall associations of polymorphisms within the IL4R, IL8, IL12B and 426 IFN γ genes at the conventional significance threshold of P \leq 0.05, it seems plausible to suggest 427 that polymorphisms within these genes may affect gene function and therefore contribute to the 428 pathogenesis of IA. We hypothesized that both $IL4R_{rs2107356}$ and $IFN_{\chi_{s2069705}}$ polymorphisms, 429 located in the promoter region of their respective genes, may affect gene expression and, 430 consequently, have an effect in modulating IL4- and IFN y-mediated immune responses against 431 Aspergillus. Likewise, we hypothesized that IL8_{rs2227307} and IL12B_{rs3212227} intronic polymorphisms 432 might affect alternative splicing of IL8 and IL12B mRNA and even alter mRNA expression 433 thereby dysregulating IL8- and IL12-mediated Th1 immune responses against fungal pathogens. 434 In line with these arguments, a number of previous studies have reported associations of these 435 polymorphisms with immune-related diseases (55, 56) and infections (57-60) including IA (45). 436 In particular, we confirmed an association previously reported by Mezger et al. (2008) between 437 the IFN $\gamma_{s2069705}$ SNP and the risk of IA (45). This supports our hypothesis that this association is 438 likely to be true and that this variant may play a role in modulating the immune response against 439 Aspergillus.

440

441 Recent studies in humans and animal models have demonstrated that *IL4/IL4R*, *IL8*, *IL12* and 442 *IFN* γ have a central role in IA (19, 61-65). In particular, *IFN* γ seems to be a key factor as its

443 enhanced production (14, 66) or its therapeutic administration (63), boosts the production of free 444 oxygen radicals and the neutrophil-mediated damage of fungal hyphae and promotes resistance 445 to the infection (19, 67). It is also well documented that the production of IL8 and IL12p70 by 446 epithelial and dendritic cells in response to conidia enhances Th1-mediated immune responses 447 (61, 68, 69) and increases resistance to IA (62) whereas its neutralization produces a marked 448 increase in susceptibility to IA (15, 19). IL12p70 also mediates enhanced cytotoxic activity of NK 449 cells and CD_8^+ -T cells and promotes the secretion of IFN_{γ} by CD_4^+ -T cells, which is an essential 450 process for an efficient clearance of inhaled Aspergillus fumigatus spores. Conversely, IL4 451 secretion activates Th_2 -CD₄⁺-T cell immune responses and leads to a significant decrease in Th₁ 452 immune responses and, consequently, increases susceptibility to Aspergillus infection (19, 70). 453 Similarly, it has also been demonstrated that the lack of IL4 cytokine increases Th₁ immune 454 responses characterized by high production of IL12 and an enhanced IL12-mediated production

> 455 of *IFN* γ by T lymphocytes thereby leading to an increase in resistance to developing the infection 456 (19).

457

458 In light of these results and in order to better characterize the role of IFN_Y, IL4R, IL8 and IL12B 459 polymorphisms in modulating immune responses against fungal antigens and/or specific 460 stimulatory molecules, we proceeded to perform functional assays in PBMCs and monocyte-461 derived macrophages from healthy donors. Importantly, we found that subjects carrying the 462 $IFN_{\chi_{52069705C}}$ allele showed an increased ability to kill A. fumigatus conidia than those carrying 463 the wild type allele. This important finding support our genetic findings but also those from a 464 previous study (45) suggesting that $IFN_{\gamma_{fs2069705}}$ promoter variant might play a key role in 465 modulating the strength of immune responses against Aspergillus likely through the modulation 466 on IFN γ mRNA expression. Importantly, we also observed that, under stimulating conditions, 467 PBMCs from carriers of the IFN X52069705C allele showed an increased production of IFN Y and TNF 468 cytokines than those individuals carrying the wild type allele. In addition to this, we found that the 469 $IFN_{\gamma_{s2069705}}$ SNP correlated with IFN_{γ} mRNA levels in PBMCs from healthy donors, which again suggested that this polymorphism or another causative polymorphism in strong linkage disequilibrium with it may be involved not only in the control of $IFN\gamma$ production but also in the subsequent induction of *TNF* production. Taking all these findings together, we propose a central role for this variant in determining the risk of IA in allo-HSCT and in leukaemia patients undergoing intensive chemotherapy.

475

Although genetic data suggested that polymorphisms within IL4R, IL8 and IL12B influence the risk of developing IA, functional experiments did not show any correlation between these SNPs and their respective mRNA and/or protein levels. Therefore, we suggest that these variants might exert their biological function by modulating other biological processes such as mRNA processing (splicing or turnover) or mRNA stability or even act at post-transcriptional level. Further studies are now warranted to replicate our findings and to experimentally identify the functional role of these SNPs in determining the risk of IA.

483

484 Finally, given the genetic and/or functional effect observed for variants within IFN y, IL4R, IL8, 485 IL12B and VEGFA genes, we found also interesting to determine the impact of these variants in predicting the disease risk. We found that a model built with $IL8_{rs2227307}$, $IL12B_{rs3212227}$, $IFN\gamma_{rs2069705}$ 486 487 and VEGFA_{rs6900017} SNPs showed a significantly improved discriminatory ability to predict the 488 disease when it was compared with a model that included demographic and clinical variables. 489 Importantly, when a similar number of "non-significant SNPs" were added to the reference 490 model, we did not observe any significant change in predictive capacity, which confirmed that 491 only a model built with these significant SNPs could have capacity to predict the infection. In 492 support of this finding, we also observed that the AUC of this model was systematically higher 493 than the AUC observed for 50.000 iterative models, which emphasizes the importance of 494 considering predictive models to assist in the clinical decision-making process and to improve in 495 novel strategies to prevent IA occurrence.

496

497 This study has both strengths and limitations. Study strengths include a multicentre population-498 based design, a relatively large sample size, and the high number of genetic polymorphisms 499 analysed. This allowed us for the first time to perform predictive analyses to assess the potential 500 utility of genetic variants in predicting with confidence the risk of developing IA. Potential 501 weaknesses include limited antifungal prophylaxis data availability for a subset of patients and a 502 relatively low number of proven or probable IA cases that limited the study's statistical power to 503 rule out spurious associations. To minimize this limitation, the most relevant associations were 504 functionally validated.

505

506 In conclusion, our data suggest that immune-modulating polymorphisms have an impact on the 507 risk of IA and that genotyping of these variants could help to predict the risk of IA and therefore 508 be useful to establish a risk-adapted anti-fungal prophylaxis strategy.

509

510 ACKNOWLEDGMENTS

511 We thank Thomas Rogers (St James's Hospital, Dublin, Ireland) for reviewing and editing the 512 English language and Dr. António Marques (Hospital de Braga, Portugal) who provided the buffy 513 coats. We also thank Astella Pharma Inc. for supporting this work.

514

515 **REFERENCES**

Neofytos D, Lu K, Hatfield-Seung A, Blackford A, Marr KA, Treadway S, Ostrander D,
 Nussenblatt V, Karp J. 2013. Epidemiology, outcomes, and risk factors of invasive fungal
 infections in adult patients with acute myelogenous leukemia after induction chemotherapy.
 Diagn Microbiol Infect Dis 75:144-149.

Neofytos D, Treadway S, Ostrander D, Alonso CD, Dierberg KL, Nussenblatt V, Durand
 CM, Thompson CB, Marr KA. 2013. Epidemiology, outcomes, and mortality predictors of
 invasive mold infections among transplant recipients: a 10-year, single-center experience.
 Transpl Infect Dis doi:10.1111/tid.12060.

524 3. Steinbach WJ, Marr KA, Anaissie EJ, Azie N, Quan SP, Meier-Kriesche HU, Apewokin

525		S, Horn DL. 2012. Clinical epidemiology of 960 patients with invasive aspergillosis from the
526		PATH Alliance registry. J Infect 65: 453-464.
527	4.	Hammond SP, Marty FM, Bryar JM, DeAngelo DJ, Baden LR. 2010. Invasive fungal
528		disease in patients treated for newly diagnosed acute leukemia. Am J Hematol 85:695-699.
529	5.	Baddley JW, Stephens JM, Ji X, Gao X, Schlamm HT, Tarallo M. 2013. Aspergillosis in
530		Intensive Care Unit (ICU) patients: epidemiology and economic outcomes. BMC Infect Dis
531		13: 29.
532	6.	Gresnigt MS, Netea MG, van de Veerdonk FL. 2012. Pattern recognition receptors and
533		their role in invasive aspergillosis. Ann N Y Acad Sci 1273: 60-67.
534	7.	Balloy V, Chignard M. 2009. The innate immune response to Aspergillus fumigatus.
535		Microbes Infect 11:919-927.
536	8.	Serrano-Gomez D, Leal JA, Corbi AL. 2005. DC-SIGN mediates the binding of Aspergillus
537		fumigatus and keratinophylic fungi by human dendritic cells. Immunobiology 210: 175-183.
538	9.	Sun WK, Lu X, Li X, Sun QY, Su X, Song Y, Sun HM, Shi Y. 2012. Dectin-1 is inducible
539		and plays a crucial role in Aspergillus-induced innate immune responses in human bronchial
540		epithelial cells. Eur J Clin Microbiol Infect Dis 31: 2755-2764.
541	10.	Mambula SS, Sau K, Henneke P, Golenbock DT, Levitz SM. 2002. Toll-like receptor (TLR)
542		signaling in response to Aspergillus fumigatus. J Biol Chem 277:39320-39326.
543	11.	Gersuk GM, Underhill DM, Zhu L, Marr KA. 2006. Dectin-1 and TLRs permit macrophages
544		to distinguish between different Aspergillus fumigatus cellular states. J Immunol 176:3717-
545		3724.
546	12.	Said-Sadier N, Padilla E, Langsley G, Ojcius DM. 2010. Aspergillus fumigatus stimulates
547		the NLRP3 inflammasome through a pathway requiring ROS production and the Syk
548		tyrosine kinase. PLoS One 5: e10008.
549	13.	Mehrad B, Strieter RM, Standiford TJ. 1999. Role of TNF-alpha in pulmonary host
550		defense in murine invasive aspergillosis. J Immunol 162: 1633-1640.
551	14.	Cenci E, Mencacci A, Fe d'Ostiani C, Del Sero G, Mosci P, Montagnoli C, Bacci A,
552		Romani L. 1998. Cytokine- and T helper-dependent lung mucosal immunity in mice with
		19

 \mathbb{A}

- 553 invasive pulmonary aspergillosis. J Infect Dis **178:**1750-1760.
- 15. Brieland JK, Jackson C, Menzel F, Loebenberg D, Cacciapuoti A, Halpern J, Hurst S,
 Muchamuel T, Debets R, Kastelein R, Churakova T, Abrams J, Hare R, O'Garra A. 2001.
 Cytokine networking in lungs of immunocompetent mice in response to inhaled Aspergillus
 fumicatus. Infect Immun 69:1554-1560.
- Gringhuis SI, den Dunnen J, Litjens M, van der Vlist M, Wevers B, Bruijns SC,
 Geijtenbeek TB. 2009. Dectin-1 directs T helper cell differentiation by controlling
 noncanonical NF-kappaB activation through Raf-1 and Syk. Nat Immunol 10:203-213.
- 561 17. Sha Q, Truong-Tran AQ, Plitt JR, Beck LA, Schleimer RP. 2004. Activation of airway
 562 epithelial cells by toll-like receptor agonists. Am J Respir Cell Mol Biol 31:358-364.
- 18. Balloy V, Sallenave JM, Wu Y, Touqui L, Latge JP, Si-Tahar M, Chignard M. 2008.
 Aspergillus fumigatus-induced interleukin-8 synthesis by respiratory epithelial cells is
 controlled by the phosphatidylinositol 3-kinase, p38 MAPK, and ERK1/2 pathways and not
 by the toll-like receptor-MyD88 pathway. J Biol Chem 283:30513-30521.
- 19. Cenci E, Mencacci A, Del Sero G, Bacci A, Montagnoli C, d'Ostiani CF, Mosci P,
 Bachmann M, Bistoni F, Kopf M, Romani L. 1999. Interleukin-4 causes susceptibility to
 invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect
 Dis 180:1957-1968.
- S71 20. Clemons KV, Grunig G, Sobel RA, Mirels LF, Rennick DM, Stevens DA. 2000. Role of
 IL-10 in invasive aspergillosis: increased resistance of IL-10 gene knockout mice to lethal
 systemic aspergillosis. Clin Exp Immunol 122:186-191.
- 574 21. Mehrad B, Strieter RM, Moore TA, Tsai WC, Lira SA, Standiford TJ. 1999. CXC
 575 chemokine receptor-2 ligands are necessary components of neutrophil-mediated host
 576 defense in invasive pulmonary aspergillosis. J Immunol 163:6086-6094.
- 577 22. Mehrad B, Moore TA, Standiford TJ. 2000. Macrophage inflammatory protein-1 alpha is a
 578 critical mediator of host defense against invasive pulmonary aspergillosis in neutropenic
 579 hosts. J Immunol 165:962-968.
- 580 23. Morrison BE, Park SJ, Mooney JM, Mehrad B. 2003. Chemokine-mediated recruitment of

581		NK cells is a critical host defense mechanism in invasive aspergillosis. J Clin Invest
582		112: 1862-1870.
583	24.	Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M. 1997.
584		Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth
585		factor in tumor necrosis factor alpha-dependent angiogenesis. Mol Cell Biol 17:4015-4023.
586	25.	Park SJ, Mehrad B. 2009. Innate immunity to Aspergillus species. Clin Microbiol Rev
587		22: 535-551.
588	26.	Romani L. 2011. Immunity to fungal infections. Nat Rev Immunol 11:275-288.
589	27.	Crosdale DJ, Poulton KV, Ollier WE, Thomson W, Denning DW. 2001. Mannose-binding
590		lectin gene polymorphisms as a susceptibility factor for chronic necrotizing pulmonary
591		aspergillosis. J Infect Dis 184:653-656.
592	28.	Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios R, Oyonarte S, Hemminki K,
593		Forsti A, Jurado M. 2012. Dectin-1 and DC-SIGN polymorphisms associated with invasive
594		pulmonary Aspergillosis infection. PLoS One 7: e32273.
595	29.	Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, M VDB, O'Reilly R, Pamer E,
596		Satagopan J, Papanicolaou GA. 2005. TLR1 and TLR6 polymorphisms are associated
597		with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann N Y
598		Acad Sci 1062: 95-103.
599	30.	Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M, Rodrigues SD, Li
600		S, Hansen JA, Zhao LP, Aderem A, Boeckh M. 2008. Toll-like receptor 4 polymorphisms
601		and aspergillosis in stem-cell transplantation. N Engl J Med 359: 1766-1777.
602	31.	Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di lanni M, Falzetti F, Bistoni F,
603		Aversa F, Pitzurra L, Rodrigues F, Romani L. 2009. Polymorphisms in Toll-like receptor
604		genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol
605		37 :1022-1029.
606	32.	de Boer MG, Jolink H, Halkes CJ, van der Heiden PL, Kremer D, Falkenburg JH, van
607		de Vosse E, van Dissel JT. 2011. Influence of polymorphisms in innate immunity genes on
608		susceptibility to invasive aspergillosis after stem cell transplantation. PLoS One 6:e18403.

21

609 33. Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. 2008.
610 Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J
611 Infect Dis 197:618-621.

612 34. Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C,
613 Halkes CJ, Vonk AG, Blijlevens NM, van Dissel JT, Donnelly PJ, Kullberg BJ, Maertens
614 J, Netea MG. 2011. The Y238X stop codon polymorphism in the human beta-glucan
615 receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis 203:736-743.

35. Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T, D'Angelo C, Pierini
A, Pitzurra L, Falzetti F, Carotti A, Perruccio K, Latge JP, Rodrigues F, Velardi A,
Aversa F, Romani L, Carvalho A. 2010. Dectin-1 Y238X polymorphism associates with
susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment
of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood
116:5394-5402.

- Granell M, Urbano-Ispizua A, Suarez B, Rovira M, Fernandez-Aviles F, Martinez C,
 Ortega M, Uriburu C, Gaya A, Roncero JM, Navarro A, Carreras E, Mensa J, Vives J,
 Rozman C, Montserrat E, Lozano F. 2006. Mannan-binding lectin pathway deficiencies
 and invasive fungal infections following allogeneic stem cell transplantation. Exp Hematol
 34:1435-1441.
- Grube M, Loeffler J, Mezger M, Kruger B, Echtenacher B, Hoffmann P, Edinger M,
 Einsele H, Andreesen R, Holler E. 2013. TLR5 stop codon polymorphism is associated
 with invasive aspergillosis after allogeneic stem cell transplantation. Med Mycol
 doi:10.3109/13693786.2013.809630.

631 38. Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F, Donato R, Rodrigues F,
632 Velardi A, Aversa F, Romani L, Carvalho A. 2011. Genetically-determined hyperfunction of
633 the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients.
634 PLoS One 6:e27962.

39. Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M, Loffler J, Maertens JA,
Bell AS, Inforzato A, Barbati E, Almeida B, Santos e Sousa P, Barbui A, Potenza L,

- 637 Caira M, Rodrigues F, Salvatori G, Pagano L, Luppi M, Mantovani A, Velardi A, Romani
- 638 L, Carvalho A. 2014. Genetic PTX3 deficiency and aspergillosis in stem-cell
 639 transplantation. N Engl J Med 370:421-432.
- Koldehoff M, Beelen DW, Elmaagacli AH. 2013. Increased susceptibility for aspergillosis
 and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell
 transplantation. Transpl Infect Dis 15:533-539.
- 643 41. Sainz J, Perez E, Gomez-Lopera S, Jurado M. 2008. IL1 gene cluster polymorphisms and
 644 its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and
 645 modulate C-reactive protein level. J Clin Immunol 28:473-485.
- 42. Sainz J, Hassan L, Perez E, Romero A, Moratalla A, Lopez-Fernandez E, Oyonarte S,
 Jurado M. 2007. Interleukin-10 promoter polymorphism as risk factor to develop invasive
 pulmonary aspergillosis. Immunol Lett 109:76-82.
- 43. Seo KW, Kim DH, Sohn SK, Lee NY, Chang HH, Kim SW, Jeon SB, Baek JH, Kim JG,
 Suh JS, Lee KB. 2005. Protective role of interleukin-10 promoter gene polymorphism in the
 pathogenesis of invasive pulmonary aspergillosis after allogeneic stem cell transplantation.
 Bone Marrow Transplant 36:1089-1095.
- 44. Johnson MD, Plantinga TS, van de Vosse E, Velez Edwards DR, Smith PB, Alexander
 BD, Yang JC, Kremer D, Laird GM, Oosting M, Joosten LA, van der Meer JW, van
 Dissel JT, Walsh TJ, Perfect JR, Kullberg BJ, Scott WK, Netea MG. 2012. Cytokine gene
 polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin
 Infect Dis 54:502-510.
- 45. Mezger M, Steffens M, Beyer M, Manger C, Eberle J, Toliat MR, Wienker TF, Ljungman
 P, Hebart H, Dornbusch HJ, Einsele H, Loeffler J. 2008. Polymorphisms in the chemokine
 (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell
 transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood
 111:534-536.
- 46. Sainz J, Salas-Alvarado I, Lopez-Fernandez E, Olmedo C, Comino A, Garcia F, Blanco
 A, Gomez-Lopera S, Oyonarte S, Bueno P, Jurado M. 2010. TNFR1 mRNA expression

level and TNFR1 gene polymorphisms are predictive markers for susceptibility to develop
invasive pulmonary aspergillosis. Int J Immunopathol Pharmacol 23:423-436.

47. Sainz J, Perez E, Hassan L, Moratalla A, Romero A, Collado MD, Jurado M. 2007.
Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of
susceptibility to develop invasive pulmonary aspergillosis. Hum Immunol 68:41-50.

670 48. Aguado JM, Vazquez L, Fernandez-Ruiz M, Villaescusa T, Ruiz-Camps I, Barba P, Silva 671 JT, Batlle M, Solano C, Gallardo D, Heras I, Polo M, Varela R, Vallejo C, Olave T, Lopez-672 Jimenez J, Rovira M, Parody R, Cuenca-Estrella M, Group PS, Spanish Stem Cell 673 Transplantation Group tSGoMMotSSoCM, Infectious D, the Spanish Network for 674 Research in Infectious D. 2015. Serum galactomannan versus a combination of 675 galactomannan and polymerase chain reaction-based Aspergillus DNA detection for early 676 therapy of invasive aspergillosis in high-risk hematological patients: a randomized controlled 677 trial. Clin Infect Dis 60:405-414.

678 49. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, 679 Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, 680 Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, 681 Munoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, 682 Viscoli C, Wingard JR, Zaoutis T, Bennett JE, European Organization for R, Treatment 683 of Cancer/Invasive Fungal Infections Cooperative G, National Institute of A, Infectious 684 Diseases Mycoses Study Group Consensus G. 2008. Revised definitions of invasive 685 fungal disease from the European Organization for Research and Treatment of 686 Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy 687 and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin 688 Infect Dis 46:1813-1821.

50. Chen B, Wilkening S, Drechsel M, Hemminki K. 2009. SNP_tools: A compact tool
package for analysis and conversion of genotype data for MS-Excel. BMC Res Notes 2:214.
51. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J,
DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R,

- Ward R, Lander ES, Daly MJ, Altshuler D. 2002. The structure of haplotype blocks in the
 human genome. Science 296:2225-2229.
- 52. Nyholt DR. 2004. A simple correction for multiple testing for single-nucleotide
 polymorphisms in linkage disequilibrium with each other. Am J Hum Genet 74:765-769.
- 697 53. Byrnes HD, Kaminski H, Mirza A, Deno G, Lundell D, Fine JS. 1999. Macrophage
 698 inflammatory protein-3 beta enhances IL-10 production by activated human peripheral blood
 699 monocytes and T cells. J Immunol 163:4715-4720.
- 54. Mozo L, Gayo A, Suarez A, Rivas D, Zamorano J, Gutierrez C. 1998. Glucocorticoids
 inhibit IL-4 and mitogen-induced IL-4R alpha chain expression by different
 posttranscriptional mechanisms. J Allergy Clin Immunol 102:968-976.
- 55. Hesselmar B, Bergin AM, Park H, Hahn-Zoric M, Eriksson B, Hanson LA, Padyukov L.
 2010. Interleukin-4 receptor polymorphisms in asthma and allergy: relation to different
- 705 disease phenotypes. Acta Paediatr **99:**399-403.
- 56. Kim K, Cho SK, Sestak A, Namjou B, Kang C, Bae SC. 2010. Interferon-gamma gene
 polymorphisms associated with susceptibility to systemic lupus erythematosus. Ann Rheum
 Dis 69:1247-1250.
- 57. Stappers MH, Thys Y, Oosting M, Plantinga TS, Ioana M, Reimnitz P, Mouton JW,
 Netea MG, Joosten LA, Gyssens IC. 2014. Polymorphisms in cytokine genes IL6, TNF,
 IL10, IL17A and IFNG influence susceptibility to complicated skin and skin structure
 infections. Eur J Clin Microbiol Infect Dis 33:2267-2274.
- 713 58. Wang D, Zhong X, Huang D, Chen R, Bai G, Li Q, Yu B, Fan Y, Sun X. 2014. Functional 714 polymorphisms of interferon-gamma affect pneumonia-induced sepsis. PLoS One 9:e87049. 715 59. Morris GA, Edwards DR, Hill PC, Wejse C, Bisseye C, Olesen R, Edwards TL, Gilbert 716 JR, Myers JL, Stryjewski ME, Abbate E, Estevan R, Hamilton CD, Tacconelli A, Novelli 717 G, Brunetti E, Aaby P, Sodemann M, Ostergaard L, Adegbola R, Williams SM, Scott 718 WK, Sirugo G. 2011. Interleukin 12B (IL12B) genetic variation and pulmonary tuberculosis: 719 a study of cohorts from The Gambia, Guinea-Bissau, United States and Argentina. PLoS One 6:e16656. 720

721	60.	Zhang N, Xu Y, Zhang B, Zhang T, Yang H, Zhang B, Feng Z, Zhong D. 2014. Analysis of
722		interleukin-8 gene variants reveals their relative importance as genetic susceptibility factors
723		for chronic periodontitis in the Han population. PLoS One 9 :e104436.
724	61.	Bozza S, Gaziano R, Spreca A, Bacci A, Montagnoli C, di Francesco P, Romani L.
725		2002. Dendritic cells transport conidia and hyphae of Aspergillus fumigatus from the airways
726		to the draining lymph nodes and initiate disparate Th responses to the fungus. J Immunol
727		168: 1362-1371.
728	62.	Cenci E, Perito S, Enssle KH, Mosci P, Latge JP, Romani L, Bistoni F. 1997. Th1 and
729		Th2 cytokines in mice with invasive aspergillosis. Infect Immun 65:564-570.
730	63.	Nagai H, Guo J, Choi H, Kurup V. 1995. Interferon-gamma and tumor necrosis factor-
731		alpha protect mice from invasive aspergillosis. J Infect Dis 172: 1554-1560.
732	64.	Bellocchio S, Bozza S, Montagnoli C, Perruccio K, Gaziano R, Pitzurra L, Romani L.
733		2005. Immunity to Aspergillus fumigatus: the basis for immunotherapy and vaccination. Med
734		Mycol 43 Suppl 1: S181-188.
735	65.	Phadke AP, Mehrad B. 2005. Cytokines in host defense against Aspergillus: recent
736		advances. Med Mycol 43 Suppl 1:S173-176.
737	66.	Park SJ, Hughes MA, Burdick M, Strieter RM, Mehrad B. 2009. Early NK cell-derived
738		IFN-{gamma} is essential to host defense in neutropenic invasive aspergillosis. J Immunol
739		182: 4306-4312.
740	67.	Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. 1993. Enhancement of oxidative
741		response and damage caused by human neutrophils to Aspergillus fumigatus hyphae by
742		granulocyte colony-stimulating factor and gamma interferon. Infect Immun 61:1185-1193.
743	68.	Bellanger AP, Millon L, Khoufache K, Rivollet D, Bieche I, Laurendeau I, Vidaud M,
744		Botterel F, Bretagne S. 2009. Aspergillus fumigatus germ tube growth and not conidia
745		ingestion induces expression of inflammatory mediator genes in the human lung epithelial
746		cell line A549. J Med Microbiol 58: 174-179.
747	69.	Chiang LY, Sheppard DC, Gravelat FN, Patterson TF, Filler SG. 2008. Aspergillus
748		fumigatus stimulates leukocyte adhesion molecules and cytokine production by endothelial

749	cells in vitro and during invasive pulmonary disease. Infect Immun 76: 3429-3438.
750	70. Mencacci A, Perruccio K, Bacci A, Cenci E, Benedetti R, Martelli MF, Bistoni F,
751	Coffman R, Velardi A, Romani L. 2001. Defective antifungal T-helper 1 (TH1) immunity in
752	a murine model of allogeneic T-cell-depleted bone marrow transplantation and its restoration
753	by treatment with TH2 cytokine antagonists. Blood 97: 1483-1490.
754	
755	
756	
757	
758	
759	
760	
761	
762	
763	
764	
765	
766	
767	
768	
769	
770	
771	
772	
773	
774	
775	
776	
	27

TABLE AND FIGURE LEGENDS 777

778 779 780 781 Table 1. Selected SNPs within immune-modulating genes.

Abbreviations: SNP, single nucleotide polymorphisms, UTR, untranslated region. References included in this table are listed in the supplementary material.

Table 2. Baseline and clinical characteristic of IA and non-IA patient groups.

Abbreviations; HSCT; Hematopojetic stem cell transplantation, AML; acute myeloid leukemia, ALL; acute lymphoid leukemia; UHS, University hospital of Salamanca (Spain); GHV, General hospital of Valencia (Spain); PCRAGA clinical trial (EU clinical trial number: 2010-019406-17); CSC, Università Cattolica del S. Cuore, Rome (Italy); MO, University of Modena and Reggio Emilia, Modena (Italy). P≤0.05 was considered significant. * Some patients had several prophylactic drugs.

† Prophylaxis status was only available in 99 subjects (15 IA and 72 non-IA patients).

∂ Percentage calculated according to the number of patients with prophylaxis data available.

792 793

803

<u>88</u>4

806

807

808

809

810 811 812

Table 3. Association of polymorphisms within immunoregulatory genes and invasive aspergillosis.

Abbreviations: OR, odds ratio; CI, confidence interval. Abbreviations: n/s, not specified; SNP, single nucleotide polymorphism; UTR, untranslated region. Estimates were adjusted for age, sex, country of origin, allo-SCT, and prophylaxis status (ever use of prophylaxis). P<0.05 in bold.

^aDiscovery population: aspBIOmics+PCRAGA+Valencia+Salamanca populations; N=593 hematological patients ^bOverall: n=781; after extension with 188 high-risk patients [39 HSCT and 149 non-HSCT patients]; 87 of them with prophylaxis data.

[†]Estimates according a recessive model of inheritance.

[§]SNP signifcantly associated with IA according a log-additive model of inheritance.

[§]*IFNG*_{rs2069705} (per-allele OR= 0.69, 95%CI 0.49-0.97; *P*_{trend}=0.032).

[§]VEGFA_{rs2146323} (per-allele OR= 1.45, 95%CI 1.04-2.03; P_{trend} =0.029).

[§]VEGFA_{rs6900017} (per-allele OR= 1.73, 95%Cl 1.08-2.77; P_{trend}=0.027).

[§]*IL*12*B*_{rs3212227} (per-allele OR= 0.67, 95%CI 0.45-0.99; *P*_{trend} =0.040).

Table 4. Association of immunoregulatory SNPs and IA in allo-HSCT patients (n=171).

Abbreviations: OR, odds ratio; CI, confidence interval. Abbreviations: n/s, not specified; SNP, single nucleotide polymorphism; UTR, untranslated region. Estimates were adjusted for age, sex, country of origin, severe neutropenia, and prophylactic status (ever having prophylaxis). P<0.05 in bold.

^aOverall population (Discovery population+extension).

[†]Estimates according a recessive model of inheritance.

SNP associated with IA infection according to a log-additive model of inheritance.

*Estimates calculated according a co-dominant model (homozygotes for the rare allele were not found).

[§]IL4R_{rs2107356} (per-allele OR= 2.17, 95%CI 1.18-3.98; P_{trend}=0.0097).

[§]IFNG_{rs2069705} (per-allele OR= 0.50, 95%CI 0.26-0.95; P_{trend}=0.027).

[§]VEGFA_{rs3024994} (per-allele OR= 3.19, 95%Cl 1.08-9.45; P_{trend}=0.033).

828 829 830

831 832

833

Table 5. Discriminative value AUC for models including immune-modulating variants.

^aIncluding age, gender, allo-HSCT and prophylactic status as variables never dropped from models.

**/L4R_{rs2107356} and VEGFA_{rs2146323} polymorphisms were not significant and were dropped from the model.

After removing missing values, 455 subjects (85 IA and 370 non-IA cases) were available for prediction capacity analysis

- 834 835
- 836
- 837 838

839

nfection and Immunity

Residual deviance (Reference model): 433.21

Residual deviance (Significant SNPs model): 413.31

840 841 Figure 1. Fungicidal activity of monocyte-derived macrophage according to $IFN_{\gamma}[A]$, IL12B [B], 842 IL4R [C] and IL8 [D] genotypes. 843

844

848 849

862 863

868

869

870

845 Figure 2. IFN γ , TNF α and IL12p70 cytokine levels on stimulated PBMCs according to the 846 847 *IFN* $\gamma_{rs2069705}$ genotypes.

PBMCs from healthy donors were stimulated with Zymosan (5μ g/ml) and PHA (2μ g/ml) alone or in combination with LPS (100 ng/ml). Supernatants were harvested for IFN γ , TNF α and IL12p70 analysis at 72 and 96h.

850 851 852 Figure 3. IFNY [A and B] and IL4R mRNA [C-F] and protein [G] expression levels according to 853 854 855 856 857 858 857 858 859 860 861 the IL4R_{rs2107356} genotypes.

Correlation between $IFN_{32069705}$ genotypes and $IFN\gamma$ mRNA expression levels were analysed in PBMCs from healthy donors at baseline or stimulated with *Aspergillus* conidia [A and B]. Correlation between $IL4R_{rs207356}$ genotypes and IL4R mRNA expression levels were analysed in blood samples from healthy donors [C and D] and in monocyte-derived macrophages at baseline or stimulated with Aspergillus conidia [E and F]. Correlation between this promoter variant and IL4R protein levels were also analysed in different immune cells (CD₁₉⁺, CD₁₄⁺ and CD₃⁺) by flow cytometry [G].

Figure 4. Receiver operating characteristics (ROC) curve analysis.

ROC curves summarize the accuracy of prediction for each particular model. The model including SNPs significantly associated with IA and demographic and clinical variables (marked in blue) showed a significantly improved predictive capacity comparared with a reference model including only demographic and clinical variables (marked in red).

AUC=0.659 vs. AUC=0.564.

Figure 1

100-

80-60 $\mathsf{IFN}_{\gamma_{\mathsf{rs}2069705}}$

**

**

100-

80-

60-

 $\text{IFN}_{\gamma_{\text{rs}2069705}}$

 \mathbb{A}

Figure 2

Infection and Immunity

 $\overline{\triangleleft}$

Figure 4

Gene name	Gene symbol_SNP	dbSNP rs#	Nucleotide substitution	Aa change/Location	Reported associations with infectious diseases / reported or potential functionality	References
Interleukin 4 (IL4)	IL41098 IL4_Ex1-168 IL4_IVS2-1443 IL4_IVS3-9	rs2243248 rs2070874 rs2243268 rs2243290	G/T C/T A/C A/C	Promoter Intronic Intronic Intronic	Associated with chronic disseminated candidiasis Unknown Unknown Unknown	(1)
Interleukin 4 receptor (IL4R)	IL4R29429 (-3223) IL4R28120 (-1914) IL4R_Ex11+828	rs2057768 rs2107356 rs1801275	A/G A/G A/G	Promoter Promoter Q576R	Associated with soluble IL4R protein levels Unknown Associated with enhanced responsiveness to IL4	(2) (3, 4)
Interleukin 8 (IL8)	IL8251	rs4073	A/T	Promoter	Associated with increased levels of IL-8 and susceptibility to bacterial urinary tract infection, recurrent Clostridium difficile infection, AIDS, Helicobacter pylori related gastric diseases and monotome	(5-8)
	IL8_ IVS1+230 (+396)	rs2227307	G/T	Intronic	Associated with susceptibility to periodontitis	(9)
CXC-Chemokine receptor 1 (IL8RA)	CXCR1_Ex2+860	rs2234671	G/C	S276T	Associated with chronic HBV infection. Predicted to affect IL8 signalling (Benign; Polyphen)	(10)
CXC-Chemokine receptor 2 (IL8RB) Interleukin 10 (IL10)	CXCR2_Ex3-1010 IL10_IVS1-286 IL10_Ex5+210	rs1126580 rs3024491 rs3024496	A/G G/T C/T	Intronic Intronic Intronic	Unknown Unknown IL10_Ex5+210G alleles is associated with the decreased production of IL-10 by peripheral blood leukocytes in response to helminth infection	(11)
Interleukin 12 alpha (IL12A)	IL12A_IVS2-798	rs582054	A/T	Intronic	Unknown	
Interleukin 12 beta (IL12B)	IL12B_Ex8+159 (+1188)	rs3212227	A/C	Intronic	IL12B_+1188C allele is associated with an increased risk of lepromatous leprosy	(12)
Interleukin 13 (IL13)	IL131069	rs1800925	C/T	Promoter	Alters the expression of <i>IL13</i> and the binding of nuclear factors to the <i>IL13</i> promoter. Associated with an increased risk of severe respiratory	(13, 14)
	IL13_Ex4+98	rs20541	C/T	R144Q	syncytial virus (KSV) infection. Modifies the <i>IL</i> 13-mediated Th2 effector functions and correlates with <i>IL</i> 13 activity and levels (114Q carriers have higher levels of <i>IL</i> 13 compared to	(15)
	IL13_IVS3-24	rs1295686	A/G	Intronic	Unknown	
Interferon gamma (IFNγ)	IFNG1615 IFNG_IVS3+284 (+2109)	rs2069705 rs1861494	C/T C/T	Promoter Intronic	Associated with a reduced risk of IA Unknown	(16)
Interferon gamma receptor 2 (IFN7R2)	IFNGR2_Ex7-128 IFNGR2_Ex2-16	rs1059293 rs9808753	C/T A/G	Intronic Q64R	Unknown Predicted to affect <i>IFN</i> y'signalling (Possibly damaging; Polyphen)	
C-C chemokine receptor type 5 (CCR5)	CCR5_IVS1+246 CCR5_IVS1+151	rs1799987 rs2734648	A/G G/T	Intronic Intronic	Associated with CCR5 protein levels and HIV-1 Part of an haplotype associated with HIV-1	(17, 18) (19)

Macrophage migration inhibitory factor (MIF)	MIF173	rs755622	C/G	Promoter	MIF173CC is associated with pulmonary tuberculosis	(20, 21)
Vascular Endothelial Growth Factor alpha (VEGFA)	VEGFA2578	rs699947	A/C	Promoter	VEGF2578CC was associated with higher or lower VEGF expression. Associated with urinary tract infection.	(22-24)
	VEGFA7	rs25648	C/T	Promoter	Associated with higher levels of VEGFA mRNA	(25)
	VEGFA IVS2+1378	rs3024994	C/T	Intronic	Unknown	. ,
	VEGFA IVS7-919	rs3025035	C/T	Intronic	Unknown	
	VEGFA_6112	rs2146323	A/C	-	Unknown	
	VEGFA IVS-99	rs3024997	A/G	Intronic	Unknown	
	VEGFA_IVS7+763	rs3025030	C/G	Intronic	Unknown	
	VEGFA 5530	rs998584	G/T	-	Unknown	
	VEGFA 5958bp 3'of STP	rs6899540	A/C	-	Unknown	
	VEGFA_6119bp 3'of STP	rs6900017	C/T	-	Unknown	
	VEGFA_Near gene	rs6905288	A/G	-		

Abbreviations: SNP, single nucleotide polymorphisms, UTR, untranslated region. References included in this table are listed in the supplementary material.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P value 0.834 0.031 0.006
Demographic variables age (range) 51.46 ± 15.08 51.70 ± 13.20 51.40 ± 15.51 sex ratio (male/female) 1.27 ($332/261$) 1.90 ($74/39$) 1.16 ($258/222$) Haematological disease AML 412 (69.48) 66 (58.41) 346 (72.08) ALL 73 (12.31) 23 (20.35) 50 (10.42) $atl.750$ allo-HSCT 299 (50.42) 65 (57.52) 234 (48.75) Ever received prophylaxis* $posaconazole$ 73 (12.31) 10 (8.85) 63 (13.13) iiraconazole 49 (8.26) 13 (11.50) 36 (7.50) echinocandins 30 (5.06) 2 (1.77) 28 (5.83) voriconazole 21 (3.54) 6 (5.31) 15 (3.13) amphotericin B 4 (0.67) 0 (0.00) 4 (0.83) Never received prophylaxis 450 (75.89) 87 (76.99) 363 (75.63) Phase 2 CSC-MO + VNH population 12 (836) 1.27 ($85/67$) Haematological disease AML 173 (92.02) 34 (94.44) 139	0.834 0.031 0.006
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.834 0.031 0.006
sex ratio I.27 (332/261) I.90 (74/39) I.16 (258/222) Haematological disease 412 (69.48) 66 (58.41) 346 (72.08) ALL 73 (12.31) 23 (20.35) 50 (10.42) other 108 (18.21) 24 (21.24) 84 (17.50) allo-HSCT 299 (50.42) 65 (57.52) 234 (48.75) Ever received prophylaxis * posaconazole 73 (12.31) 10 (6.85) 63 (13.13) itraconazole 49 (8.26) 13 (11.50) 36 (7.50) echinocandins 30 (5.06) 2 (1.77) 28 (5.83) voriconazole 21 (3.54) 6 (5.31) 15 (3.13) amphotericin B 4 (0.67) 0 (0.00) 4 (0.83) Never received prophylaxis 450 (75.89) 87 (76.99) 363 (75.63) Phase 2 CSC-MO + VNH populatio coverall (n=188) IA patients (n=36) non-IA patients (n=152) Demographic variables age (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 age (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 33 (1.60) 1 (2.78) <	0.031
Haematological disease 412 (69.48) 66 (58.41) 346 (72.08) ALL 73 (12.31) 23 (20.35) 50 (10.42) other 108 (18.21) 24 (21.24) 84 (17.50) allo-HSCT 299 (50.42) 65 (57.52) 234 (48.75) Ever received prophylaxis* posaconazole 73 (12.31) 10 (8.85) 63 (13.13) itraconazole 49 (8.26) 13 (11.50) 36 (7.50) echinocandins 30 (5.06) 2 (1.77) 28 (5.83) voriconazole 21 (3.54) 6 (5.31) 15 (3.13) amphotericin B 4 (0.67) 0 (0.00) 4 (0.83) Never received prophylaxis 450 (75.89) 87 (76.99) 363 (75.63) Phase 2 CSC-MO + VNH population 0 0 0 Demographic variables age (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/lemale) 1.32 (107/81) 1.57 (22/14) 1.27 (85/67) Haematological disease AML 173 (92.02) 34 (94.44) 139 (91.45) ALL	0.006
AML412 (69.48)66 (58.41)346 (72.08)ALL73 (12.31)23 (20.35)50 (10.42)other108 (18.21)24 (21.24)84 (17.50)allo-HSCT299 (50.42)65 (57.52)234 (48.75)Ever received prophylaxis* $posaconazole$ 73 (12.31)10 (8.85)63 (13.13)itraconazole49 (8.26)13 (11.50)36 (7.50)echinocandins30 (5.06)2 (1.77)28 (5.83)voriconazole21 (3.54)6 (5.31)15 (3.13)amphotericin B4 (0.67)0 (0.00)4 (0.83)Never received prophylaxis450 (75.89)87 (76.99)363 (75.63)Phase 2CSC-MO + VNH populationoverall (n=188)IA patients (n=36)non-IA patients (n=152)Demographic variablesage (range)56.93 \pm 18.1255.75 \pm 19.5057.21 \pm 17.84sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological diseaseAML173 (92.02)34 (94.44)139 (91.45)ALL3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis* $posaconazole$ 40 (40.40)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)viccincazole69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBlomics consortium +	0.006
ALL73 (12.31)23 (20.35)50 (10.42)other108 (18.21)24 (21.24)84 (17.50)allo-HSCT299 (50.42)65 (57.52)234 (48.75)Ever received prophylaxis * γ 9 (8.26)13 (11.50)36 (7.50)echinocandins30 (5.06)2 (1.77)28 (5.83)voriconazole21 (3.54)6 (5.31)15 (3.13)amphotericin B4 (0.67)0 (0.00)4 (0.83)Never received prophylaxis450 (75.89)87 (76.99)363 (75.63)CSC-MO + VNH populationoverall (n=188)IA patients (n=36)non-IA patients (n=152)Demographic variablesage (range)56.93 ± 18.1255.75 ± 19.5057.21 ± 17.84sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological diseaseAML173 (92.02)34 (94.44)139 (91.45)ALL3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis [†] p p p posaconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ⁸ 9 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO pamphotericin B16 (16.16)2 (7.41)1.4 (19.4	
other108 (18.21)24 (21.24)84 (17.50)allo-HSCT299 (50.42)65 (57.52)234 (48.75)Ever received prophylaxis* y posaconazole73 (12.31)10 (8.85)63 (13.13)itraconazole49 (8.26)13 (11.50)36 (7.50)echinocandins30 (5.06)2 (1.77)28 (5.83)voriconazole21 (3.54)6 (5.31)15 (3.13)amphotericin B4 (0.67)0 (0.00)4 (0.83)Never received prophylaxis450 (75.89)87 (76.99)363 (75.63)Phase 2CSC-MO + VNH populationDemographic variables $30 (1.60)$ 1.22 (107/81)1.57 (22/14)1.27 (85/67)age (range)56.93 ± 18.1255.75 ± 19.5057.21 ± 17.84sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological disease $40 (40.40)$ 3 (11.11)1.27 (85/67)ALL3 (160)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis* $90 (20.74)$ 3 (8.33)36 (23.68)Ever received prophylaxis*0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis*0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis*0 (96.970)24 (88.89)45 (62.50)Phases 1+2aspBlomics consortium + UHS-GHV-PCR-AGA + CSC-MO page (range)52.77 ±	0.006
allo-HSCT299 (50.42)65 (57.52)234 (48.75)Ever received prophylaxis * posaconazole73 (12.31)10 (8.85)63 (13.13)itraconazole49 (8.26)13 (11.50)36 (7.50)echinocandins30 (5.06)2 (1.77)28 (5.83)voriconazole21 (3.54)6 (5.31)15 (3.13)amphotericin B4 (0.67)0 (0.00)4 (0.83)Never received prophylaxis450 (75.89)87 (76.99)363 (75.63)Phase 2CSC-MO + VNH populationDemographic variables age (range)56.93 ± 18.1255.75 ± 19.5057.21 ± 17.84age (range)56.93 ± 18.1255.75 ± 19.5057.21 ± 17.84sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological disease AML173 (92.02)34 (94.44)139 (91.45)ALL3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis* posaconazole7 (7.07)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)voriconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis*9 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO pDemographic variables69 (69.	0 429
Ever received prophylaxis * Ever received p	0 116
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	00
$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	0 277
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.277
voriconazole voriconazole $30 (3.50)$ $2 (1.77)$ $28 (3.63)$ <i>voriconazole</i> amphotericin B $21 (3.54)$ $6 (5.31)$ $15 (3.13)$ <i>Never received prophylaxis</i> $450 (75.89)$ $87 (76.99)$ $363 (75.63)$ Phase 2CSC-MO + VNH populationoverall (n=188)IA patients (n=36)non-IA patients (n=152)age (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/female)Haematological diseaseAML $173 (92.02)$ $34 (94.44)$ $139 (91.45)$ ALL $3 (1.60)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $2 (1.32)$ other $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis ⁴ posaconazole $7 (7.07)$ $3 (11.11)$ $37 (51.39)$ itraconazole $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ amphotericin B $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis ⁴ $69 (69.70)$ $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO page (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) $1.28 (439/342)$ $1.81 (96/53)$ $1.19 (343/289)$	0.200
Voliconazole2 1 (0.54)6 (0.51)15 (0.53)amphotericin B4 (0.67)0 (0.00)4 (0.83)Never received prophylaxis450 (75.89)87 (76.99)363 (75.63)Phase 2CSC-MO + VNH populationDemographic variablesoverall (n=188)IA patients (n=36)non-IA patients (n=152)age (range)56.93 \pm 18.1255.75 \pm 19.5057.21 \pm 17.84sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological disease12 (6.38)1 (2.78)2 (1.32)AML173 (92.02)34 (94.44)139 (91.45)ALL3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis [†] $posaconazole$ 7 (7.07)3 (11.11)37 (51.39)itraconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ^d 69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO page (range)52.77 \pm 16.0352.67 \pm 15.0052.79 \pm 16.27sex ratio (male/female)1.28 (439/342)1.81 (96/53)1.19 (343/289)	0.125
aniprotencin b $4 (0.67)$ $0 (0.00)$ $4 (0.83)$ Never received prophylaxis $450 (75.89)$ $87 (76.99)$ $363 (75.63)$ Phase 2CSC-MO + VNH populationDemographic variables age (range) $overall (n=188)$ IA patients (n=36)non-IA patients (n=152)Demographic variables age (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 Aaematological disease AML $1.32 (107/81)$ $1.57 (22/14)$ $1.27 (85/67)$ Haematological disease AML $3 (1.60)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $11 (7.24)$ allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] $posaconazole$ $40 (40.40)$ $3 (11.11)$ $37 (51.39)$ itraconazole $7 (7.07)$ $3 (11.11)$ $4 (5.56)$ echinocandins $1 (1.01)$ $0 (0.00)$ $1 (1.39)$ voriconazole $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ amphotericin B $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis [§] $69 (69.70)$ $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)ge (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) $1.28 (439/342)$ $1.81 (96/53)$ $1.19 (343/289)$	0.391
Never received prophylaxis $450 (r5.83)$ $87 (r5.99)$ $363 (r5.63)$ Phase 2CSC-MO + VNH populationoverall (n=188)IA patients (n=36)non-IA patients (n=152Demographic variablesage (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/female) $1.32 (107/81)$ $1.57 (22/14)$ $1.27 (85/67)$ Haematological diseaseAML $173 (92.02)$ $34 (94.44)$ $139 (91.45)$ ALL $3 (1.60)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $11 (7.24)$ allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] posaconazole $40 (40.40)$ $3 (11.11)$ $37 (51.39)$ itraconazole $7 (7.07)$ $3 (11.11)$ $4 (5.56)$ echinocandins $1 (1.01)$ $0 (0.00)$ $1 (1.39)$ voriconazole $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ amphotericin B $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis ^d 69 (69.70) $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)ge (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) $1.28 (439/342)$ $1.81 (96/53)$ $1.19 (343/$	0.738
CSC-MO + VNH populationoverall (n=188)IA patients (n=36)non-IA patients (n=152Demographic variablesage (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/female) 1.32 (107/81) 1.57 (22/14) 1.27 (85/67)Haematological diseaseAML 173 (92.02) 34 (94.44) 139 (91.45)ALL 3 (1.60) 1 (2.78) 2 (1.32)other 12 (6.38) 1 (2.78) 11 (7.24)allo-HSCTallo-HSCT 39 (20.74) 3 (8.33) 36 (23.68)Ever received prophylaxis†posaconazole 40 (40.40) 3 (11.11) 37 (51.39)itraconazole 7 (7.07) 3 (11.11) 4 (5.56)echinocandins 1 (1.01) 0 (0.00) 1 (1.39)voriconazole 2 (2.02) 0 (0.000) 2 (2.78)amphotericin B 16 (16.16) 2 (7.41) 14 (19.44)Never received prophylaxis ⁴ 69 (69.70) 24 (88.89) 45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632age (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	0.855
overall (n=188)IA patients (n=36)non-IA patients (n=152Demographic variablesage (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/female) 1.32 (107/81) 1.57 (22/14) 1.27 (85/67)Haematological diseaseAML 173 (92.02) 34 (94.44) 139 (91.45)ALL 3 (1.60) 1 (2.78) 2 (1.32)other 12 (6.38) 1 (2.78) 11 (7.24)allo-HSCTgo saconazole 40 (40.40) 3 (11.11) 37 (51.39)itraconazole 7 (7.07) 3 (11.11) 4 (5.56)echinocandins 1 (1.01) 0 (0.00) 1 (1.39)voriconazole 2 (2.02) 0 (0.00) 2 (2.78)amphotericin B 16 (16.16) 2 (7.41) 14 (19.44)Never received prophylaxis ^a 69 (69.70) 24 (88.89) 45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632age (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	
Demographic variablesage (range) 56.93 ± 18.12 55.75 ± 19.50 57.21 ± 17.84 sex ratio (male/female) $1.32 (107/81)$ $1.57 (22/14)$ $1.27 (85/67)$ Haematological disease AML $173 (92.02)$ $34 (94.44)$ $139 (91.45)$ ALL $3 (1.60)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $11 (7.24)$ allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] $posaconazole$ $40 (40.40)$ $3 (11.11)$ $37 (51.39)$ itraconazole $7 (7.07)$ $3 (11.11)$ $4 (5.56)$ echinocandins $1 (1.01)$ $0 (0.00)$ $1 (1.39)$ voriconazole $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ amphotericin B $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis ^a $69 (69.70)$ $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables 32.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) $1.28 (439/342)$ $1.81 (96/53)$ $1.19 (343/289)$	P value
age (range) sex ratio (male/female) 56.93 ± 18.12 $1.32 (107/81)$ 55.75 ± 19.50 57.21 ± 17.84 $1.32 (107/81)$ 57.21 ± 17.84 $1.27 (85/67)$ Haematological disease1 ALL $1.32 (107/81)$ $1.57 (22/14)$ $1.27 (85/67)$ AML $173 (92.02)$ $34 (94.44)$ $139 (91.45)$ $2 (1.32)$ other $2 (1.32)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $2 (1.32)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $11 (7.24)$ allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] $7 (7.07)$ $3 (11.11)$ $37 (51.39)$ $1 (1.01)$ posaconazole $40 (40.40)$ $3 (11.11)$ $4 (5.56)$ $echinocandins$ $posaconazole$ $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ $amphotericin B$ $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis ³ $69 (69.70)$ $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p overall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables $age (range)$ $sex ratio (male/female)$ 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 $1.19 (343/289)$	
sex ratio (male/female)1.32 (107/81)1.57 (22/14)1.27 (85/67)Haematological disease173 (92.02)34 (94.44)139 (91.45) ALL 3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis [†] $received prophylaxis^†$ $received prophylaxis^†$ posaconazole40 (40.40)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)voriconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ³ 69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27age (range)52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27sex ratio (male/female)1.28 (439/342)1.81 (96/53)1.19 (343/289)	0.665
Haematological disease AML 173 (92.02)34 (94.44)139 (91.45) ALL 3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis [†] posaconazole40 (40.40)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)voriconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ³ 69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variablesage (range)52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27sex ratio (male/female)1.28 (439/342)1.81 (96/53)1.19 (343/289)	0.705
AML173 (92.02) 34 (94.44)139 (91.45)ALL3 (1.60)1 (2.78)2 (1.32)other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis [†] $posaconazole$ 40 (40.40)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)voriconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ^a 69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27sex ratio (male/female)1.28 (439/342)1.81 (96/53)1.19 (343/289)	
ALL $3 (1.60)$ $1 (2.78)$ $2 (1.32)$ other $12 (6.38)$ $1 (2.78)$ $11 (7.24)$ allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] $posaconazole$ $40 (40.40)$ $3 (11.11)$ $37 (51.39)$ itraconazole $7 (7.07)$ $3 (11.11)$ $4 (5.56)$ echinocandins $1 (1.01)$ $0 (0.00)$ $1 (1.39)$ voriconazole $2 (2.02)$ $0 (0.00)$ $2 (2.78)$ amphotericin B $16 (16.16)$ $2 (7.41)$ $14 (19.44)$ Never received prophylaxis ³ $69 (69.70)$ $24 (88.89)$ $45 (62.50)$ Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 age (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) $1.28 (439/342)$ $1.81 (96/53)$ $1.19 (343/289)$	0.799
other12 (6.38)1 (2.78)11 (7.24)allo-HSCT39 (20.74)3 (8.33)36 (23.68)Ever received prophylaxis*posaconazole40 (40.40)3 (11.11)37 (51.39)itraconazole7 (7.07)3 (11.11)4 (5.56)echinocandins1 (1.01)0 (0.00)1 (1.39)voriconazole2 (2.02)0 (0.00)2 (2.78)amphotericin B16 (16.16)2 (7.41)14 (19.44)Never received prophylaxis ³ 69 (69.70)24 (88.89)45 (62.50)Phases 1+2aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO poverall (n=781)IA patients (n=149)non-IA patients (n=632)Demographic variables52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27age (range)52.77 ± 16.0352.67 ± 15.0052.79 ± 16.27sex ratio (male/female)1.28 (439/342)1.81 (96/53)1.19 (343/289)	0.912
allo-HSCT $39 (20.74)$ $3 (8.33)$ $36 (23.68)$ Ever received prophylaxis [†] $9000 + 10000 + 1000 $	0.545
Ever received prophylaxis [†] $posaconazole$ 40 (40.40) 3 (11.11) 37 (51.39) $itraconazole$ 7 (7.07) 3 (11.11) 4 (5.56) $echinocandins$ 1 (1.01) 0 (0.00) 1 (1.39) $voriconazole$ 2 (2.02) 0 (0.00) 2 (2.78) $amphotericin B$ 16 (16.16) 2 (7.41) 14 (19.44) Never received prophylaxis ^a 69 (69.70) 24 (88.89) 45 (62.50) Phases 1+2 aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p overall (n=781) IA patients (n=149) non-IA patients (n=632 Demographic variables age (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	0.069
$\begin{array}{ccccccc} posaconazole & 40 (40.40) & 3 (11.11) & 37 (51.39) \\ itraconazole & 7 (7.07) & 3 (11.11) & 4 (5.56) \\ echinocandins & 1 (1.01) & 0 (0.00) & 1 (1.39) \\ voriconazole & 2 (2.02) & 0 (0.00) & 2 (2.78) \\ amphotericin B & 16 (16.16) & 2 (7.41) & 14 (19.44) \\ \textbf{Never received prophylaxis}^{\theta} & 69 (69.70) & 24 (88.89) & 45 (62.50) \\ \hline \textbf{Phases 1+2} & \textbf{aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p} \\ \hline \textbf{overall (n=781)} & IA patients (n=149) & non-IA patients (n=632) \\ \hline \textbf{Demographic variables} & \\ age (range) & 52.77 \pm 16.03 & 52.67 \pm 15.00 & 52.79 \pm 16.27 \\ sex ratio (male/female) & 1.28 (439/342) & 1.81 (96/53) & 1.19 (343/289) \\ \hline \end{array}$	
$\begin{array}{ccccc} itraconazole & 7 (7.07) & 3 (11.11) & 4 (5.56) \\ echinocandins & 1 (1.01) & 0 (0.00) & 1 (1.39) \\ voriconazole & 2 (2.02) & 0 (0.00) & 2 (2.78) \\ amphotericin B & 16 (16.16) & 2 (7.41) & 14 (19.44) \\ \hline \textit{Never received prophylaxis}^{\vartheta} & 69 (69.70) & 24 (88.89) & 45 (62.50) \\ \hline \textit{Phases 1+2} & \textit{aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p} \\ \hline \textit{overall (n=781)} & IA patients (n=149) & non-IA patients (n=632) \\ \hline \textit{Demographic variables} & \\ age (range) & 52.77 \pm 16.03 & 52.67 \pm 15.00 & 52.79 \pm 16.27 \\ sex ratio (male/female) & 1.28 (439/342) & 1.81 (96/53) & 1.19 (343/289) \\ \hline \end{array}$	0.0007
$\begin{array}{c cccc} echinocandins & 1 (1.01) & 0 (0.00) & 1 (1.39) \\ voriconazole & 2 (2.02) & 0 (0.00) & 2 (2.78) \\ amphotericin B & 16 (16.16) & 2 (7.41) & 14 (19.44) \\ \hline \textbf{Never received prophylaxis}^{\vartheta} & 69 (69.70) & 24 (88.89) & 45 (62.50) \\ \hline \textbf{Phases 1+2} & \textbf{aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p} \\ \hline \textbf{overall (n=781)} & IA patients (n=149) & non-IA patients (n=632) \\ \hline \textbf{Demographic variables} & \\ age (range) & 52.77 \pm 16.03 & 52.67 \pm 15.00 & 52.79 \pm 16.27 \\ sex ratio (male/female) & 1.28 (439/342) & 1.81 (96/53) & 1.19 (343/289) \\ \hline \end{array}$	0.603
$\begin{array}{c cccc} voriconazole & 2 (2.02) & 0 (0.00) & 2 (2.78) \\ amphotericin B & 16 (16.16) & 2 (7.41) & 14 (19.44) \\ \hline \textit{Never received prophylaxis}^{\vartheta} & 69 (69.70) & 24 (88.89) & 45 (62.50) \\ \hline \textit{Phases 1+2} & \textit{aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p} \\ \hline \textit{overall (n=781)} & IA patients (n=149) & non-IA patients (n=632) \\ \hline \textit{Demographic variables} & \\ age (range) & 52.77 \pm 16.03 & 52.67 \pm 15.00 & 52.79 \pm 16.27 \\ sex ratio (male/female) & 1.28 (439/342) & 1.81 (96/53) & 1.19 (343/289) \\ \hline \end{array}$	0.608
$ \begin{array}{c ccccc} amphotericin B \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \begin{array}{c} 16 \ (16.16) \\ 69 \ (69.70) \\ 24 \ (88.89) \\ 24 \ (88.89) \\ 45 \ (62.50) \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \begin{array}{c} 69 \ (69.70) \\ 69 \ (69.70) \\ 24 \ (88.89) \\ 45 \ (62.50) \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \begin{array}{c} 69 \ (69.70) \\ 24 \ (88.89) \\ 45 \ (62.50) \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \begin{array}{c} 69 \ (69.70) \\ 24 \ (88.89) \\ 45 \ (62.50) \\ \hline \mbox{never received prophylaxis}^{\vartheta} \end{array} \\ \hline never rece$	0.942
Never received prophylaxis ⁸ 69 (69.70) 24 (181.89) 45 (62.50) Phases 1+2 aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p overall (n=781) IA patients (n=149) non-IA patients (n=632) Demographic variables age (range) sex ratio (male/female) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	0 253
Phases 1+2 aspBIOmics consortium + UHS-GHV-PCR-AGA + CSC-MO p overall (n=781) IA patients (n=149) non-IA patients (n=632) Demographic variables age (range) sex ratio (male/female) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	0.022
overall (n=781) IA patients (n=149) non-IA patients (n=632) Demographic variables age (range) sex ratio (male/female) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	opulation
Demographic variables Sex ratio (male/female) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	Pvalue
age (range) 52.77 ± 16.03 52.67 ± 15.00 52.79 ± 16.27 sex ratio (male/female) 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	1 value
sex ratio (male/female) 1.28 (439/342) 1.81 (96/53) 1.19 (343/289)	0 035
305 rate (matcheniac) 1.20 (30372) 1.01 (3033) 1.19 ($343/209$)	0.000
Hapmatological dispase	0.031
I Iaciniaioiogical Uiscasc AMI 595 (74.00) 400 (67.44) 405 (76.74)	0 0 2 0
AIVIL 565 (74.90) 100 (07.11) 465 (70.74)	0.020
other 120 (15 36) 25 (16 78) 95 (15 03)	0.685
<i>allo-HSCT</i> 338 (43.28) 68 (45.64) 270 (42.72)	0.579
Ever received prophylaxis	
posaconazole 113 (16.33) 13 (9.29) 100 (18.12)	0.017
<i>itraconazole</i> 56 (8.09) 16 (11.43) 40 (7.25)	0.148
echinocandins 31 (4.48) 2 (1.43) 29 (5.25)	0.085
voriconazole 23 (3.32) 6 (4.29) 17 (3.08)	0.655
ampnotericin B 20 (2.89) 2 (1.43) 18 (3.26) Neurophysical prophysical 540 (375.00) 444 (370.00) 100 (370.01)	0.383

Table 2. Baseline and clinical characteristic of patients with or without invasive aspergillosis (IA).

Abbreviations: HSCT: Haematopoietic stem cell transplantation, AML: acute myeloid leukemia, ALL: acute lymphoid leukemia; UHS, University hospital of Salamanca (Spain); GHV, General hospital of Valencia (Spain); PCRAGA clinical trial (EU clinical trial number: 2010-019406-17); CSC, Università Cattolica del S. Cuore, Rome (Italy); MO, University of Modena and Reggio Emilia, Modena (Italy) and Virgen de las Nieves University hospital (VNH). P≤0.05 was considered significant.

* Some patients had several prophylactic drugs.

† Prophylaxis status was only available in 99 subjects (15 IA and 72 non-IA patients).

 ∂ Percentage calculated according to the number of patients with prophylaxis data available.

 $\overline{\mathbb{A}}$

Variant_dbSNP	Gene	OR (95% CI) ^a	P_{value}	OR (95% CI) ^b	P _{value}
rs2243248	IL4	1.19 (0.63-2.26)	0.59		
rs2070874	IL4	0.91 (0.53-1.55)	0.72		
rs2243268	IL4	0.85 (0.52-1.38)	0.50		
rs2243290	IL4	0.67 (0.39-1.16)	0.14		
rs2057768	IL4R	1.20 (0.75-1.92)	0.44		
rs2107356	IL4R	2.05 (1.24-3.40) [†]	0.0063	1.92 (1.20-3.09) [†]	0.008
rs1801275	IL4R	1.00 (0.63-1.59)	0.99		
rs4073	IL8	1.02 (0.64-1.61) _.	0.95		
rs2227307	IL8	1.72 (1.00-2.94) [†]	0.049	1.73 (1.06-2.81) [⊺]	0.031
rs2234671	IL8RA	1.57 (0.80-3.08)	0.20		
rs1126580	IL8RB	1.50 (0.88-2.54)	0.13		
rs3024491	IL10	1.09 (0.67-1.78)	0.72		
rs3024496	IL10	1.16 (0.71-1.90)	0.55		
rs582054	IL12A	1.09 (0.64-1.84)	0.76		
rs3212227	IL12B	0.57 (0.35-0.93)	0.021	0.60 (0.38-0.96) ^s	0.029
rs20541	IL13	0.76 (0.46-1.24)	0.26		
rs1800925	IL13	0.85 (0.54-1.36)	0.51		
rs1295686	IL13	0.73 (0.45-1.16)	0.18		
rs2069705	IFNG	0.56 (0.36-0.88) ^s	0.012	0.63 (0.41-0.97)	0.035
rs1861494	IFNG	0.74 (0.47-1.17)	0.20		
rs1059293	IFNGR2	0.98 (0.57-1.67)	0.93		
rs9808753	IFNGR2	1.10 (0.65-1.85)	0.72		
rs1799987	CCR5	1.40 (0.83-2.36)	0.20		
rs2734648	CCR5	1.07 (0.67-1.71)	0.76		
rs755622	MIF	1.38 (0.84-2.25)	0.20		
rs25648	VEGFA	1.11 (0.63-1.97)	0.72		
rs699947	VEGFA	1.28 (0.75-2.18)	0.35		
rs3024994	VEGFA	1.61 (0.86-3.03)	0.15		
rs3025035	VEGFA	1.31 (0.78-2.22)	0.31		
rs2146323	VEGFA	1.63 (1.02-2.61)	0.040	1.46 (0.95-2.27)	0.085
rs3024997	VEGFA	1.04 (0.67-1.61)	0.87		
rs3025030	VEGFA	1.00 (0.58-1.70)	0.99		
rs998584	VEGFA	0.66 (0.41-1.06)	0.088		
rs6899540	VEGFA	0.84 (0.51-1.40)	0.50		
rs6900017	VEGFA	1.76 (1.02-3.03) [§]	0.046	1.47 (0.87-2.47)	0.16
rs6905288	VEGFA	0.83 (0.52-1.31)	0.42		

Table 3. Associations found between immunoregulatory polymorphisms and invasive aspergillosis.

Abbreviations: OR, odds ratio; CI, confidence interval. Abbreviations: n/s, not specified; SNP, single nucleotide polymorphism; UTR, untranslated region. Estimates were adjusted for age, sex, country of origin, allo-SCT, and prophylaxis status (ever use of prophylaxis). P<0.05 in bold. P<0.0004 was defined as multiple testing significance threshold.

^aPhase 1 (aspBIOmics + PCRAGA+Valencia+Salamanca populations; N=593 hematological patients).

^bOverall (N=781; after extension with 188 high-risk patients [39 HSCT and 149 non-HSCT patients]; 87 of them with prophylaxis data). *Estimates according a recessive model of inheritance.

SNP signifcantly associated with IA according a log-additive model of inheritance.

[§]*IFNG*_{rs2069705} (per-allele OR= 0.69, 95%CI 0.49-0.97; *P*_{trend}=0.032).

⁶*VEGFA*_{rs2146323} (per-allele OR= 1.45, 95%Cl 1.04-2.03; *P*_{trend} =0.029).

 $VEGFA_{rs6900017}$ (per-allele OR= 1.73, 95%Cl 1.08-2.77; P_{trend} =0.027).

[§]*IL12B*_{rs3212227} (per-allele OR= 0.67, 95%CI 0.45-0.99; *P*_{trend} =0.040).

 $\overline{\triangleleft}$

		ļ	
<	ĺ		

Variant_dbSNP	Gene	OR (95%CI)	P_{value}
rs2243248	IL4	0.93 (0.25-3.44)	0.91
rs2070874	IL4	1.40 (0.56-3.52)	0.47
rs2243268	IL4	1.15 (0.49-2.73)	0.75
rs2243290	IL4	0.93 (0.35-2.45)	0.88
rs2057768	IL4R	1.30 (0.56-3.03)	0.54
rs2107356	IL4R	5.63 (1.98-16.05) ^{†§}	0.0009
rs1801275	IL4R	0.50 (0.20-1.24)	0.12
rs4073	IL8	0.76 (0.33-1.73)	0.51
rs2227307	IL8	1.21 (0.51-2.86)	0.67
rs2234671	IL8RA	1.48 (0.42-5.15)	0.55
rs1126580	IL8RB	2.39 (0.92-6.20) [†]	0.072
rs3024491	IL10	1.08 (0.44-2.70)	0.86
rs3024496	IL10	0.74 (0.30-1.83)	0.52
rs582054	IL12A	1.73 (0.61-4.91)	0.29
rs3212227	IL12B	0.64 (0.26-1.57)	0.32
rs20541	IL13	0.80 (0.32-1.99)	0.63
rs1800925	IL13	1.96 (0.84-4.58)	0.12
rs1295686	IL13	0.53 (0.22-1.29)_	0.16
rs2069705	IFNG	0.24 (0.10-0.59) [§]	0.0011
rs1861494	IFNG	0.63 (0.27-1.49)	0.29
rs1059293	IFNGR2	1.53 (0.59-3.97)	0.37
rs9808753	IFNGR2	0.78 (0.29-2.09)	0.62
rs1799987	CCR5	1.75 (0.65-4.69)	0.26
rs2734648	CCR5	1.04 (0.44-2.48)	0.93
rs755622	MIF	0.63 (0.25-1.61)*	0.33
rs25648	VEGFA	1.39 (0.53-3.66)	0.51
rs699947	VEGFA	0.51 (0.19-1.36)	0.18
rs3024994	VEGFA	4.48 (1.25-16.08) ^s	0.022
rs3025035	VEGFA	1.96 (0.77-4.99)	0.16
rs2146323	VEGFA	0.86 (0.38-1.97)	0.72
rs3024997	VEGFA	0.71 (0.31-1.62)	0.41
rs3025030	VEGFA	1.11 (0.41-3.01)*	0.84
rs998584	VEGFA	0.84 (0.32-2.22)	0.72
rs6899540	VEGFA	0.62 (0.23-1.69)	0.34
rs6900017	VEGFA	2.68 (0.97-7.42)	0.061
rs6905288	VEGFA	1.04 (0.43-2.53)	0.92

Table 4. Associations found between immunoregulatory SNPs and IA in allo-HSCT patients (n=171).

Abbreviations: OR, odds ratio; CI, confidence interval. Abbreviations: n/s, not specified; SNP, single nucleotide polymorphism; UTR, untranslated region. Estimates were adjusted for age, sex, country of origin, severe neutropenia, and prophylactic status (ever having prophylaxis). P<0.05 in bold. P<0.0004 was defined as corrected significance threshold.

[†]Estimates according a recessive model of inheritance.

 [§]SNP associated with IA infection according to a log-additive model of inheritance.
 *Estimates calculated according a co-dominant model (homozygotes for the rare allele were not found).

§IL4R_{rs2107356} (per-allele OR= 2.17, 95%CI 1.18-3.98; P_{trend}=0.0097).

 $IFNG_{rs2069705}$ (per-allele OR= 0.50, 95%CI 0.26-0.95; P_{trend} =0.027).

[§]VEGFA_{rs3024994} (per-allele OR= 3.19, 95%CI 1.08-9.45; P_{trend}=0.033).

Reference model							
SNPs	P-value	OR 95%CI	AUC 95%Cl ^a	P-value			
Age	0.898	1.001 (0.985-1.017)					
Gender	0.033	1.721 (1.045-2.835)					
Allo-SCT	0.785	0.934 (0.570-1.529)					
Prophylactic status	0.790	1.080 (0.612-1.906)	0.564 (0.499-0.630) [∂]	0.064			
Predictive model built with 4 significant SNPs*							
SNPs	P-value	OR 95%CI	AUC 95%Cl ^a	P-value			
IL8 _{rs2227307}	0.024	1.952 (1.093-3.489)					
IL12B _{rs3212227}	0.016	0.508 (0.292-0.884)					
IFNG _{rs2069705}	0.031	0.583 (0.358-0.952)					
VEGFA _{rs6900017}	0.040	1.814 (1.026-3.207)					
Age	0.951	1.001 (0.984-1.018)					
Gender	0.064	1.626 (0.972-2.719)					
Allo-SCT	0.757	0.923 (0.557-1.532)					
Prophylactic status	0.525	1.210 (0.672-2.179)	$0.659~(0.596-0.722)^{\partial}$	0.000005			

 Table 5. Discriminative value AUC for models with or without immune-modulating variants.

^aIncluding age, gender, allo-SCT and prophylactic status as variables never dropped from models.

 ${}^{*}\textit{IL4R}_{rs2107356} \text{ and } \textit{VEGFA}_{rs2146323} \text{ polymorphisms were not significant and were dropped from the model.}$

∂ These models showed a statistically different prediction capacity (-2log likehood ratio test, df=4, P=0.00052).

Residual deviance (Reference model): 433.21

Residual deviance (Significant SNPs model): 413.31

After removing missing values, 455 subjects (85 IA and 370 non-IA cases) were available for prediction capacity analysis.

Permutation analysis: Average AUC of null distribution (50.000 models)=0.6001; SD_{50.000AUC}=0.0158;

Z-score_value_{50.000perm}=3.7361 and P_{50.000perm}=9.34•10⁻⁰⁵.