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Abstract. A tetrad, adapted to the principal directions of the unstrained reference tensor, is chosen
and the elasticity difference tensor, as introduced in [1], is decomposed along those directions. The
second order tensors obtained are studied and an example is presented.
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INTRODUCTION

Here we will consider a continuous medium possessing elastic properties, the collection
of all its idealized particles being the 3-dimensional spaceX - the material space.(M,g)
represents the space-time manifold, i.e.M is a four-dimensional, connected, Hausdorff
manifold andg is a Lorentzian metric with signature(−+++) such thatg=−u⊗u+h,
where: (i)h = π∗k, π∗ being the usual canonical projection ontoX andk being a metric
in X; (ii) π−1(p∈ X) defines a timelike curve inM havingu as unit tangent vector field
and represents the flowline ofp; (iii) π : U ⊂M −→ X describes a state of matter.

Following [1], for an unrelaxed state of matter the unstrained reference tensor [2] can
be written askab = n2

1xaxb + n2
2yayb + n2

3zazb, the scalar fieldsn1,n2,n3 being related
to the eigenvalues along the principal directions ofka

b. An orthonormal tetrad {u,x,y,z},
with u timelike andx,y,zunit spacelike vector fields aligned with the eigenvectors ofkb

a,
will be used. On a local coordinate system, the metricg can be written as

gab =−uaub +xaxb +yayb +zazb. (1)

In order to study elasticity properties of the space-time, the authors in [1] define the
elasticity difference tensor:

Sa
bc =

1
2

kam(Dbkmc+Dckmb−Dmkbc),

whereD denotes projected covariant derivative associated tog. A classification ofS
will certainly be interesting for the characterization of the elasticity properties of the
space-time. In order to do so, we decomposeSa

bc along the principal directions ofka
b:

Sa
bc = Mbcxa +Nbcya +Pbcza.

The second order symmetric tensorsM,N,P are now investigated.
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MAIN RESULTS. AN EXAMPLE

The following results forMbc were obtained, the proofs being in [4].

Theorem 1 The general form of Mbc is given by

Mbc = um(xm;(buc) +u(bxc);m)+x(b;c)−xmx(cxb);m+ γ011 u(bxc)− γ010 ubuc

+ 1
n1

[2n1,(bxc) +2n1,mumu(bxc) +n1,mxmxbxc]
+ 1

n2
1
{−xm(zbzcn3n3,m+ybycn2n2,m)+n2

2[(γ021− γ120)u(byc) +xm(ym;(byc)−y(byc);m)]

+n2
3[(γ031− γ130)u(bzc) +xm(zm;(bzc)−z(bzc);m)]},

whereγabc are the rotation coefficients and a comma represents a partial derivative.

Theorem 2 x is an eigenvector of Mbc iff n1 remains invariant along the directions ofy
andz, i.e.∆y(logn1) = ∆z(logn1) = 0, where∆y represents the intrinsic derivative along
y. The corresponding eigenvalue isλ = ∆x(logn1).

Theorem 3 y is an eigenvector of Mbc iff n1 remains invariant along the direction of
y, i.e. ∆y(logn1) = 0, and 1

2γ132[−(n2
3/n2

1)+ 1] + 1
2γ123[1− (n2

2/n2
1)]+

1
2γ231[(n2

3/n2
1)−

(n2
2/n2

1)] = 0. The corresponding eigenvalue isλ =−(n2/n2
1)∆xn2+γ122[−(n2

2/n2
1)+1].

Theorem 4 z is an eigenvector of Mbc iff n1 remains invariant along the direction of
z, i.e. ∆z(logn1) = 0, and 1

2γ123[1− (n2
2/n2

1)] +
1
2γ132[1− (n2

3/n2
1)] +

1
2γ231[(n2

3/n2
1)−

(n2
2/n2

1)] = 0. The corresponding eigenvalue isλ =−(n3/n2
1)∆xn3− γ133[(n2

3/n2
1)−1].

Similar results have been obtained by the authors forN andP [4].
The following example illustrates the results above. We consider a spherically sym-

metric metricg written in local coordinatest, r,θ ,φ as ds2 = −dt2 + dr2 + r2dθ 2 +
r2sin2

θdφ2 (see [3], p.186). If a radial deformation is considered such thatds2 =
−dt2+n2(r)[dr2+r2dθ 2+r2sin2

θdφ2], the only non-zero components of the elasticity

difference tensor areSr
rr = Sθ

θ r = Sφ

φ r = 1
n(r)

dn(r)
dr andSr

φφ
=− r2sin2(θ)

n(r)
dn(r)

dr = sin2(θ)Sr
θθ

.
ThenMbc = λ1(xbxc−ybyc−zbzc), Nbc = 2λ2(xbyc +xcyb) andPbc = 2λ3(xbzc +xczb),
whereλ1 = λ2 = λ3 = 1

n(r)
dn(r)

dr . Therefore, the eigenvalue associated with the eigenvec-

tor u vanishes identically. The remaining eigenvectors are: (i) {x,y,z} for Mbc,
1

n(r)
dn(r)

dr ,

− 1
n(r)

dn(r)
dr , − 1

n(r)
dn(r)

dr being the corresponding eigenvalues, so that the Segre type is

{1,1(11)}; (ii) { x+y,x-y,z} for Nbc with eigenvalues 1
n(r)

dn(r)
dr , − 1

n(r)
dn(r)

dr and zero, re-
spectively, the Segre type being{1,111}; (iii) { x+z,x-z,y} for Pbc with eigenvalues

1
n(r)

dn(r)
dr ,− 1

n(r)
dn(r)

dr and zero, respectively, the Segre type being then{1,111}.
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