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Abstract 

Poly(oxyethylene) (POE)/siloxane-based materials incorporating magnesium triflate 

(Mg(CF3SO3)2) were synthesized by the sol-gel process. The host Class II hybrid matrix (di-

ureasil) employed is composed of a siliceous framework to which short POE chains are 

covalently bonded through urea linkages. Ormolytes with salt composition n (molar ratio of 

oxyethylene moieties per Mg2+ ion) ranging from ! to 1 were investigated. The nanohybrid 

with n = 20, which is thermally stable up to 360 ºC, exhibits the highest conductivity (e.g., 

approximately 4.0x10-6 and 6.7x10-5 "-1cm-1 at 35 and 104 ºC, respectively). The redox 

stability domain of this material spans from -3.0 to +2.0 V versus Mg/Mg2+.
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1. Introduction 

Since 1983, when the results reported by Bertier et al. [1] suggested that the ionic 

conductivity in semi-crystalline polymer electrolytes (PEs) was confined to the amorphous 

phase, the attention of researchers in this domain has been directed towards the preparation of 

essentially amorphous host materials based on poly(oxyethylene) (POE)-based 

macromolecules [2]. Recent results reported by Gadjourova et al. [3] are in conflict with this 

accepted model, and indicate that ion transport may also occur in the crystalline region of the 

polymer network and, under certain circumstances, this contribution to the total conductivity 

may be greater than that of the amorphous component. Nevertheless, as the levels of 

conductivity displayed by the electrolytes prepared by Gadjourova et al.3 are still too low to 

foresee any immediate technological application, much of the work carried out at present 

continues to be focused on the development of amorphous systems. 

The synthesis of hybrid structures is of interest in this context. POE/siloxane frameworks 

incorporating ionic salts have attracted much attention over the last decades, because of their 

potential application as electrolytes in solid state electrochemical devices, and particularly in 

advanced lithium batteries [4-13]. The development of such organic/inorganic structures 

permits, not only a significant reduction or even suppression of crystallinity, but may also 

result in a marked improvement in the mechanical resistance and the chemical/thermal 

stability of the materials. In addition, POE/siloxane host matrices are able to solubilize greater 

quantities of guest salts than conventional macromolecules, avoiding “salting-out”. Thin and 

flexible ormolyte (organically modified silicate electrolyte) films are readily produced 

through the sol-gel process [14]. Two types of hybrids may be produced [13]: Class I hybrids, 

in which weak interactions (van der Waals contacts, hydrogen bonding or electrostatic 

interactions) are established between both components (one acts as host network and the other 

as entrapped species), and Class II hybrids, in which at least a proportion of the organic and 
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inorganic components are bonded by means of strong chemical interactions (covalent or iono-

covalent bonds). 

The number of studies of electrolytes containing Mg2+ ions is relatively limited. Some Pes 

[15-22] and gel polymer electrolytes (GPEs) [23-26] incorporating magnesium salts have 

been characterized. The synthesis of Mg2+-doped ormolytes prepared via sol-gel has only 

been reported quite recently by Mitra and Sampath [27]. These authors describe a Class I 

matrix derived from tetraethoxyortosilane and poly(ethylene glycol) to which magnesium 

perchlorate and magnesium chloride were added [27]. 

The development of Mg2+-based systems assume significant importance in solid state 

electrochemistry. With an electrode potential of -2.37 V versus SHE and an electrochemical 

equivalence of 2.2 Ahg-1, Mg is an attractive anode material [28]. The use of Mg for the 

fabrication of rechargeable solid state batteries looks also very promising [29]: (1) its natural 

abundance makes it cheaper than Li; (2) it is non-toxic and thus environmentally friendly; (3) 

it is less reactive than Li towards oxygen and humid atmospheres and thus hazards in open air 

are minimized; (4) the ionic radii of Li+ and Mg2+ are comparable in magnitude, meaning that 

magnesium batteries may use insertion compounds which have been developed for lithium 

cells. 

In the present work we will investigate POE/siloxane ormolytes doped with magnesium 

triflate (Mg(CF3SO3)2). The host structure of these materials - which contains POE chains 

with approximately 40.5 repeat units - belongs to the class of di-ureasils [30-32], a family of 

Class II hybrids in which the organic and inorganic components are bonded through urea 

groups. This study will be divided into two parts: Part 1 will be devoted to the synthesis and 

characterization of the structure, morphology, thermal properties and electrochemical 

behaviour of a series of di-ureasil xerogels with a wide range of Mg(CF3SO3)2 concentration; 

in Part 233 an in-depth infrared and Raman spectroscopic analysis of the same set of samples 
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will be reported to characterize the local cation and anion environments and explain the 

dependence of the ionic conductivity with salt content.  

 

2. Experimental Details 

2.1. Materials  

Magnesium trifluoromethanesulfonate (Mg(CF3SO3)2, Aldrich) and #,$-

diaminepoly(oxyethylene-co-oxypropylene (commercially designated by Jeffamine ED-

2001®, Fluka, average molecular weight 2001 g/mol) were dried under vacuum at 25 ºC for 

several days prior to being used. 3-isocyanatepropyltrietoxisilane (ICPTES, Fluka) was used 

as received. Ethanol (Merck) and tetrahydrofuran (Merck) were stored over molecular sieves. 

High purity distilled water was used in all experiments.  

 

2.2. Synthesis  

The Mg2+-based di-ureasils were prepared according to the method described in detail 

elsewhere for the Eu3+ [34,35]- and Li+ [12]-based analogues. Globally, the synthetic 

procedure involved grafting a POE-based diamine to the isocyanatepropyltriethoxysilane 

precursor, to yield the di-urea cross-linked hybrid precursor molecule, 

CH3CH2O
CH3CH2O

CH3CH2O

OCH2CH3

OCH2CH3
OCH2CH3

Si-CH2-CH2-CH2-N C N-CHCH2-(OCHCH2)a(OCH2CH2)40.5(OCH2CH)c -N C N-CH2-CH2-CH2-Si

CH3CH3 CH3

OO

HHHH

a+c = 2.5

which was subsequently hydrolyzed and condensed in the sol-gel stage to induce the growth 

of the siloxane network.  

In agreement with the terminology adopted in previous publications [12,34,35], the 

ormolytes were identified using the notation d-U(2000)nMg(CF3SO3)2, where d-U(2000) 

represents the host di-ureasil framework (d stands for di, U denotes the urea group and 2000 
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corresponds to the average molecular weight of the starting organic precursor) and n (salt 

composition) indicates the number of ether oxygen atoms per Mg2+cation. For example, the 

di-ureasil xerogel d-U(2000)20Mg(CF3SO3)2 contains an amount of Mg(CF3SO3)2 such that 

the OPOE /Mg2+ molar ratio is equal to 20.  

The content of Mg(CF3SO3)2 in the samples and other relevant information is given in 

Table 1. The xerogels with n > 1 were obtained as transparent, flexible monoliths with a 

yellowish hue, whereas the material with n = 1 is a white solid. 

 

2.3. Experimental techniques 

NMR. 29Si magic-angle spinning (MAS) and 13C cross-polarization (CP) MAS NMR spectra 

were recorded on a Brüker Avance 400 (9.4 T) spectrometer at 79.49 and 100.62 MHz, 

respectively. 29Si MAS NMR spectra were recorded with 2 µs (equivalent to 30 º) rf pulses, a 

recycle delay of 60 s and at a 5.0 kHz spinning rate. 13C CP/MAS NMR spectra were recorded 

with 4 µs 1H 90º pulse, 2 ms contact time, a recycle delay of 4 s and at a spinning rate of 8 

kHz. Chemical shifts (%) are quoted in ppm from TMS. 

XRD. The X-ray diffraction (XRD) measurements were performed at room temperature (RT) 

with a Rigaku Geigerflex D/max-c diffractometer system using monochromated CuK#

radiation (& = 1.54 Å) over the 2' range of between 4 and 80 º at a resolution of 0.05 º. The 

xerogel samples, analyzed as films, were not submitted to any thermal pre-treatment. 

DSC and ATG. A DSC131 Setaram Differential Scanning Calorimeter was used to determine 

the thermal characteristics of the ormolytes. Disk sections with masses of approximately 30 

mg were removed from the di-ureasil film, placed in 40 !l aluminium cans and stored in a 

dessicator over phosphorous pentoxide (P2O5) for one week at RT under vacuum. In the case 

of the di-ureasil with n = 1 it was necessary to grind the sample first to form a fine powder in 

order to remove all the water. After the drying treatment the cans were hermetically sealed 
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and the thermograms were recorded. Each sample was heated from 25 to 300 ºC at 10 ºC min-

1. It was subsequently quenched from RT to -100 ºC and then heated up to 80 ºC at 15 ºC min-

1. The purge gas used in both experiments was high purity nitrogen supplied at a constant 35 

cm3 min-1 flow rate. Samples for thermogravimetric studies were transferred to open platinum 

crucibles and analysed using a Rheometric Scientific TG 1000 thermobalance (materials with 

n = 200, 7, 5 e 1) and a Mettler TGA/SDTA 851 thermobalance (materials with n =  60, 40 

and 20) at a heating rate of 10º min-1 using dried nitrogen as purging gas (20 ml/min). Prior to 

measurement, the xerogels were vacuum-dried at 80 ºC for about 48 h and kept in an argon-

filled glove box.  

Complex impedance. For bulk conductivity measurements, an ormolyte disk was placed 

between two 10 mm diameter ion-blocking gold electrodes (Goodfellow, > 99.9%). The 

electrode/ormolyte/electrode assembly was secured in a suitable constant volume support. The 

cell support was installed in a Buchi TO51 tube oven and a type K thermocouple placed close 

to the electrolyte disk measured the sample temperature. Bulk conductivities of the samples 

were obtained during heating cycles using the complex plane impedance technique 

(Schlumberger Solartron 1250 frequency response analyser and 1286 electrochemical 

interface) over a temperature range of between 25 and 100 ºC and at approximately 7  ºC 

intervals. Prior to characterization, the di-ureasil ormolytes were vacuum-dried at 80 ºC for 

about 48 h and kept in an argon-filled glove box. 

Cyclic Voltammetry. Cyclic voltammetry measurements were performed at RT in an argon-

filled glove box using a Radiometer Voltalab 32 potentiostat/galvanostat equipment operating 

at a 10 mVs-1 scan rate in the potential range of -4.0 to 4.0 V versus Mg/Mg2+. The PE sample 

was sandwiched between two low-carbon stainless steel (SS) ion blocking electrodes, with a 

Mg foil as negative electrode, and located inside a PTFE sealed test cell. The electrode area 

was 0.283 cm2. Prior to characterisation, the ormolyte sample was dried under vacuum at 60 

ºC for about 24 hours. 
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3. Results and Discussion 

3.1. Structure and Morphology  

The 29Si MAS and 13C CP/MAS NMR spectra of selected d-U(2000)nMg(CF3SO3)2 ormolytes 

are reproduced in Figs. 1(a) and 1(b), respectively. The position and attribution [12,36-46] of 

the resonance peaks are listed in Table 2.  

The 29Si MAS NMR spectra of the d-U(2000)nMg(CF3SO3)2 xerogels with n = 80, 20 and 

10 exhibit three signals at ca. -52, -58 and -66 ppm (Fig. 1(a)). On the basis of the 

conventional Tm silicon (Si) notation (m = 1, 2 and 3, where m* is the number of Si atoms 

bonded to O-Si units), these peaks are ascribed, respectively, to T1 (CH2-Si(OR)2(OSi)), T2

(CH2-Si(OR)(OSi)2) and T3 (CH2-Si(OSi)3) sites, where R is CH2CH3 or H (Table 2). The 

calculated relative population for the three Si environments confirms that in both samples the 

sites present are essentially T3 (close to 60%) and T2 (almost 40%) (Table 2), suggesting a 

branched nature for the polycondensed structures. This result correlates well with the 

magnitude of the polycondensation rates c (where c = 1/3 (%T1 + 2%T2 + 3%T3)) derived for 

the same Mg2+-doped di-ureasils (around 86%), which are significantly higher than the value 

reported for the non-doped framework (75%) [46]. The empirical formula deduced for the 

three d-U(2000)nMg(CF3SO3)2 Mg2+-doped nanohybrids (Table 2) indicates that a minor 

number of OCH2CH3 or OH groups persist attached to the Si atoms. 

The most significant feature of the 13C CP/MAS NMR spectra of the di-ureasils with n = 

80, 20 and 10 represented in Fig.1(b) is a peak at about 70 ppm, attributed to the resonance of 

the dominating OCH2CH2O moieties of d-U(2000) (Table 2). The remaining functional 

groups of this hybrid matrix, which are considerably less abundant, give rise to very weak 

signals (Fig.1(b)). We note that the urea C=O resonance expected at 160 ppm appears as a 

weak event in the spectra of the Mg(CF3SO3)2-doped composites (insert of Fig.1(b)). As 

 
* The classical notation Tn has been changed to Tm, to avoid any confusion with the notation n used for salt 
composition throughout the text. 
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demonstrated in Table 2, the 13C CP/MAS NMR data confirm that the grafting reaction gave 

rise to the formation of the urea group and was not accompanied by the rupture of bonds in 

the Si-propyl segments or oligopolymer groups. In agreement with the conclusions drawn 

from the 29Si MAS NMR data, the 13C CP/MAS NMR spectra support the suggestion that the 

hydrolysis reaction was incomplete, as unreacted OCH2CH3 groups remain in the materials. 

Close analysis of the XRD patterns of the d-U(2000)nMg(CF3SO3)2 samples illustrated in 

Fig. 2 allows us to conclude that the composites with n = 40, 20 and 10 are totally amorphous, 

those with n ( 60 are semi-crystalline, whereas the most concentrated sample (n = 1) is 

crystalline. These findings demonstrate that, in contrast with the situation found in the Li+-

containing system [12], the addition of a considerable amount of guest salt to the d-U(2000) 

medium is needed to inhibit the formation of crystalline phases of pure POE or POE/salt 

complexes or free Mg(CF3SO3)2. The broad band, Gaussian in shape, centered at 

approximately 21.61º in the diffractograms of materials with 200 ( n ( 5 is associated with 

the coherent diffracting domains of the siliceous backbone [47]. The application of Bragg’s 

law permits us to conclude that the structural unit distance is approximately 4.22 Å. The sharp 

and intense peaks detected at about 19.15 and 23.25 º in the diffractograms of the doped di-

ureasils with 200 ( n ( 60 are produced by crystalline POE domains (Fig. 2) [47]. The salt-

rich material d-U(2000)1Mg(CF3SO3)2 gives rise to a series of well-defined peaks which do 

not correspond to the characteristic peaks of Mg(CF3SO3)2 (Fig. 2). This result induces us to 

propose that a crystalline POE/Mg(CF3SO3)2 complex is formed at this salt concentration. On 

the basis of a previous study of the conventional POEnMg(CF3SO3)2 system [20], we feel 

tempted to further suggest that the stoichiometry of the crystalline compound found in the d-

U(2000) medium is 8. We will seek in Part 2 of this series of papers [33] spectroscopic 

evidences of the formation of this POE/Mg(CF3SO3)2 complex in the d-U(2000) medium. 
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The DSC curves of the d-U(2000)nMg(CF3SO3)2 nanohybrids represented in Fig. 3(a) 

corroborate the XRD data: only the samples with 40 " n " 10 give rise to thermograms typical 

of amorphous materials. The pair of low temperature, weak melting peaks visible in the DSC 

traces of the di-ureasils with 200 ( n ( 60 (Fig. 3(a)) substantiate the presence of a minor 

component of crystalline POE domains [34]. The origin of the series of endotherms found 

between 100 and 200 ºC in the DSC curves of the xerogels with n = 5 (weak and broad) and 1 

(well resolved and strong) is uncertain. They might be associated with the fusion of the 

POE/Mg(CF3SO3)2 complex identified by means of XRD and with degradation reactions. 

Acosta and Morales [20] showed that the crystalline POE8Mg(CF3SO3)2 complex melts at 214 

ºC. As the POE chains of d-U(2000) are significantly shorter than those of the POE employed 

by the above authors (5x106 gmol-1 20), the melting temperature of the complex occurring in 

the ormolyte material is expected to be much lower. We will return to the discussion of these 

thermal events below. 

Valuable information regarding the coordination of the cations to the host macromolecule 

in PE systems may be also retrieved from DSC experiments. As this interaction restricts the 

local motion of polymer chains, an increase of the glass temperature (Tg), that may be 

monitored in the thermograms, results.2 The variation of the Tg of the d-

U(2000)nMg(CF3SO3)2 electrolytes with composition, represented in Fig. 3(b), clearly shows 

that the Tg of the POE chains of d-U(2000) (-54 ºC) [12] remains practically unaffected by the 

inclusion of increasing amounts of guest salt in samples with n " 60. This strongly suggests 

that either the POE chains of the di-ureasil matrix do not bond to the Mg+ ions within this salt 

composition range or the number of cross-links between the guest species and the POE chains 

of the d-U(2000) matrix is insufficient to alter the physical behaviour of the polymer within 

this range of concentration. The further incorporation of guest salt (n = 40 and 20) leads, 

however, to a slight Tg rise (Fig. 3(b)), an indication that in both samples the alkaline-earth 
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ions interact with the ether oxygen atoms of the polymer segments. The Tg upshift is 

particularly dramatic at higher salt concentration (about 36 and 55 ºC, at n = 10 and 5, 

respectively). The role of the polyether chains in the coordination process of the cations in the 

d-U(2000)nMg(CF3SO3)2 hybrids will be one of the main issues to be investigated in Part 2 

[33]. 

The TGA curves of representative d-U(2000)nMg(CF3SO3)2 di-ureasils are depicted in Fig. 

4. Samples with 200 " n " 20 undergo a single weight loss. Close analysis of the ATG curves 

of the more diluted composites lead us to conclude that Mg(CF3SO3)2 exerts a remarkable 

stabilizing effect on d-U(2000). While the non-doped matrix starts to decompose at about 305 

ºC [12], the di-ureasils with n = 60, 40 and 20 are thermally stable up to 361 ºC (Fig. 4). In the 

case of the salt-rich compounds with 7 " n " 1 degradation takes place in three stages: a slight 

weight loss (around 10%) occurs at about 52 ºC, that proceeds with two abrupt changes at 

about 310 and 440 ºC (Fig. 4). It is noteworthy that the major degradation of the most 

concentrated di-ureasil examined (n = 1) occurs in the third stage (Fig. 4). These data allow us 

to assign the endotherms evident in the DSC thermograms of the hybrids with n = 5 and 1 to 

the coupled effect of thermal decomposition and fusion of the crystalline POE8Mg(CF3SO3)2

complex. 

 

3.2. Ionic conductivity and electrochemical stability 

The most appropriate salts for POE-type PEs are those which have low lattice energy, i.e., 

salts consisting of a polarizing cation and a large anion of delocalized charge, requiring little 

solvation [2]. The Mg2+ ion and the hard CF3SO3
- base used in the present work fulfil these 

requirements. Nevertheless, while strong cation-polymer bonds are necessary for PE 

formation, labile bonds are essential for cation mobility. Thus, in principle diffusion of a 

divalent cation in POE would be expected to be impeded. A comparison of the cation 

transference numbers of POE-based PEs doped with metallic cations and the water exchange 

10 of 26

Friday , December  17, 2004

Elsevier



Rev
iew

 C
op

y

Solid State Ionics 11 S. C. Nunes et al 

rates around the aqueous cations suggests that Mg2+ is an immobile ion [2]. Consequently, 

PEs based on magnesium salts should be essentially anionic conductors.  

The examination of the Arrhenius conductivity plots of the Mg2+-doped ormolytes with n 

" 5 illustrated in Fig. 5(a) reveals that above 25 ºC the most conducting ormolyte is d-

U(2000)20Mg(CF3SO3)2. This amorphous compound exhibits 4.0x10-6, 1.0x10-5 and 6.74x10-5 

"-1cm-1 at 35, 50 and 104 ºC, respectively. At n = 5 a marked reduction in conductivity is 

observed (Fig. 5(a)). The graph of the conductivity isotherms shown in Fig. 5(b) confirms that 

the conductivity maximum of this di-ureasil system appears distinctly at n = 20.  

It is of interest to determine whether the modification of the POE architecture carried out 

in the present work by means of the hybrid approach is beneficial from the standpoint of ionic 

conductivity.  

Let us first compare the results obtained here with those reported in the literature for 

improved PEs doped with the same magnesium salt The only value found in the literature for 

the conventional POEnMg(CF3SO3)2 system relates to the sample with n = 8 [20]. As this 

sample corresponds to a crystalline complex, it conducts poorly (e.g., 3.21x10-8 "-1cm-1 at 50 

ºC)20 and consequently cannot be used for the purpose of comparison. As expected, the 

ambient temperature conductivity displayed by the d-U(2000)20Mg(CF3SO3)2 maximum is 

significantly lower than that exhibited by other systems proposed previously: (1) electrolyte 

samples composed of Mg(CF3SO3)2, propylene carbonate (PC) and ethylene carbonate (EC) 

included in a photo-cross-linked polymer of poly(ethylene glycol) diacrylate reinforced by a 

porous propylene membrane (1.7x10-4 "-1cm-1 at 25 ºC for 1%mol of Mg(CF3SO3)2)21; (2) 

POE8Mg(CF3SO3)2 plasticized with PC, EC and a mixture of PC and EC (approximately 

1x10-3 "-1cm-1 at 20 ºC)22; (3) GPEs consisting of polyacrylonitrile (PAN), PC, EC and 

Mg(CF3SO3)2 (1.8x10-3 "-1cm-1 at 20 ºC for an optimal molar PAN:PC:EC:Mg(CF3SO3)2

ratio of 1:2:2:0.4) [24]; (4) Mg(CF3SO3)2-doped GPEs based on poly(methylmethacrylate) 
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(PMMA) plasticized with PC and EC (4.2x10-4 "-1cm-1 at 20 ºC for an optimal molar 

PMMA:(PC+EC):Mg(CF3SO3)2 ratio of 1:2:0.5) [26]. 

As the nature of the anion is known to have a major influence on ionic conductivity it is 

important to examine the levels of conductivity attained with other magnesium salts. Patrick 

et al. [15] doped POE with magnesium perchlorate (Mg(ClO4)2) and found that the 

conductivity of the electrolyte with n = 12 was approximately 5x10-7 "-1cm-1at 20 ºC. The 

electrolytes prepared with POE and magnesium chloride (MgCl2) by Yang et al. [16,17] 

exhibit very poor conductivity at RT (between 10-10 and 10-9 "-1cm-1). More recently, a RT 

conductivity of ca. 1.9x10-5 "-1cm-1 was reported for complexes synthesized from a low 

molecular weight poly(ethylene glycol) and a highly crystallographic disordered form of 

MgCl2 (designated as %-MgCl2) [19].  We should also comment the only previously published 

results describing the ionic conductivity of sol-gel derived Mg2+-doped electrolytes [27]. At 

RT the most conducting Class I ormolytes of Mitra and Sampath [27] attain 10-7 and 10-5 "-

1cm-1 in the presence of MgCl2 and Mg(ClO4)2, respectively. 

We note that the conduction mechanism in the hybrid di-urea cross-linked medium will 

probably be substantially different from that occurring in the conventional POE-based matrix. 

In fact, while in the di-ureasil host structure two types of coordinating locations (the ether 

oxygen atoms and the carbonyl oxygen atoms) may be active, in the latter situation only the 

ether oxygen atoms have the ability to solvate the cations. The identification of the mobile 

species in the d-U(2000)-based ormolytes will be the objective of Part 2 of this series of 

papers [33]. 

The cyclic voltamogram of the amorphous d-U(2000)20Mg(CF3SO3)2 xerogel is 

reproduced in Fig. 6. The electrochemical stability window is limited on the anodic side by 

the irreversible oxidation of the CF3SO3
- ion. In this voltammogram an obvious increase in 

the current density occurs at potentials higher than +1.0 V vs. Mg/Mg2+, similar to the 
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situation observed with a GPE of PMMA doped with Mg(CF3SO3)2 and plasticized with PC 

and EC [26]. However it should be also stressed that the measured current density values are 

very low (of the order of 10-2 µAcm-2), suggesting that the di-ureasil ormolyte with n = 20 can 

be considered electrochemically stable over a wide potential range (from approximately -3.0 

to +2.0 V versus Mg/Mg2+). 

 

4. Conclusion 

Poly(oxyethylene) (POE)/siloxane-based materials incorporating magnesium triflate 

(Mg(CF3SO3)2) were synthesized by the sol-gel process. The host Class II hybrid matrix (di-

ureasil) employed is composed of a siliceous framework to which short POE chains are 

covalently bonded through urea linkages. Ormolyte films with ! > n ( 1 (where n, salt 

composition, is the molar ratio of oxyethylene moieties per Mg2+ ion) were studied. While 

materials with n ( 60 contain crystalline POE regions, xerogels with 40 ( n ( 10 are entirely 

amorphous. At n = 1 a crystalline POE/Mg(CF3SO3)2 complex is formed. Samples with 200 > 

n ( 20 are thermally stable up to 360 ºC. The nanohybrid with n = 20 exhibits the highest 

conductivity (approximately 4.0x10-6 and 6.7x10-5 "-1cm-1 at 35 and 104 ºC, respectively). 

The electrochemical stability domain of this hybrid spans approximately 5 V (from -3.0 to 

+2.0 V versus Mg/Mg2+). 

The encouraging results obtained with the d-U(2000)nMg(CF3SO3)2 materials, specially 

the improved mechanical properties and the moderate ionic conductivity, induce us to state 

that further research on Mg2+-doped d-U(2000)-based di-ureasils is worth pursuing. The 

incorporation of a more suitable magnesium salt instead of Mg(CF3SO3)2 will certainly yield 

materials with higher ionic conductivity values. 
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Fig. 3, S. C. Nunes et al., Solid State Ionics
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Fig. 5, S. C. Nunes et al., Solid State Ionics
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n = O/Mg2+ m(Mg(CF3SO3)2) Si/Mg2+ Si/Mg2+ 

(molmol-1) (g)   (molmol-1) (gg-1)

! - - -

200 0.0816 9.8765 7.5769 

 100 0.1632 4.9383  3.7884 

 80 0.2040 3.9506  3.0307 

 60 0.2721 2.9630  2.2728 

 40 0.4081 1.9753  1.5154 

 20 0.8162 0.9876    0.7577 

 10 1.6324 0.4938  0.3788   

 5 3.2648 0.2469 0.1894

1 16.324 0.0494    0.0379 
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29Si MAS

n T1 (CH2-Si(OSi)(OR)2) T2 (CH2-Si(OSi)2(OR)) T3 (CH2-Si(OSi)3) c (%) Empirical formula

population (%) population (%) population (%)

80 -51.0 2.0 -58.5 39.1 -66.3 59.0 86 R’0.5Si (OR)0.45(O)1.3

20 -53.4 2.1 -58.5 38.9 -66.4 58.9 85 R’0.5Si (OR)0.45(O)1.3

10 -52.0 1.8 -58.0 36.3 -66.0 61.9 87 R’0.5Si (OR)0.40(O)1.3

13C CP/MAS

n Attribution12

! 80 20 10

160 C=O

75 75.2 74.9 75.1 OCH2CH(CH3)

72-70 70.6 70.2 70.4 OCH2CH2O

61 - - - OCH2CH3

47-41 - - - CH2CH2CH2Si

25-22 - - - CH2CH2Si

18 18.4 18.3 18.4 OCH2CH3

17 17.4 17.0 17.3 OCH2CH(CH3)

15-10 - - - CH2Si

Note: R'= -(CH2)3-NH-C(=O)-NH-(CH(CH3)CH2-(OCH(CH3)CH2)a'-(OCH2CH2)40.5-(OCH(CH3)CH2)b'-NH-C(=O)-NH-(CH2)3-

R = H ou CH2CH3
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