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Abstract

In practice, project managers must cope with uncertainty, and must ma-
nipulate the allocation of their resources adaptively in order to achieve their
ultimate objectives. Yet, treatments of the well-known ‘resource constrained
project scheduling problem’ have been deterministic and static, and have ad-
dressed mostly unimodal activities. We present an approach to resource alloca-
tion under stochastic conditions for multimodal activity networks. Optimiza-
tion is via dynamic programming, which proves to be demanding computation-
ally. We suggest approximation schemes that do not detract signi…cantly from
optimality, but are modest in their computational requirements.
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1 PROBLEM DEFINITION

This paper is concerned with the optimal resource allocation to the activities of a

project in order to optimize an economic objective in face of uncertainty. We assume

that the structure of the project is given (the de…nition of the activities and their

precedence relataions, hence the activity network (AN), are speci…ed). For simplicity

we assume that there is only one resource that is of abundant availability; subsequent

research shall deal with limited resource availability that may be variable over time.

The point of departure of this work from other contributions to the theory of AN’s

resides in our perspective concerning uncertainty.

We suspect that we may have been adopting the wrong perspective when we

assume that the uncertainty in project execution resides exclusively in the activity

duration (thanks to PERT [18] which initiated this perspective). We submit that the

uncertainty is caused by two independent factors. The …rst is external to the activity

(such as the weather; the possible breakdown of equipment; etc.). The second is

internal to the activity, and relates to the estimation of the activity’s work content.

When one says that a task would take 4 days, one is already taking into account one’s

other commitments, so that the e¤ort devoted to the task is limited to 2 hrs per day,

which, in turn, results in the estimate of 4 days. The key to that decision on the

duration is the estimate of the work content of 8 man-hours. If the task is required to

be completed in less than 4 days, one’s immediate reaction is to relegate other tasks

to the “back burner” – in other words, one modi…es the resource allocation (one’s

time) in order to cope with the new requirement. A request to complete the task in

2 days would immediately result in “doubling the original e¤ort”. Uncertainty stems

from the lack of de…niteness in the knowledge of the task’s work content – it may

require between 8 to 12 man-hours. This mode of uncertainty is separate and apart

from any uncertainty in the “external” factors that may interfere with the conduct

of the activity. In the same vein, a project manager manipulates the resources at his

disposal to achieve a speci…c goal (or perhaps several goals) under the knowledge of the
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activity’s total work content, whether deterministically of stochastically estimated.

Given the resources allocated to an activity, the duration becomes a known entity. If

the work content were deterministically known, and the resources are deterministically

allocated, then the duration is easily derivable. In the manager’s mind, the work

content is the …xed entity, the resource is the decision variable, and the duration is

the result. This perspective sheds a completely di¤erent light on the issues of concern

to researchers in the …eld of AN’s.

An activity is said to be unimodal if the resource requirements, and hence its

duration, are …xed a priori (e.g., it takes 2 men working 6 days). It is said to be

multimodal if it can be performed with di¤erent allocations of resources, with its

duration being a function of such allocation (e.g., the total work content of 12 man-

days may be performed by 1 man in 12 days, 2 men in 6 days, or even by 1.5 men

in 8 days). We shall assume that the total work content of an activity is in…nitely

divisible.

As stated before, the main departure of our approach from conventional treat-

ments is that we accord randomness to the total work content of each activity, gener-

ically denoted by Wa for activity a . (We are adopting the Activity-on-Arc mode of

representation of the project.) In this paper we shall assume that the activity’s work

content follows the exponential distribution;

Wa » exp (λa) , for all a 2 A,

where A is the set of activities. The rationale for such choice shall become clearer

as the discussion progresses. We consider only one resource, and denote the resource

allocation to the activity by xa, which is supposed to lie within a speci…ed interval;

0 · la · xa · ua < 1, 8a 2 A, (1)

where la is the lower bound of the resource allocation and ua is the upper bound. In

this treatise we take the resource allocation to be deterministic; stochasticity in the
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resource shall be the subject of future work. An allocation of xa units of the resource

to activity a incurs a resource cost equal to1

Ca = xaWa, (2)

and results in a duration

Ya =
Wa

xa
. (3)

Observe that both Ca and Ya are also random variables (r.v.).

We further assume that the project has a speci…ed due date Ts, and a tardi-

ness penalty that is a function of the actual completion of the project, denoted by

C(¨n ¡ Ts), where ¨n is the time of realization of node n, a r.v.2. For the sake of

simplicity, we shall take the penalty function to be proportional to the tardiness, with

proportionality constant cL (cost of tardiness per unit time).

C(¨n ¡ Ts) = cL ¢ maxf0,¨n ¡ Tsg. (4)

We are now in a position to specify our problem more precisely. The objective of the

analysis is to determine the resource allocation vector Xa to all the activities of the

project a 2 A such that the total expected cost (of undertaking the activities and of

being penalized for tardiness) is minimized,

min
X

E
(X

a2A
[C(X) + cL ¢ maxf0,¨n ¡ Tsg]

)
, (5)

where X is the vector fxaga2A, A is the set of activities, and C (X ) is a r.v. given by

C(X ) =
X

a2A
xaWa, (6)

1The rationale for this expression lies in the assumption that the cost of the resource is quadratic
in the allocation, incurred throughout the duration of the activity. Therefore the cost is given by
bx2Y, where b is a constant of proportionality and Y is the duration of the activity. But for resource
allocation x the duration Y is given by W/x, which results in the cost being equal to bxW. We
normalize the resource so that b = 1, which results in the expression Ca = xaWa .

2We assume that the nodes of the project network are topologically ordered so that node 1 is the
start node and node n is the last node.
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and each xa is constrained by (1).

The reaminder of the paper is organized as follows. In §2 we present the proposed

dynamic programming (DP) model of this problem which has general applicability to

any probability distribution of the activities’ work content. We follow, in §3 with an

illustration of the proposed model to an example AN in which the activities possess

a particular probability distribution, namely the exponential distribution which was

selected for ease of mathematical manipulation, and we exemplify the interesting

issue of ‘sensitivity analysis’. The computer code for the solution of the illustrative

example is available on request. The computer code for a general network, together

with an extensive experimental investigation, is the subject of a second report [21] by

the same authors. As will become amply evident, the computational burden of the

proposed DP model is quite heavy, and in §4 we propose two approximation schemes,

one based on switching the order of expectation and optimization, and the other

based on ‘aggregation’ of activities, and one bounding scheme. The approximation

schemes are also analyzed in the second report [21]. Finally, the Appendix details

some technical aspects relating to the DP approach, namely the determination of the

uniformly directed cutsets and the cutset intersection index which is a measure of the

complexity of the DP approach.

2 THE DYNAMIC PROGRAMMING MODEL

Suppose that we have been successful in identifying a subset of the activities (prefer-

ably a minimal number of activities) to be ‘conditioned upon’, in the sense that their

resource allocation is …xed (which removes them from the set of decision variables),

in such a way that each uniformly directed cutset (udc) of the network3 contains

exactly one decision variable. Denote this set of activities by F . Naturally, the ‘con-
3A uniformly directed cutset is a cutset in which all the arrows are directed from the subset of

nodes containing the start node (number 1) into the subset of nodes containing the terminal node
(number n ).
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ditioning’ must later be removed by enumerating all possible allocations to the subset

F and selecting the best; hence our interest in the minimal cardinality of F . Such

‘conditioning’ depends on the identi…cation of the udc’s of the network and their

intersection; which are given in the Appendix. Once the resource allocation to an

activity is known, its duration and cost become also known (being r.v.’s of the same

probability distribution as their respective W ’s, appropriately scaled by the resource

allocation). We de…ne the stage of the DP recursion as the epoch of decision on the

value of xa for some activity a in the set of decision variables, denoted by D, which

is the complementary set F , D ´ F = A ¡ F . At each stage of the DP iterations

we optimize over one decision variable. In this way there shall be as many stages as

the size of the set D. Let us suppose there are K stages; hence, K = jDj = jAj ¡ jFj.
We de…ne the state as the (vector of) times of realization of a subset of the nodes

that enable the decision xa to be made and the stage ‘reward’ be evaluated, a 2 D.

The state in stage k shall be generically denoted by sk. Typically, sk = (ti1, ¢ ¢ ¢ ,tir)

for some subset of nodes (i1, ¢ ¢ ¢ ,ir). We shall number the stages backwards so that

‘stage k’ means ‘k stages to go’ to complete the project, and identify the decision

variable in stage k as x[k], k = 1, ¢ ¢ ¢ ,K. Hence ‘stage 1’ is the stage containing the

terminal node n and has decision variable x[1], and stage K is the stage containing

the initial node 1 and decision variable x[K]. For all stages except stage 1 (the one

containing the terminal node n) the stage reward is simply the resource cost, a r.v.

equal to x[k]W[k]. In stage 1 the stage reward is the sum of the resource utilization

cost (= x[1]W[1]) and the cost of tardiness, if any; (= cL ¢ max f0,¨n ¡ Tsg), with

both costs being r.v.’s. Let fk (sk j F) denote the minimal cost at stage k when the

state is sk conditioned on the (…xed) allocation in F . Then, in typical DP fashion,

fk (sk j F) = min
x[k]2D

E
©
C[k]

¡£
x[k]

¤
,sk

¢
+ Efk¡1 (Sk¡1 j F)

ª
, (7)

Sk¡1 a r.v., represents the realization time of state sk¡1, k = 2, ¢ ¢ ¢ ,K,

where x[k] is the decision variable in stage k, and f1 (s1 j F) is determined from (10)

below. The optimum is secured by removing the conditioning, and the …nal solution
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is achieved when we evaluate

f (sK = 0) = min
F

fK (sK j F) . (8)

The solution via dynamic programming (DP) yields a policy that prescribes the

optimal resource allocation under every conceivable state of the project as it pro-

gresses over time.

A straightforward (but not necessarily optimal) process to select the activities to

be ‘conditioned upon’ (the set F) is the following4 :

1. Determine the longest path (in the sense of number of activities) in the network.

In case of ties, select one that is closest to the ‘boundary’ of the network. The

activities on the longest path will be the decision variables (set D).

2. The other activities, A ¡ D, will be the activities to be …xed (set F).

At the outset we evaluate the expected cost of the resource for the …xed variables,

denoted by rcf¶5,

rcf = E
X

i2F
xiWi =

X

i2F
xi ¢ E (Wi) . (9)

The …rst stage begins in the state s1 that leads to the last node of the network. We

evaluate

f1 (s1j F) = rcf + min
x[1]2D

E
©
x[1]W[1] + cL ¢ E (U)

ª
(10)

where

U = maxf0,¨n ¡ Tsg (11)

After the expected cost of stage 1 is evaluated we proceed to implement the

extremal equation of (7) until the last stage is reached (the initial node of the network)

where the state is sK = t1 = 0.
4An optimal set of decision variable D is determined as the solution of a ‘set covering’ problem

as explained in the Appendix.
5For “resource cost, …xed activities”.

7



This process yields the best allocation to the …rst activity x[K] de…ned by the udc

at node 1. The whole procedure is then repeated for all possible …xed allocations to

the activities in the set F . Since xa is de…ned the interval [la, ua], we must resort

to discretization. Let m be the number of di¤erent allocation values of an activity

in the set F . Then there are mjFj possible allocations, from which the optimum is

selected. This determines the resource allocation to the activities emanating from

the origin node, node 1. The policy to follow afterwards depends, naturally enough,

on the state of the process when the decision is called for. This is the essence of the

‘adaptive’ nature of the DP approach: later allocations must await the realization of

these activities as the project evolves over time.

It is not di¢cult to observe the computing burden of such a DP model.

3 EXAMPLE NETWORK

Consider the network in …gure 1.

Figure 1: Example Network
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The work content for each activity is exponentially distributed Wa » exp(λa),

with the parameters given in table 1.

Activity a AoA Designation (i, j) Parameter λa Expected Work Content

1 (1, 2) 0.10 10.00

2 (1, 3) 0.12 8.33

3 (1, 4) 0.05 20.00

4 (2, 3) 0.08 12.50

5 (2, 5) 0.20 5.00

6 (2, 6) 0.04 25.00

7 (3, 6) 0.03 33.33

8 (4, 5) 0.04 25.00

9 (4, 7) 0.024 41.67

10 (5, 7) 0.15 6.67

11 (6, 7) 0.16 6.25

Table 1 - Parameters of the exponential distributions.

The due date of the project is Ts = 656 and the cost of tardiness is cL = 5 per

unit time (week) tardy. Any resource allocation xa is bounded by 0.5 · xa · 1.5.

The cost of each resource allocation will be c(a) = xaWa and the duration of the

activity Ya = Wa
xa

.

First we determine the longest path in the network shown in heavy lines in …gure

1.

The activities along the longest path are the decision variables; set

D = fx1, x4, x7, x11g. The set of …xed activities is the set F = fx̂2, x̂3, x̂5, x̂6, x̂8, x̂9, x̂10g,
6The PERT estimate of the expected duration of the project at this resource allocation to the

activities in F , and assuming nominal resource allocation (equal to 1) to the activities in the set D,
is 63.33, which we know underestimates the true expected duration. Hence the speci…ed due date
is slightly larger than the expected project duration.
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in which we have highlighted the …xed nature of the allocations by the hat ‘^’ on the

x ’s. For illustrative purposes the feasible interval of the resource allocation [0.5, 1.5]

was discretized at …ve values: 0.5, 0.75, 1.00, 1.25, 1.50 and the resource allocation

con…ned to only these values. Guided by the expected durations of the activities

at the ‘nominal’ resource allocation x̂a = 1.00 for all a 2 F , the allocation to the

activities in the set F was …xed at

fx̂2, x̂3, x̂5, x̂6, x̂8, x̂9, x̂10g = f1.0, 1.5, 0.5, 0.5, 1.0, 1.5, 1.0g .

meaning that the allocation to activity 2 was …xed at x̂2 = 1.0, to activity 3 at

x̂3 = 1.5, etc. The evaluation of the expected resource cost for the …xed variables is

easily deduced to be

rcf =
X

a2F
x̂a ¢ E (Wa) = 147.5. (12)

Again, for the sake of illustration, each activity’s work content Wa was dis-

cretized at only four values, each with probability 0.25, with the same expected

value as E (Wa). For instance, W1 » exp (0.10) was assumed to take only four values:

1.3695, 4.7675,10.00, 23.8629, all with equal probability. To be sure; the average of

these four values is 10, which is the expected value of the r.v..

The DP iterations are initiated at stage 1 which is de…ned by the decision variable

x[1] = x11, the allocation to activity 11. The state may be de…ned by the triplet

s1 = (t4,t5,t6), the times of realization of nodes 4, 5 and 6. We have that

f1(t4, t5, t6 j F) = rcf +min
x11

E fx11W11 + cLE (U)g , (13)

where

U = maxf0,¨7 ¡ Tsg, a r.v., (14)

and

¨7 = maxft6 +
W11

x11
, t4+

W9

x̂9
, t5 +

W10

x̂10
g. (15)
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Stage 2 is de…ned by the decision variable x[2] = x7. Its state is de…ned by the

triplet s2 = (t2, t3, t4), and we have,

f2(t2, t3, t4 j F) = min
x7

Efx7W7 + E[f1(t4,¨5,¨6)]g (16)

where

¨5 = maxft2 +
W5

x̂5
, t4 +

W8

x8
g and ¨6 = maxft2 +

W8

x̂8
, t3 +

W7

x7
g. (17)

Stage 3 is de…ned by the decision variable x[3] = x4, and its state is de…ned by

(t2),

f3(t2 j F) = min
x4

Efx4W4 + E[f2(t2,¨3,¨4)]g (18)

¨3 = maxft2 +
W4

x4
,
W2

x̂2
g and ¨4 =

W3

x3
. (19)

Finally, stage 4, which is de…ned by the decision variable x[4] = x1, has its state

is de…ned by t1 = 0 :

f4(t1 = 0 j F) = min
x1

Efx1W1 + E [f3(¨2)]g (20)

¨2 =
W1

x1
(21)

The results are as follows:

x¤1jF = 1.25, at total expected cost of 348.28,

with F =

8
<
:

fx̂2,x̂3,x̂5,x̂6,x̂8,x̂9,x̂10g =

f1.0, 1.5, 0.5, 0.5, 1.0, 1.5, 1.0g

9
=
;

Observe that about 148 of this cost is due to the resource cost allocated to thé …xed’

activities, which implies that, under this allocation to the ´…xed’ activities, the ex-

pected cost of resource allocation to the four decision variablesfx1,x4,x7,x11g plus the
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cost of tardiness is about 201. Since the expected cost of resource allocation to the

decision variables varies between (0.5 £ 62.083) ' 31 and (1.5 £ 62.083) ' 93, we de-

duce that the expected cost of tardiness is between 108 and 170. Since the marginal

cost of tardiness is 5, we therefore anticipate that the project shall be tardy at least

21.6 and at most 34 weeks.

In order to remove the conditioning on F we must evaluate the expected cost and

the optimal value of the decision variables for every possible combination of the …xed

variables, and there are 57 = 78125 of them. The result of such exhaustive search is

as follows:

x¤1jF¤ = 1.25, at total expected cost of 280.85, (22)

with F¤ =

8
<
:

fx¤2,x¤3,x¤5,x¤6,x¤8,x¤9,x¤10g
= f0.5, 1.5, 0.5, 1.0, 1.0, 1.5, 1.0g

9
=
; (23)

Thus the optimal allocation at the initial udc, which is composed of activities 1,2,3,

is given by

fx¤1,x
¤
2,x

¤
3g = f1.25, 0.5, 1.5g .

Indeed, we also have in hand the complete vector of allocations for the ‘…xed’ activities

in the set F that yielded the optimum (given by eq.(23)), as well as the corresponding

optimal policies (at this allocation to the ‘…xed’ variables) at all remaining stages of

the project. These latter have not been exhibited for the sake of economy in space.

Values of the allocations to the other decision variables (activities 4,7, and 11)

must depend, naturally, on the outcome of the three activities in the …rst udc. In

particular,

(i) If activity 1 completes …rst then node 2 will be realized. This, together with the

speci…ed allocations to the ‘…xed’ activities in F would enable us to locate the

optimal allocation x¤4 in the previously developed optimal policy for stage 3.

(ii) If activity 2 completes …rst then it shall remain ‘dormant’ awaiting the comple-

tion of activity 4 which, in turn, cannot be initiated before the completion of
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activity 1.

(iii) If activity 3 completes …rst then node 4 will be realized. We may initiate

activities 8 and 9 at the speci…ed allocation in the vector of ‘…xed’ allocations

in F .

The optimal allocation7 has a resource cost of at least 168.348. A lower bound on

the resource cost of the remaining three decision variables is

0.5 (E [W4] + E [W7] + E [W11]) = 26.04,

and an upper bound is

1.5 (E [W4] + E [W7] + E [W11]) = 78.12.

Therefore, the lower bound on the resource cost is 194.38, and the upper bound is

246.46. Then the cost of tardiness ranges between (280.85¡ 246.46) = 34.39 and

(280.85¡ 194.38) = 86.47. Since the unit penalty for tardiness is 5, this, in turn,

implies that the anticipated tardiness under this optimal allocation is between 6.88

and 17.29 weeks. Observe that the drastic reduction in cost is mainly due to the

reduction in the expected penalty for tardiness.

3.1 Sensitivity Analysis

One may view the full factorial experimentation (with 57 di¤erent allocations to

the activities in the set F) as a form of sensitivity analysis. But having achieved

the ‘optimal’ vector (x¤1, x¤2,x¤3,x¤5,x¤6,x¤8,x¤9,x¤10) one may be interested in testing the

sensitivity of the total cost to small variations in the decision variables. An elementary
7Note that this is not the absolute optimum since the search over the spaces of W and X was

limited to the selected discretized values, and even then we did not search over all 57 possible
allocations to the …xed activities.

8168.34 = x¤
1 ¢ E [W1] +

P
k2F x̂k ¢ E [Wk ].

The actual resource cost is higher than this value because of the allocation to activities 4,7, and
11.
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form of sensitivity analysis is the “one-at-a-time” variation, which may be described

as follows: for each x¤k evaluate the performance of the project cost at each of the

‘neighboring’ values. There are four possible outcomes of the cost. It is

1. monotone increasing: then decrease x¤, if feasible9;

2. monotone decreasing: then increase x¤ if feasible;

3. it is ‘_’-shaped: then test at both sides of x¤;

4. it is ‘ ’̂-shaped: then test at both sides of x¤.

This analysis was conducted and resulted in the following changes:

fx¤1, x
¤
2,x

¤
3,x

¤
5,x

¤
6,x

¤
8,x

¤
9,x

¤
10g = f1.25, 0.5, 1.0, 0.5, 1.0, 1.25, 1.5, 1.0g

with expected cost = 274.86.

The decrease in total expected cost (of 5.99 units) may appear insigni…cant, but

analysis of its constituent elements is illuminating. The resource cost varies between

x¤1 ¢ E [W1] +
X

a2F¤
x¤k ¢ E [Wk] + 0.5 (E [W4] + E [W7] + E [W11]) = 190.63

and

min

(
274.86; x¤1 ¢ E [W1] +

X

a2F¤
x¤k ¢ E [Wk] + 1.5 (E [W4] + E [W7] + E [W11])

)
= 242.71.

Therefore, the cost of tardiness ranges between 0 and 32.15, and tardiness itself ranges

between 0 and 6.43 weeks. It is then evident that the reduction in total expected cost

was realized because of the reduction in the expected tardiness.
9 infeasibility of decreasing the value would occur if x¤

a = la. Infeasibility of increasing the value
would occur if x¤

a = ua.
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4 SUMMARY AND DIRECTIONS FOR FUTURE

RESEARCH

We have presented an argument for an alternative intepretation of uncertainty in

project networks based on the inherent work content of the activities, rather than

on external factors. This optic led us to the issue of optimal resource allocation in

order to achieve a stated objective which incorporated the cost of the resource and

the penalty for tardiness. We have also presented a DP approach to its resolution

which has general applicability to any distribution of the work content (albeit we

exempli…ed it by application to exponentially distributed r.v.’s).

The onerous burden of computing encountered in the ‘straightforward’ DP model

detailed above is evident. In a large activity network of 300 activities, say, the longest

path may be of length 50, leaving some 250 activities in the set F . Complete enu-

meration over the ‘…xed’ activities is now impossible even if each assumes only two

values. This provides the main driving force behind the search for ‘good’ approximat-

ing schemes (‘good’ in the sense of minimal degradation in performance), that are

computationally more frugal. There are two main avenues of such approximations

which are currently under investigation:

1. Replace the search for the optimum of the expected values at selected stages of

iteration with the search for the expected value of the optima. This approach

is in the spirit of the original PERT model, in which the determination of

the expected value of the longest path in the network was replaced with the

determination of the longest path when the expected values of the activity

durations were taken as the certainty equivalents of their respective r.v.’s.

2. Forfeit some ‘managerial ‡exibility’ in the adaptive optimization by ‘aggregat-

ing’ activities. The very act of ‘aggregation’ combines two or more activities

into a larger ‘aggregate activity’, which will necessarily delete nodes in the orig-

inal network. The aggregated activities shall all be treated as a single activity
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to which a resource allocation shall be made. This robs the manager of the

‡exibility of varying the allocation to individual activities according to progress

to date, which was manifested in the realization of the (deleted) nodes. For

instance, in the example of …gure 1 if managerial ‡exibility is forfeited with

respect to activities 5,10, and to activities 3, 8, 9, 10, and we ‘reduce’ node 5

(in the sense of [2]), then the network would appear as shown in …gure 2 in

which the resource allocations to compound activities 12 (= f5, 10g) and 13

(= f3, 8, 9, 10g) are …xed. Clearly, this is a much simpler network to analyze

than 1, with only 4 activities in the set F .

Figure 2: The aggregation of some activities.

3. Forfeit the generality of the DP approach in favor of the specialized treatment

of exponentially distributed r.v.’s which would lead to the interpretation of

the project as a continuous time Markov chain. Such analysis may provide

upper bound on the expected cost of the project, which may be useful in the

budgeting/bidding process.

Finally, the DP approach is very demanding computationally, in whichever form

it is used. So one should try to apply other compu-search approaches to this problem,
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such as simulated annealing, tabu search, genetic algorithms, and a global optimiza-

tion technique based on the ‘Electromagnetism Algorithm’ designed by Birbil and

Fang [3]. These approaches are currently under investigation..
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5 APPENDIX

5.1 The Identi…cation of The UDC’s

The procedure to identify the uniformly directed cutsets (udc) in an AoA network

representation of the project proceeds iteratively from the terminal node n.10, utilizing

the following proposition (compare with Proposition 4 in Dodin and Elmaghraby [9]).

We …rst have,

De…nition 1 A “terminal subset” (TS) is a subset of nodes with all arcs directed

into its nodes.

Proposition 2 For each TS of nodes U, the udc of activities, CU, is given by

CU =
©
U £ U

ª
½ A,

with the initial condition

CU=fng = f(i, n) 2 Ag.

In words, CU= set of arcs connecting the nodes in the complementary set U to the

nodes in the set U.

Rank the udc’s in order of ascending activity number, and within the udc’s con-

taining activity a, rank them in increasing number of origin nodes. The earliest cutset

of an activity is de…ned as the udc of smallest index that contains the activity.

As example, consider the project network of …gure 3. The procedure generates

the udc’s shown in table A1.

10Alternatively, one may proceed forward from node 1. Construct ‘initial subsets’ of activities
which are de…ned in a dual fashion to the terminal subsets; call each X, and for each subset de…ne
¹X = N ¡ X. The udc is then the set of arcs linking X to ¹X.
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Figure 3: Example project network and its udc’s

Table A1. The generation of udc’s for the project of …gure 3.

TS Uz Cutsety Identi…cation

f6g f8, 9g C(6)

f5, 6g f5, 7, 8g C(5)

f4, 6g f3, 6, 9g C(4)

f4, 5, 6g f3, 5, 6, 7g C(3)

f3, 4, 5, 6g f2, 3, 4, 5g C(2)

f2, 3, 4, 5, 6g f1, 2, 3g C(1)

z Identi…cation by the nodes.
y Identi…ed by the activities

Observe that we did not identify subsets f3, 4, 6g, f3, 5, 6g, etc., as terminal sub-

sets since there are arcs directed out of them.

The earliest cutset for each activity is as follows:

20



Activity : 1 2 3 4 5 6 7 8 9

Earliest udc: C (1) C(1) C(1) C (2) C(2) C (3) C(3) C(5) C (4)

5.2 The Determination of the cii

To determine the cutset intersection index (cii ) one needs to have generated the uni-

formely directed cutsets (udc’s) of the network. One then constructs the activity-udc

incidence matrix M, with entry mij = 1 if activity i lies on udc j, and = 0 otherwise.

The objective now is to retain ‘un…xed’ the maximal subset of activities such that

each udc contains exactly one activity. This translates into retaining the maximal

number of rows in the matrix M, such that the residual matrix contains exactly one

1 in each column. This is the well known set partitioning problem (SPP ). That is,

we wish to

max z =
X

i

xi (24)

such that,

X

i

mijxi = 1, 8 j, (25)

xi 2 f0,1g . (26)

It is well known that the SPP is NP-complete. Fortunately, for this case of dag’s,

the solution of this SPP is easily secured as all the activities that do not lie on the

path of longest number of activities.11 Applying this procedure to the graph of …gure

3 one easily …nds that there are two paths of ‘length’ 4: 1,4,7,9 and 1,4,6,8. Selecting

the …rst path one secures the IS as

IS = f2, 3, 5, 6, 8g ) cii = 5.
11We are grateful to Professor Bert Deryck of the London School of Business for suggesting this

elementary procedure to secure the conditioned activities.
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The IS is identi…ed in …gure 3 with double lines. This IS leaves only one activity in

each udc: activity 1 in C (1), activity 4 in C (2), activity 7 in C(3) and C(4), and activity

9 in C (5) and C(6).

Note that this project network has node reduction index (nri )[2] of only 2.
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