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Abstract. A tetrad, adapted to the principal directions of the unstrained reference tensor, is chosen
and the elasticity difference tensor, as introduced in [1], is decomposed along those directions. The
second order tensors obtained are studied and an example is presented.
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INTRODUCTION

Here we will consider a continuous medium possessing elastic properties, the collection

of all its idealized particles being the 3-dimensional spaeehe material spacéM, g)

represents the space-time manifold, Meis a four-dimensional, connected, Hausdorff

manifold andg is a Lorentzian metric with signatufe- +++) such thagy= —u®@u+h,

where: (i)h = "k, ©* being the usual canonical projection oit@ndk being a metric

in X; (ii) #~1(p € X) defines a timelike curve iM havingu as unit tangent vector field

and represents the flowline pf (iii)) 7: U C M — X describes a state of matter.
Following [1], for an unrelaxed state of matter the unstrained reference tensor [2] can

be written askgy, = n%xaxb + n%yayb + n%zazb, the scalar fieldsy, np, n3 being related

to the eigenvalues along the principal directiong®bfAn orthonormal tetrady,x,y,z,

with u timelike andx,y,z unit spacelike vector fields aligned with the eigenvectorepf

will be used. On a local coordinate system, the meggan be written as

Oab = —Ualp + XaXp + Ya¥b + ZaZp. (1)

In order to study elasticity properties of the space-time, the authors in [1] define the
elasticity difference tensor:

S"E)lc = ]E-kam(Dbkmc‘f' Dckmb— DmkKoc)

whereD denotes projected covariant derivative associateg ¥ classification ofS
will certainly be interesting for the characterization of the elasticity properties of the
space-time. In order to do so, we decomp§sealong the principal directions ¢f:

%c - I\/lbcxa‘|‘ Nbcya + I:lbcza

The second order symmetric tensdfsN, P are now investigated.
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MAIN RESULTS. AN EXAMPLE

The following results foMyc were obtained, the proofs being in [4].

Theorem 1 The general form of M is given by

Mpc = um(Xm;(buc) + u(bxc);m) + Xibe) — me(cxb);m + Y011 UbXe) — Y010 Uplc
(204 (6X) + 201 mUMu(pXe) + N X XoXe]

+n—1%{—xm(zbzcn3n37m + YoYeN2N2m) + N[ (Y021 — Y120)UpbYe) + X" (Y bYe) — YioYe)m))]

+n5[(Y031— 1130)UpZe) + X" (Zm(bZe) — ZbZe):m)]}
wherey,pc are the rotation coefficients and a comma represents a partial derivative.

Theorem 2 x is an eigenvector of M iff n1 remains invariant along the directions gf
andz, i.e.Ay(logny) = Az(logng) = 0, whereA, represents the intrinsic derivative along
y. The corresponding eigenvalueds= Ay(logn;).

Theorem 3y is an eigenvector of M iff ny remains invariant along the direction of
Y, i.e.Ay(logn) = 0, and $yas—(n§/n?) + 1] + $yaq1 — (n3/r2)] + S ppmal(MB/nf) —
(n3/n2)] = 0. The corresponding eigenvaluelis= —(nz/n2)Axny + 122 — (N3 /n2) + 1].

Theorem 4 z is an eigenvector of M iff n1 remains invariant along the direction of
Z, i.e. Dg(logny) = 0, and 371231 — (N3/M§)] + 37132[1 — (N§/nf)] + 57231l(3/ ) —
(n3/n2)] = 0. The corresponding eigenvaluedis= —(n3/n2)Axnz — y133[(n3/n3) — 1].

Similar results have been obtained by the author&fandP [4].

The following example illustrates the results above. We consider a spherically sym-
metric metricg written in local coordinates,r,0,¢ asds’ = —dt® +dr? +r2d6? +
r2sir’ 6d¢? (see [3], p.186). If a radial deformation is considered such tisat=
—dt?+n?(r)[dr?+r2d62+r2sir? 6d¢?], the onIy non-zero components of the elasticity
difference tensor ar§f, = S5, S‘P nlr dn(r andsg)q) =1 sr:?f)( ann) —sir?(0)S,
ThenMpc = A1 (XpXc — YbYc — ) Noc = 2%z(xbyc+xcyb> andPy = 2%3(szc+xczb)

whered; = A, = A3 = Tlr) dn(r ) . Therefore, the eigenvalue associated with the eigenvec-

tor u vanishes identically. The remaining eigenvectors arex(y,#} for My, er)dg—(r),

— g ——d"(r) being the corresponding eigenvalues, so that the Segre type is

n(r)
{1,1(12)}; (ii) { x+y,x-y,Z} for Ny with elgenvaluesh— dr , —Tlr)dg(r) and zero, re-

r

spectively, the Segre type beind,111}; (iii) { x+z,x-z,)} for Ry with eigenvalues
and zero, respectively, the Segre type being ted11}.

n(r) dr * n(r)
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