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Abstract  

Eight psoralens have been evaluated for their ability to inhibit the in vitro growth 

of three human tumor cell lines representing different tumor types, MCF-7 (breast 

cancer), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer). The 

synthesis of four new psoralens (benzofurocoumarins) is presented as well as the results 

of the ab initio calculations to find the parameters that relate the structure with the 

antitumor activity. This work provides supplementary information that could allow the 

development of new psoralen analogues with this type of biological activity. 
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1. Introduction 

Psoralens have been known for a long time as photosensitizers for PUVA (psoralen and 

UVA therapy) [1]. A number of researchers became interested on studying the synthesis 

and biological properties of psoralen derivatives, including benzopsoralens [1, 2]. The 

introduction of a benzene ring fused to the furan, or the addition of bulky or electron 

withdrawing substituents into the pyrone ring were suggested as potential ways of 

inhibiting adduct formation with DNA [3]. The possibility of formation of diadducts is 

suggested as being responsible for unwanted side effects [1, 4] The introduction of an 

ester group into a benzopsoralen can provide derivatives, which are efficient 

photosensitisers of singlet oxygen [2]. The presence of one or more methyl groups in 

psoralen analogues of the angelicin type, increases their photobinding ability to DNA 

[4]. Psoralen derivatives are also active in vitro against human melanoma cell line [5].  

Recently the synthesis of compounds 1-4, containing an ester group in the position 3 of 

the pyranone ring was described (Scheme 1) [5].  Photophysical properties of the 

compounds 1 and 2 have been investigated, and it was shown that they could 

photochemically sensitise singlet oxygen generation, with a quantum efficiency near to 

unity [6]. It was decided to replace the ester group by another type of electron 

withdrawing group (compound 8) and/or to add extra substituent in position 4 of the 

pyranone ring. The photophysical properties of all new compounds are being evaluated. 

The present work describes the preparation and characterisation of four new analogues 

5-8 (Schemes 1-3) as well as the results regarding the in vitro inhibitory effect on 

growth of three human tumor cell lines: MCF-7 (breast cancer), NCI-H460 (non-small 

cell lung cancer) and SF-268 (CNS cancer) from psoralen analogues 1-8. All the 

compounds were studied using the ab initio calculations in order to understand the 

relationship between the structures and their antitumor activity. 
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The potential usefulness of psoralen-derived compounds as photosensitizers for 

PUVA therapy is now under investigation.  

 

2. Results and Discussion 

2.1. Synthesis 

Compounds 1-4 (Scheme 1) were prepared from the corresponding 

hydroxybenzaldehydes via Knoevenagel type reaction [5]  

Compound 5 was made by cyanation [7] of 1 in 81 % yield. The replacement of 

the hydrogen atom by the cyano group was evident on the IR spectrum by a weak 

absorption at 2233 cm-1 and the disappearance of the most unshielded proton in the 1H 

NMR spectrum.  

Compounds 6-8 needed the ortho–hydroxy ketone precursors, which were 

prepared by acid catalysed or photochemical Fries rearrangements [8]. From those 

precursors, the final compounds were obtained in 21 – 45 % yields by a Knoevenagel 

type condensation, followed by ring closure where the carboxylic group present was 

activated with a phosphorus reagent [9] (Schemes 2, 3). The reaction products were 

characterized by spectroscopic methods and elemental analysis. For the compounds 6-8 

the methyl group is evident in the 1H NMR spectrum, at 2.56 – 3.00 ppm. For 

compound 8 a typical pattern for a p-substituted benzene ring was observed at δ 8.43 

and 7.80 ppm (J = 8.7 Hz ) in the 1H NMR spectrum. 

 

2.2. Effect on the growth of human tumor cell lines 

The effects of compounds on the growth of three human tumor cell lines, MCF-7 

(breast cancer), NCI-H460 (non-small cell lung cancer) and SF-268 (CNS cancer) were 
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evaluated. The growth inhibitory effects expressed as the concentration causing 50% 

of cell growth inhibition (GI50) are shown in Table 1. 

Only compounds 1, 4 and 8 exhibited, after a continuous exposure during a 48 h 

period, a dose-dependent growth inhibitory effect. Compound 1 was the most potent 

presenting GI50 values ≤20 µM and inhibiting the growth of the three cell lines with the 

same potency. Compound 4 exhibited significant activity against MCF-7 and NCI-H460 

but was less effective on the growth of SF-268. This different cell line response can 

reflect a possible tumor type-specific sensitivity of this compound. Compound 8 caused 

only a weak inhibition (>50 µM) on the growth of the three cell lines. 

 

2.3. Molecular modeling 

All psoralen-derived compounds were studied using the ab initio calculations. 

This was performed by the definition of the optimised geometries and further 

calculation of the three-dimensional electrostatic potential isosurfaces (3D-EPI) and 

molecular electrostatic potential superimposed onto total electron density ((MEP-

STED) (Figure 1). The three-dimensional MEP maps superimposed onto total electron 

density account for the interpretation of short-range interactions between molecules. At 

each point of the map, the electrostatic potential expresses the value of the electrostatic 

energy of interaction with a unitary positive charge. The three-dimensional MEP 

isosurfaces can account for the interpretation of long-range interactions with the 

receptor. This knowledge might allow the determination of an electrostatic pattern for 

the compounds that present the same activity. These isosurfaces have been determined 

at values of –10 and 10 kcal/mol (structural representations can be viewed in Schemes 1 

- 3).  
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For all compounds the MEP superimposed on the electron density shows that a negative 

potential is located over the oxygen atoms and a null to positive potential is located in 

the remaining parts of the structure. In the furan oxygen area the electrostatic profile is 

similar for all compounds. Through the three-dimensional MEP isosurfaces, it can be 

observed that all compounds present a negative potential located over the benzofuran 

ring, with the coumarin moiety showing positive values. Peripheral points of positive 

potential can also be seen around the aromatic area. The position of a bulk negative 

potential, due to the substituents present in the coumarin moiety of the molecule, 

differentiates the psoralens, with compounds 1 and 4 presenting analogue electrostatic 

potential isosurfaces. Compound 4, which is conformationally alike to compound 1, 

presented the second best set of results except for tumor cell line SF-268. Compound 4 

possesses a similar active region to compound 1, but shows an increase in the electronic 

density due to the vicinity of an oxygen atom from the coumarin moiety, which could 

explain the difference in the activity results. Although the similar global conformation 

of molecules 1 and 4, the position of the ester groups is inverted, changing the pattern of 

the electronic densities in both molecules. The lack of activity of compounds 5 and 6, 

which present a similar distribution of electrostatic potential, seems to be related with 

the presence of the cyano and methyl groups. For these compounds, the interactions 

with the bioreceptor are impaired by steric (conformational distortion and increase of 

the molecular volume in one of the points of interaction) and electronic density factors, 

caused by the cyano and methyl substituents mainly on the ester group. Besides 

conformational distortion and increase of the molecular volume in both compounds, the 

presence of the cyano group in compound 5 increases substantially the electronic 

density near the carbonyl from the ester group, whereas the presence of a methyl group 

in compound 6 reduces it substantially. 
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The other compounds do not have the minimal structural conformation to 

interact with the bioreceptor. Compounds 2, 3 and 7 are inactive and present an 

electrostatic contour that differs from the active analogues, due to a different orientation 

of the entire coumarin moiety. Although compound 8 presents similar structural features 

to compounds 3 and 7, it exhibits some degree of activity, which can be associated with 

the nitro group originating a point of very intense negative potential. 

Based on the analysis of the 3D-EPI/MEP-STED for compounds 1, 4, 5 and 6, 

we propose a model for the interactions between the bioactive and the bioreceptor, 

shown in Figure.2, involving at least four specific interactions, being three polar and 

one apolar, involving the ethyl group.   

 

3. Conclusions 

The successful synthesis of four new benzofurocoumarin is described. The use 

of the phenyl dichlorophosphate as activating reagent for the final cyclisation giving 6-8 

may have been determinant since the ketonic starting materials were not, in principle, 

very reactive. 

Eight compounds were tested and two of them showed significant activity on the in 

vitro tests on inhibition of the growth of three human tumor cell lines, suggesting that 

compounds with similar distribution of electronic density and molecular conformation 

will be also active for this purpose.  

The understanding of the correlation of the activity of the compounds described 

with their molecular properties can help defining future target compounds with 

increased biological activity. 
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4. Experimental 

4.1. Synthesis 

Light petroleum refers to solvent boiling in the range 40 - 60 ºC. Column 

chromatography (CC) was performed on Merck silica gel 60 (70-230 mesh). Melting 

points were determined on a Gallenkamp apparatus and are uncorrected. Ultraviolet 

spectra were recorded in ethanol on a SHIMADZU UV-2501 PC and data are presented 

in λmax (nm), (log ε [mol-1 dm3 cm-1]). Infrared spectra were recorded on a Diffus-IR 

Bomem MB-Series FTIR spectrometer in cm-1. NMR spectra were obtained on a Varian 

Unity Plus at 300 MHz (1H) and 75.4 (13C) and the assignments were based on 

irradiation and 2D-NMR techniques (HMQC and HMBC), respectively. The solvent 

was CDCl3 (if not stated otherwise) and δ is in ppm, relative to internal SiMe4. 

Elemental analyses were carried out with a LECO CHNS-932. EIMS and HRMS spectra 

were carried out with an AutoSpecE spectrometer, in m/z (rel. %). 

 

Ethyl 1-cyano-3-oxo-3H-benzofuro[3,2-f]-1-benzopyran-2-carboxylate (5) 

Compound 1 (0.040 g, 0.13 mmol) was dissolved in DMF (2,0 cm3) and sodium 

cyanide (0.013 g, 0.26 mmol) was added and the mixture heated at 45 ºC, with stirring 

for 1 h. After cooling to 0 ºC, bromine (0.027 g, 0.17 mmol), dissolved in DMF (0.5 

cm3), was added dropwise for 2h. The mixture was kept at room temperature, stirring, 

for 24 h. Water was added to the mixture (10 cm3), compound 5 precipitated and was 

filtered (0.035 mg, 81 %). Recrystallization from hot ethanol gave intense yellow 

crystals. M.p.: 198.5-200.0 ºC. UV: 368 (4.14); 271 (4.20). IR (KBr): 2233 (CN), 1736 

(s, C=O), 1727 (s, C=O), 1584, 1555, 1468, 1418, 1368, 1347, 1289, 1245, 1228, 1106, 

1066, 1048, 855, 821, 768, 757, 700, 665. 1H NMR, δ: 1.51 (t, 3H, J=7.1 Hz, CH2CH3),  
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4.59 (q, 2H, J=7.1 Hz, CH2CH3), 7.49 (dt, 1H, J=7.8, 1.0 Hz, 10-CH), 7.54 (d, 1H, 

J=9.0 Hz, 6-CH or 5-CH), 7.63 (dt, 1H, J=7.8, 1.0 Hz, 9-CH), 7.70 (br d, 1H, J=7.8 Hz, 

8-CH), 7.96 (d, 1H, J=9.0 Hz, 5-CH or 6-CH), 8.97 (br d, 1H, J=7.8 Hz, 11-CH). 13C 

NMR, δ: 13.90 (CH2CH3), 63.75 (CH2CH3), 110.37, 112.19 (CH), 115.07, 116.57 (CH), 

118.69 (CH), 120.23, 121.79, 122.40, 123.53 (CH), 126.23 (CH), 129.15 (CH), 130.36, 

151.27, 153.13, 154.87, 157.29, 161.61 (CO2Et). EI-MS, m/z: 334 (21, [M+1]+.), 333 

(100, M+.), 305 (32), 304 (67), 288 (44), 277 (40), 261 (17), 233 (28), 204 (36), 175 (9). 

HRMS: 331.0631 (M+., C19H11NO5
+.; calc. 333.0637). 

 

Ethyl 1-methyl-3-oxo-3H-benzofuro[3,2-f]-1-benzopyran-2-carboxylate (6) 

A mixture of 2-hydroxydibenzofuran-1-yl methyl ketone (0.094 g, 0.42 mmol), 1,8-

diazabicyclo[5.4.0]undec-7-ene (DBU) (0.24 ml, 1.6 mmol) and mono-ethylmalonate 

(0.070 g, 0.53 mmol) dissolved in 1,2-dichlorobenzene (1.2 cm3) was kept at 0 ºC and 

phenyl dichlorophosphate (0.11 cm3, 0.74 mmol) was added dropwise with stirring. The 

mixture was kept in these conditions for 30 min and then was heated at 145 ºC for 2h 30 

min. The mixture was poured onto crushed ice, extracted with dichloromethane (3x25 

cm3), dried (MgSO4) and evaporated. The residue was separated by column 

cromatography (silica gel, ethyl acetate / light petroleum). The first compound eluted 

was the starting ketone (0.029 g, 31 %). The second compound eluted was coumarin 6 

(0.030g, 22 %). Recrystallization from CHCl3 and hexane gave compound 6 as a light 

yellow solid (0.030, 22 %). M.p. 151.5-153.0 ºC. UV: 332 (4.34). IR (KBr): 

1731(C=O), 1707 (C=O), 1586, 1466, 1438, 1368, 1352, 1300, 1285, 1248, 1233, 1103, 

1058, 820, 747. 1H NMR, δ: 1.46 (t, 3H, J=7.1 Hz, CH2CH3), 3.00 (s, 3H, CH3), 4.50 

(q, 2H, J=7.1 Hz, CH2CH3), 7.40 (dt, 1H, J=7.8, 1.0 Hz, 10-CH), 7.52 (d, 1H, J=9.0 Hz, 

6-CH or 5-CH), 7.57 (dt, 1H, J=7.8, 1.0 Hz, 9-CH), 7.92 (br d, 1H, J=7.8 Hz, 8-CH), 
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7.84 (d, 1H, J=9.0 Hz, 5-CH or 6-CH), 8.26 (br d, 1H, J=7.8 Hz, 11-CH). 13C NMR, δ: 

14.14 (CH2CH3), 20.99 (Ar-CH3), 62.22 (CH2CH3), 112.47 (CH), 115.55, 116.70 (CH), 

117.12 (CH), 120.36, 121.80, 122.74, 122.98 (CH), 124.98 (CH), 128.10 (CH), 150.28, 

150.61, 153.25, 157.19, 165.04, 171.10. EIMS, m/z: 322 (16, M +.), 306 (8), 277 (23), 

276 (100), 250 (16), 208 (17), 165 (14). HRMS: 322.0825 (M+., C19H14O5
+.; calc. 

322.0841). Anal. calcd for C19H14O5: C, 70.80; H, 4.38 %. Found: C, 70.66, H, 4.51 %. 

 

Ethyl 1-methyl-2-oxo-2H-benzofuro[2,3-g]-1-benzopyran-3-carboxylate (7) 

A mixture of 2-hydroxydibenzofuran-3-yl methyl ketone (0.120 g, 0.531 mmol),  

triethylamine (0.161 g, 1.59 mmol) and mono-ethylmalonate (0.080 g, 0.61 mmol) 

dissolved in 1,2-dichloroethane (8 cm3) was kept at 0 ºC and phenyl dichlorophosphate 

(0.130 g, 0.616 mmol) was added drop wise with stirring. The mixture was kept in these 

conditions for 30 min and then it was heated at reflux for 4 h. After cooling, water (20 

cm3) and diethyl ether (20 cm3) were added. The organic phase was separated, dried 

(MgSO4), the solvent was evaporated and the residue was purified by column 

cromatography (silica gel, ethyl acetate / light petroleum). The first compound eluted 

was the starting ketone (0.064 g, 53 %). The second compound eluted was coumarine 7 

(0.077g, 45 %). Recrystallization from hot ethanol gave compound 7 as yellow crystals. 

M.p. 234.5-236.0 ºC. UV: 331 (4.50). IR (KBr): 2988, 1734 (C=O), 1698 (C=O), 1642, 

1625, 1573, 1458, 1430, 1401, 1375, 1338, 1300, 1278, 1233, 1206, 1149, 1081, 1059, 

1031, 863. 1H NMR, δ: 1.44 (t, 3H, J=7.1 Hz, CH2CH3), 2.57 (s, 3H, CH3), 7.47 (q, 2H, 

J=7.1 Hz, CH2CH3), 7.45-7.39  (m, 1H, 9-CH), 7.63-7.55 (m, 2H, 7-CH and 8-CH), 

7.83 (s, 1H, 5-CH or 11-CH), 7.87 (s, 1H, 11-CH or 5-CH), 8.02 (br d, 1H, J=7.8 Hz, 

10-CH). 13C NMR, δ: 14.18 (CH2CH3), 16.48 (CH3), 62.22 (CH2CH3), 107.04 (5-CH or 

11-CH), 108.30 (5-CH or 11-CH), 112.053 (7-CH or 8-CH), 118.18, 121.07, 121.85 
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(10-CH), 123.00, 123.42 (9-CH), 128.73, 129.54 (7-CH or 8-CH), 149.17, 149.92, 

152.57, 157.96, 164.96, 171.15. EIMS, m/z: 323 (2, [M+1]+.), 322 (61, M+.), 306 (6), 

277 (51), 276 (100), 250 (12), 208 (17), 165 (10). HRMS: 322.0836 (M+., C19H14O5
+.; 

calc. 322.0841). Anal. calcd for C19H14O5: C, 70.80; H, 4.38 %. Found: C, 70.57; H, 

4.58 %. 

 

4-methyl-3-(4’-nitrophenyl)-benzofuro[2,3-g]benzopyranone (8) 

To a mixture of 2-hydroxydibenzofuran-3-yl methyl ketone (0.119 g, 0.526 mmol),  

triethylamine (0.177 g, 1.75 mmol) and 4-nitrophenylacetic acid (0.102 g, 0.564 mmol) 

dissolved in 1,2-dichloroethane (6 cm3), at 0 ºC, phenyl dichlorophosphate (0.130 g, 

0.616 mmol) was added drop wise with stirring. The mixture was kept in these 

conditions for 30 min and then it was heated at reflux for 3h 30 min. Water was added 

(15 cm3) and the mixture was extracted with ethyl acetate (3x 15 cm3), dried (MgSO4) 

and the solvent evaporated. From the residue, compound 8 was precipitated with 

propanone / light petroleum (0.040 g, 21 %). Recrystallisation from ethyl acetate / 

trichloromethane gave yellow crystals. M.p. > 300 ºC (dec.). UV: 336 (4.56). IR (KBr): 

1698 (C=O), 1643, 1597, 1569, 1517, 1345, 1331, 1143, 983, 856, 768. 1H NMR 

(acetone-d6), δ: 2.56 (s, 3H, CH3), 7.54 (dt, 1H, J=7.8, 1.0 Hz, 9-CH), 7.71 (dt, 1H, 

J=7.8, 1.0 Hz, 8-CH), 7.77 (br d, 1H, J=7.8 Hz, 7-CH), 7.80 (d, 2H, J=8.7 Hz 2´-CH 

and 6´-CH), 8.21 (s, 2H, 5-CH and 11-CH), 8.32 (br d, 1H, J=7.8 Hz, 10-CH), 8.43 (d, 

2H, J=8.7 Hz, 3´-CH and 5´-CH). 13C NMR, δ: 17.14 (CH3), 106.97 (CH), 108.19 (CH), 

112.06 (CH), 116.32, 119.13, 121.82 (CH), 123.12, 123.41 (CH), 123.67 (2C; 2’-CH 

and 6’-CH), 125.05, 128.20, 129.41 (CH), 131.47 (2C; 3’-CH and 5’-CH), 141.41, 

147.66, 148.99, 152.65, 157.95 (it is not possible to assign the exact location of the 
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signal of CO). EIMS, m/z: 372 (25, [M+1]+.), 371 (100, [M]+.), 343 (21), 297 (8), 268 

(9), 239 (7), 221(4). HRMS: 371.0797 ([M]+., C22H13NO5
+; calc. 371.0794). 

 

4.2. Tumor cell growth assay 

Stock solutions of compounds were prepared in DMSO (Sigma Chemical Co) 

and stored at –20 ºC. The frozen samples were freshly diluted with cell culture medium 

just prior the assay. Final concentrations of DMSO did not interfere with the cell 

growth. 

The effects of compounds on the growth of human tumor cell lines were 

evaluated according to the procedure adopted by the National Cancer Institute (NCI, 

USA) for the in vitro anticancer drug screening that use the protein-binding dye 

sulforhodamine B (Sigma Chemical Co) to assess growth inhibition. The methodology 

used was the same as originally published by the NCI team [10]. Three human tumor 

cell lines were used, MCF-7 (breast adenocarcinoma), NCI-H460 (non-small cell lung 

cancer) and SF-268 (CNS cancer). Cells were routinely maintained as adherent cell 

cultures in RPMI-1640 medium (Gibco BRL) containing 5 % heat-inactivated FBS 

(Gibco BRL), 2 mM glutamine (Sigma Chemical Co) and 50 µg/ml gentamicin (Sigma 

Chemical Co) at 37 ºC in an humidified air incubator containing 5 % CO2. The optimal 

plating density of each cell line that ensure exponential growth throughout all the 

experimental period, was the same as originally published2 and was respectively 

1.5x105 cells/ml to MCF-7 and SF-268 and 7.5x104 cells/ml to NCI-H460. Cells were 

exposed for 48h to five concentrations of compounds starting from a maximum of 

150µM. Compound 2 was tested at a maximum of 100 µM. Doxorubicin (Sigma 

Chemical Co) used as a positive control, was tested in the same manner. For each test 
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compound and for each cell line a dose-response curve was generated and the growth 

inhibition of 50 % (GI50) was calculated as described [11]. 

4.3. Computational procedure 

All calculations were performed with Gamess 6.3 [12]. Geometry optimizations 

and energy calculations were performed on each compound at the ab initio quantum 

mechanical level by using Density Functional Theory (DFT) with the Becke3-Lee-

Yang-Parr (B3LYP) functional, and the 6-31G(d) basis set. All calculations have been 

carried out in vacuo. 

Visualization of all the results was performed with Molekel 4.3 [13]. 

Molecular Electrostatic Potential (MEP) surfaces were drawn using the 

CALCULATE utility present in Molekel 4.3, applied to the optimized geometries of all 

molecules. The MEP isoenergy contours were generated in the range of –60 to 60 

kcal/mol, superimposed onto a surface of constant electron density (0.0002 e/au3), to 

provide a measure of the electrostatic potential at roughly the van der Waals surface of 

the molecule. This colour-coded surface provides a measure of the overall size of the 

molecule as well as the location of negative or positive electrostatic potentials. The 

regions of positive electrostatic potential indicate excess positive charge, leading to 

repulsion of the positively charged test probe, while regions of negative potential 

indicate areas of excess negative charge, leading to attraction of the positively charged 

test probe. Three-dimensional surfaces of molecular electrostatic potential at the 

constant values of –10 and 10 kcal/mol were generated to determine the profile of the 

electrostatic potential of a molecule when approaching the receptor. 
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Figure captions 

 

Figure 1: Three-dimensional electrostatic potential isosurfaces at –10 kcal/mol (blue) 

and 10 kcal/mol (light grey) for compounds 1-8 and MEPs superimposed onto total 

electron density at a value of 0.0002 e/au3 for compounds 1-8. 

 

Figure 2: Schematic representation of the interaction between compound 1 and a 

bioreceptor of tumor cell, indicating four levels of interaction: 1, 3 and 4, Polar; 2, 

Apolar. 

 

 

Scheme captions 

 

Scheme 1: Structural representation of compounds 1-5 

 

Scheme 2: Reaction conditions for the obtention of compound 6. 

 

Scheme 3: Reaction conditions for the obtention of compounds 7 and 8. 

 



18 

Table 1. Effect of compounds on the growth of human tumor cell lines  

Doxorubicin, GI50:  MCF-7 = 42.8 ± 8.2 nM; NCI-H460 = 94.0 ± 8.7 nM; SF-268= 93.0 ± 7.0 nM; 

results are means ± SEM of 6-9 independent experiments. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

GI 50 (µM)  

Compounds MCF-7 NCI-H460 SF-268 

         1 13.9 ± 1.2 20.4 ± 1.1 17.6 ± 1.4 

         2 > 100 > 100 > 100 

         3 > 150 > 150 120.3 ± 8.4 

         4 19.4 ± 1.9 31.2 ± 1.8 115.7 ± 10.2 

         5 > 150 > 150 > 150 

         6 > 150 > 150 > 150 

         7 > 150 > 150 > 150 

         8 58.4 ± 8.8 82.7 ± 4.5 72.7 ± 1.6 
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