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Abstract
Optimal control problems appear in several engineering �elds. Theseproblems are often described by sets of nonlinear di�erential and alge-braic equations, usually subject to constraints in the state and controlvariables. Some bioprocess optimal control problems are revisited and anumerical approach to its solution is introduced.The numerical procedure used to solve que problems takes advantageof the well know modeling AMPL language, providing an external dy-namic library that solve the nonlinear di�erential equations. The optimalcontrol problem as generally presented belong to the class of semi-in�niteprogramming (SIP) problems. A transformation of the SIP problem re-sults in a nonlinear optimization problem (NLP) that can be address byo�-the-shelf optimization software. The NLP formulation results in non-di�erentiable optimization problems were the global solution is mostlydesirable. We apply a particle swarm optimization strategy implementedin the MLOCPSOA [13] solver. Particle swarm optimization (PSO) is astochastic technique that mimics the social behavior of a swarm.

Keywords: Fed-batch fermentation process, optimal control, particle swarmoptimization.
1. Introduction
A great number of valuable products are produced using fermentation pro-cesses and thus optimizing such processes is of great economic importance.
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Fermentation modeling process involves, in general, highly nonlinear and com-plex di�erential equations. Often optimizing these processes results in controloptimization problems for which an analytical solution is not possible.
The formulated problem belong to a well known class of semi-in�nite program-ming (SIP) problems (se e.g. [7]). Addressing the SIP problem poses a greatchallenge as o�-the-shelf software for nonlinear, non-di�erentiable, SIP opti-mization is not available.
By reformulating the SIP problem as a nonlinear, non-di�erentiable, optimiza-tion problem we are able to solve it with a derivative free optimization tech-nique.
While some of these optimal control model are di�erentiable its complexityturns the use of gradient information unpractical. The use of numerical algo-rithms that do not request derivatives alleviates the user from an additionalburden of its computation.
We propose a numerical environment to address the optimization of a fer-mentation process using available software for nonlinear optimization and adevelopment of an external library to handle the dynamic equations resultingfrom the complex di�erentiable equations.
In section 2 we introduce the reader to optimal control of fermentation process.Section 3 describes the trajectory optimization process and section 5 presentsthe implementation details. The numerical results are discussed in section 6and we conclude in section 7.
2. The optimal control fermentation process
Many microorganisms are used for producing valuable bio-pharmaceuticalsproducts. During the fermentation process the biomass and product concen-trations changes considerably. The system dynamic behavior motivates thedevelopment of optimization techniques to �nd the optimum input feeding tra-jectory of substrate in order to obtain a maximum outcome from the process.The outcome can be, for example, the maximum biomass production with a�xed duration time or the minimum time with a �xed amount of substrate.
The optimal control problem is described by a set of di�erential equations
ẋ = f(x, u, t), x(t0) = x0, t0 ≤ t ≤ tf , where x are the state variables and uthe input variables which are a function of time t. t0 and tf are the inicial and�nal time, respectively. The performance index J can be generally stated as

J(tf ) = ϕ(x(tf ), tf ) +
∫ tf

t0

φ(x, u, t)dt,
where ϕ is the performance index of the state variables at �nal time tf and φis the integrated performance index during the operation.
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Additional constraints on the state and input variables can be imposed thatoften re�et some physical limitation of the system. The general maximizationproblem (P ) can be posed as
max J(tf ) (373)
s.t. ẋ = f(x, u, t) (374)

x ≤ x(t) ≤ x, ∀t ∈ [t0, tf ] (375)
u ≤ u(t) ≤ u, ∀t ∈ [t0, tf ] (376)

Problem (P ) belong to a well known class of semi-in�nite programming prob-lems [7]. x(t) and u(t) are functional vector whose components are x1(t), x2(t),. . . , u1(t), u2(t), . . . , respectively. Whenever x represents an n dimensionalvector its components are addressed as x1, x2, . . . , xn and vice-versa.
3. The optimization problem
The optimization occurs when determining the optimal input variables u oroperational �nal time tf . The input variables often represent feeding (or tem-perature, see [11]) trajectories, i.e., in determining the amount of substrate tobe fed into the bioreactor per time unit.
Solving problem (P ) in its original formulation is not advisable and unpracti-cal, since there is no available derivative free software for dealing with semi-in�nite programming problems (see SIPAMPL [15] and NSIPS [14] for sometools related with semi-in�nite programming.) Instead problem (P ) can bereformulated as a non-di�erentiable global optimization problem by imposinga penalty for dealing with constraint (375) and to use linear interpolation fordealing with constraints (376).
Imposing the penalty function for constraints (375) results in rede�ning theobjective function as

Ĵ(tf ) =
{
J(tf ) if x ≤ x(t) ≤ x,∀t ∈ [t0, tf ]
−∞ otherwise

An already proposed strategy to deal with constraints (376) is to interpolatethe function u(t) by a polynomial (e.g. [11]). A parameter that makes a greatin�uence in the �nal trajectory precision is the number of discretization points(knots) of the domain [t0, tf ]. A well known e�ect on increasing the numberof knots (and consequently in the polynomial degree) is the increasing poorsmoothness of the resulting polynomial. Linear spline interpolation is thereforebetter suited for approximate function u(t), where increasing the number ofknots increases precision without a great a�ect on smoothness.
We will use a linear interpolating function w(t) (linear spline) to approximatethe feeding trajectory function u(t). Let ti, i = 0, . . . , n, denote the time
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instants (knots) and hi = ti − ti−1, i = 1, . . . , n, the time displacements. Wewill use �xed time intervals while the linear spline function values wi = w(ti),
i = 0, . . . , n, are to be computed (in fact we may also use ti as variables tobe optimized, but keeping in mind that ill condition can occur in this case).The linear spline is composed of n linear segments. The spline segment wi(t),
i = 1, . . . , n, is de�ned as:
wi(t) = wi−1 + (wi −wi−1)(t− ti−1)(ti − ti−1), for t ∈ [ti−1, ti], i = 1, . . . , n.

By using the linear spline w(t) to approximate the feeding trajectory (u(t)) weobtain a SIP problem where constraints (376) are replaced by u ≤ w(t) ≤ u.By careful inspecting this constraint and by using the optimality conditions forSIP we observe that candidate points to make the in�nite constraint active, atthe solution, are the spline knots and therefore the constraint can be replace byconstraints imposing the limit at knots. Constraint (376) can then be replacedby u ≤ wi ≤ u, i = 1, . . . , n.
The optimization nonlinear optimization problem (NLP) is then rede�ned as:

max
w∈Rn+1

Ĵ(tf )

s.t. ẋ = f(x,w, t)
u ≤ wi ≤ u.

If the initial dynamic system conditions (x(t0)) are to be considered as variablewe may also impose some simple bound constraints on its attainable values.We can also consider h ∈ Rn+1 and tf as variables to be optimized increasingthe problem dimensional and complexity.
The major motivation for using derivative free optimization codes has to dowith the fact that the objective function and the resulting w(t) trajectory func-tion are not di�erentiable. Recall that even when the constraints are di�eren-tiable using w(t) in the dynamic equation makes them non-di�erentiable. Byusing a stochastic algorithm we can also expect to obtain the global optimumfor the NLP problem.
4. Particle swarm optimization
The particle swarm technique (PS) is based on a population (swarm) of parti-cles. The PS algorithm mimics the social behavior of a swarm in the search ofan certain objective (for example a bird swarm looking for food). Each particlerepresents a point in space and is associated with a velocity that indicates towhere the particle is traveling. Let k be a time instant (iterations in the opti-mization context). The new particle position is computed by adding the veloc-ity vector to the current position, i.e., wp(k+1) = wp(k)+vp(k+1), being wp(k)
Contribuciones a la Estadística y a la Investigación Operativa Mayo 2006Sicilia et. al. (editores) La Laguna (Tenerife)



976

the particle p, p = 1, . . . , s, position at time instant k, vp(k+1) the new velocity(at time k+1) and s the population size. The velocity update equation is givenby vpj (k + 1) = ι(k)vpj (k) + µω1j(k)
(
ypj (k)− x

p
j (k)

)
+ νω2j(k)

(
ŷj(k)− xpj (k)

),for j = 1, . . . , n, where ι(t) is a weighting factor (inertial), µ is the cogni-tion parameter and ν is the social parameter. ω1j(k) and ω2j(k) are randomnumbers drown from the uniform (0, 1) distribution used for each dimension
j = 1, . . . , n. yp(k) is the particle p position with the best objective functionvalue so far and ŷ(k) is a particle position with best function value so far.
A simple scheme of the particle swarm algorithm for optimization is describedin the following algorithm.

a. Choose a population size s and a stopping tolerance vtol > 0. Randomlyinitialize the initial swarm {
w1(0), . . . , ws(0)

} and the initial swarm ve-locities v1(0), . . . , vs(0).
b. Set yi(0) = wi(0), i = 1, . . . , s, and ŷ(0) = arg minz∈{y1(0),...,ys(0)} Ĵ(z).Let k = 0.
c. Set ŷ(k + 1) = ŷ(k).

For i = 1, . . . , s do (for every particle i):
If Ĵ(wi(k)) > Ĵ(yi(k)) then
• Set yi(k + 1) = wi(k) (update the particle i best position).
• If Ĵ(yi(k+ 1)) > Ĵ(ŷ(k+ 1)) then ŷ(k+ 1) = yi(k+ 1) (updatethe particles best position).

Otherwise set yi(k + 1) = yi(k).
d. Compute vi(k + 1) and wi(k + 1), i = 1, . . . , s.
e. If ‖vi(k+ 1)‖ < vtol, for all i = 1, . . . , s, then stop. Otherwise, increment

k by one and go to Step c.

5. Implementation details
In this section a description of the used environment is made. In the nextsubsection we introduce the reader to the AMPL [5] modelling language. Insubsection 2 we describe the external AMPL library developed for computing
the objective function ˆJ(tf ) (solving the di�erential equations (374)) and inthe last subsection we present the solver used to solve the proposed problems.
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5.1. AMPL
AMPL [5] is a modeling language for mathematical programming. While thereare other also well known modeling languages for mathematical programming(e.g. GAMS [2]), AMPL provides an easy to use and powerful language. AMPLalso provides an interface that allows communication with a wide variety ofsolver (e.g. LOQO [12], NPSOL [6]). The possibility to load an externaldynamic library is exploited in this paper in order to solve ordinary di�erentialequations.
The optimization problem described in section 3 can easily be written in AMPL.A short example is presented bellow and details regarding the external functionchemotherapy in the objective function and the used solver are postponed tothe next subsections.
function chemotherapy; # external function to be calledparam Tumor_mass := log(100); # Tumor cells N=10^12*exp(-x1)param Drug := 0; # Drug concentration in the bodyparam Cumulative := 0; # Cumulative effect of the drugparam n := 4; # Number of times instants (knots-1)param h{1..n} := 21; # Time instants, could be variables.var w{1..n+1}; # Spline knots
maximize obj: # maximize objective functionchemotherapy(0, n, {i in 1..n} h[i], {i in 1..n+1} w[i],Tumor_mass, Drug, Cumulative);subject to hbounds {i in 1..n}: # constraints on time instants1<= h[i] <= 100; # AMPL just checks for correctnesssubject to wbounds {i in 1..n+1}: # constraints on drug delivery0.01<= w[i] <= 50; # problem constraints
option solver mlocpsoa; # mlocpsoa solveroption mlocpsoa_options 'mlocal=0 size=60 maxiter=1000';# global search, population size of 60, maximum of 1000 iterationssolve; # solve problem

Additional constraints can easily be incorporated into the model. If, for exam-ple, a constraint in the total allowed glucose addition (tG) is to be imposed,
the constraint ∑n−1

i=0 hi+1(wi + wi+1)/2 ≤ tG can easily be considered in themodel �le by adding
subject to totalfeed:sum {i in 0..n-1} (h[i+1]*(w[i]+w[i+1])/2)<=t_G;

and to properly de�ne the t_G parameter.
5.2. External dynamic library
In its execution AMPL is able to load an external library that provides ad-
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ditional functions. By default AMPL load a library named amplfunc.dll.By setting the operation system environment variable AMPLFUNC, AMPL isable to load any other dynamic library instead (in this case under a MicrosoftDOS prompt we write set AMPLFUNC=fed-batch.dll). The fed-batch.dlllibrary provides �ve external functions to AMPL whose names are: penicillinfor case study 1, ethanol for case study 2, chemotherapy for case study 3,hprotein for case study 4 and rprotein for case study 5.
The chemotherapy function prototype is

chemotherapy(0, n, {i in 1..n} h[i], {i in 1..n+1} w[i],Tumor_mass, Drug, Cumulative);
where the �rst parameter selects a linear spline (on future research we plan totest other approximation techniques), n is the number of h[i] displacements,w[i] are the linear spline values at the time instants ti, i = 0, . . . , n (with t0 =
0) and the remaining parameters are the initial conditions of the di�erentialequations (374).
The ordinary di�erential equations (374) are solved by calling the CVODE [4]package where the Newton iteration with the CVDiag module was selected.
At each call to the chemotherapy function the linear spline is computed withthe provided data and the objective function value is returned. The objectivefunction expression is therefore coded in the external library.
5.3. MLOCPSOA
MLOCPSOA [13] stands for Multi-LOCal Particle Swarm Optimization Algo-rithm. Multi-local optimization addresses the �nding of all the local and globaloptima for an optimization problem. While MLOCPSOA was developed withmulti-local optimization in mind by setting an option it reverses to the tradi-tional particle swarm algorithm.
MLOCPSOA provides an interface to AMPL, allowing problems to be easilycoded and solved in this modeling language. The NLOCPSOA allows a widevariety of algorithm parameters to be set. The used parameters are size for thepopulation size (defaults to min(6n, 1000)), maxiter for the maximum allowediterations (defaults to 2000) and mlocal for multi-local search (defaults to 0 �global search instead of multi-local search). The reader is pointed for the usermanual for further details. Parameter can either be set in the model �le, asshown in subsection 1, or in any way allowed by AMPL (see [5] for details).
6. Numerical results
Numerical results were obtained for the �ve case studies described in the ap-pendix. We have used a linear spline interpolating function on all problems.
Contribuciones a la Estadística y a la Investigación Operativa Mayo 2006Sicilia et. al. (editores) La Laguna (Tenerife)



979

The time displacements were kept �xed and the best control feeding trajectorywas approximated by computing the knots function value. The parametersused are presented together with the numerical results in Table 1. `Problem'column refers to the case study (AMPL model �le); NT is the number of trajec-tories in the model; n is the number of time displacements (problems with n+1variables) and equal displacements are considered (hi = tf/n, i = 1, . . . , n).
MLOCPSOA used a population size of 60 and a maximum of 1000 iterations(reaching a maximum of 60000 function evaluations). Since MLOCPSOA isa stochastic algorithm we performed 10 solver runs for each problem and thebest solutions obtained are report on Table 1. Ĵ(tf ) is the objective functionvalue and tf is the �nal time (t0 is assumed 0 for all cases). We present thesolution obtained by the MLOCPSOA solver and the previous (indicated in`Ref.') solution.

MLOCPSOA PreviousProblem NT n Ĵ(tf ) tf Ĵ(tf ) tf Ref.penicillin 1 5 88.29 132.00 87.99 132.00 [1]ethanol 1 5 20379.50 61.20 20839.00 61.17 [1]chemotherapy 1 4 16.83 84.00 17.48 84.00 [1]hprotein 1 5 32.73 15.00 32.40 15.00 [9, 10]rprotein 2 5 0.12 10.00 0.16 10.00 [9, 8]Table 1: Numerical results
We provide, in �gures 1 to 5, plots of the state and control pro�les for all studycases problems.
No attempt is made on comparing our results with the published ones, sinceimplementation details are not reported in previous papers. The use of di�erenttechniques to solve the di�erential equations, discretization step and precisioncan in�uence the objective value at the solution found.

Figure 1: State and control pro�les for best optimal control, case study 1
By allowing the spline displacements to be variable and using the objectivefunction J̄(tf , h) = (Ĵ(tf ))/(

∑n
i=1 hi) we can easily compute the pro�le with
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Figure 2: State and control pro�les for best optimal control, case study 2

Figure 3: State and control pro�les for best optimal control, case study 3

the best ratio per unit time. The problem that considers both the objec-tive of optimizing the performance J(tf ) and computing the minimum timeis a biobjective problem. Solving a multiobjective optimization problem bya uniobjective optimization problem is only possible if some requirements aremet (see, for example, [3]).
In order not to allow the solution to diverge and a division by zero to occur inthe linear splines we have imposed additional constraints on the hi, i = 1, . . . , nvariables (0.01 ≤ hi ≤ hmaxi , i = 1, . . . , n). We reports solution for all casestudies in Table 2. We repeat the numerical results obtained for the �xedtime to allow a better comparison with the problems instances where the timedisplacements are variables.

Fixed time Variable timeProblem Ĵ(tf ) tf Ĵ(tf )/
∑n

i=1 hi Ĵ(tf ) tf hmax
ipenicillin 88.29 132.00 0.92 76.16 83.20 60ethanol 20229.50 61.20 604.20 14417.50 23.86 20chemotherapy 16.83 84.00 0.70 8.06 11.52 25hprotein 32.73 15.00 17.57 439.18 25 5rprotein 0.12 10.00 2.38 59.61 25 5Table 2: Numerical results with variable time
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Figure 4: State and control pro�les for best optimal control, case study 4

Figure 5: State and control pro�les for best optimal control, case study 5

J̄(tf ) gives an equal importance to time and performance Ĵ(tf ). Note that inthe �rst three case studies a decrease in time led to a worst performance whilein the last two case studies the opposite occurred.
The bioprocesses initial conditions can also be considerer as variables. While inthe optimization context the problems are well de�ned in the biological sensethe solution may not be reasonable. For instance it makes no sense to initializea bioreactor to produce ethanol with an initial ethanol concentration greaterthan zero. The new initial condition variables are allowed to vary betweena factor of 0.1 and 10 of its initial value presented in the appendix. Initialcondition variables with an initial value of zero are allowed to vary between 0and 10. The numerical results obtained are shown in Table 3.
Problem Ĵ(tf ) x1(0) x2(0) x3(0) x4(0) x5(0) x6(0) x7(0)penicillin 122.33 15.00 0.00 0.00 6.06 - - -ethanol 43285.20 4.56 400.00 10.00 100.00 - - -chemotherapy 54.53 46.05 0.00 10.00 - - - -hprotein 1002.74 10.00 44.73 10.00 0.00 10.00 - -rprotein 165.85 1.00 400.00 10.00 0.00 0.10 2.98 10.00Table 3: Numerical results with variable initial conditions
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7. Conclusions
The optimal control of fed-batch bioprocesses present challenge nonlinear op-timization problems where derivatives do not exist or are unpractical. Weaddress the state constraints by combining it with the problem objective func-tion in an in�nite penalty function. The resulting SIP problem is approximatedby a nonlinear �nite problem where the control constraints are approximatedby linear splines. The resulting nonlinear optimization problem is character-ized by possessing a nonconvex nondi�erentiable objective function subject tobound constraints in the variables.
Particle swarm optimization belongs to a class of stochastic algorithms forglobal optimization and its main advantages are the easily parallelization andsimplicity. In this paper we use the MLOCPSOA [13] implementation of theparticle swarm paradigm to obtain numerical results with some problem for-mulations.
No attempt is made to compare the obtained solutions with previous works,since the implementation depends on many parameters external to the problemand algorithm (ordinary di�erential equation solver, discretization step, etc.).Nevertheless the MLOCPSOA proved to be able to �nd the problem solutionwith reasonable accuracy and the particle swarm paradigm proved to be avaluable tool in solving these optimal control problems.
The MLOCPSOA interface with AMPL allowed an easy and fast way to codethe �ve case studies problems. Using the AMPL modeling language togetherwith a developed external dynamic library allows a great �exibility in the prob-lem formulation. We considered three instances for each case study, one allow-ing only the spline knots values to be variables, other by allowing also thespline knots values and spline knots (time displacements) to be variables andthe last one by considering the spline knots values and the initial conditions tobe variables.
1. Case studies
1.1. Optimal control of a fed-batch fermentor for penicillinproduction
This problem considers a fed-batch process for penicillin production, as de-scribed in [1]. This problem was studied in several previous works and thereader is pointed to [1] for further references.
Local gradient methods applied to this problem have experienced convergenceproblems if initialized with poor initial guesses.
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The optimization problem (in (P) formulation) is:
max
u(t)

J(tf ) ≡ x2(tf )x4(tf )

s.t. ẋ1 = h1x1 − ux1/(500x4), ẋ2 = h2x1 − 0.01x2 − ux2/(500x4)
ẋ3 = −(h1x1)/0.47− h2x1/1.2− 0.029x1x3/(0.0001 + x3)+

+ u(1− x3/500)/x4, ẋ4 = u/500
0 ≤ x1(t) ≤ 40, 0 ≤ x3(t) ≤ 25, 0 ≤ x4(t) ≤ 10, 0 ≤ u(t) ≤ 50,
∀t ∈ [t0, tf ]

with
h1 = 0.11(x3/(0.006x1 + x3)) and h2 = 0.0055(x3/(0.0001 + x3(1 + 10x3))

where x1, x2 and x3 are the biomass, penicillin and substrate concentrations(g/L), and x4 is the volume (L). The initial conditions are x(t0) = (1.5, 0, 0, 7)T .
1.2. Optimal control of a fed-batch reactor for ethanol production
This optimal control problem considers a fed-batch reactor for ethanol pro-duction as described in [1]. Once again the reader is refereed to [1] for otherreferences on this case study. As with the previous case study convergenceproblems have been reported with gradient based methods.
The optimization problem is:

max
u(t)

J(tf ) ≡ x3(tf )x4(tf )

s.t. ẋ1 = g1x1 − ux1/x4, ẋ2 = −10g1x1 + u(150− x2)/x4, ẋ4 = u

ẋ3 = g2x1 − ux3/x4, 0 ≤ x4(tf ) ≤ 200, 0 ≤ u(t) ≤ 12, ∀t ∈ [t0, tf ]

with
g1 = (0.408/(1 + x3/16))(x2/(0.22 + x2))
g2 = (1/(1 + x3/71.5))(x2/(0.44 + x2))

where x1, x2 and x3 are the cell mass, substrate and product concentra-tions (g/L), and x4 is the volume (L). The initial conditions are x(t0) =
(1, 150, 0, 10)T .
1.3. Optimal drug scheduling for cancer chemotherapy
This problem consists in determining the optimal cancer drug scheduling todecrease the size of a malignant tumor. The drug concentration must be keptbelow some level throughout the treatment period and the cumulative toxice�ect of the drug must be kept below the ultimate tolerance level. This problemwas also address in previous works (see [1] for further references.)
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The optimization problem is:
max
u(t)

J(tf ) ≡ x1(tf )

s.t. ẋ1 = −k1x1 + k2(x2 − k3)×H{x2 − k3}
ẋ2 = u− k4x2, ẋ3 = x2

x2(t) ≤ 50 x3(t) ≤ 2.1× 103, 0 ≤ u(t), ∀t ∈ [t0, tf ]

with H{x2 − k3} = 1 if x2 ≥ k3 and H{x2 − k3} = 0 if x2 < k3, where thetumor mass cells is given by N = 1012×exp(−x1), x2 is the drug concentrationin the body in drug units [D] and x3 is the cumulative e�ect of the drug. Theparameters are: k1 = 9.9×10−4days, k2 = 8.4×10−3days−1[D−1], k3 = 10[D−1]and k4 = 0.27days−1. The initial conditions are x(t0) = (ln(100), 0, 0)T .
Some extra constraints are imposed as there should be at least a 50% reductionin the size of the tumor every three weeks. The treatment period consideredis 84 days and therefore the extra constraints are x1(21) ≥ ln(200), x1(42) ≥
ln(400) and x1(63) ≥ ln(800).
These extra constraints are also handled by the penalty procedure as describedin section 3.
1.4. Optimizing of the glucose feeding in a fed-batch bioreactorfor protein production
This problem consists in the optimization of an heterologous protein processin a fed-batch bioreactor described in [9, 10].
The optimization problem is:

max
u(t)

J(tf ) ≡ x4(tf )x5(tf )

s.t. ẋ1 = µx1 −Dx1, ẋ2 = −7.3µx1 −D(x2 − x0
2)

ẋ3 = fPx1 −Dx3, ẋ4 = χ(x3 − x4)−Dx4, ẋ5 = u

0 ≤ u(t) ≤ 10, ∀t ∈ [t0, tf ]

with
µ = 21.87x2/((x2 + 0.4)(x2 + 62.5)), fP = x2exp(−5x2)/(x2 + 0.1)
χ = 4.75µ/(0.12 + µ), D = u/x5

where x1, x2, x3 and x4 are the biomass, glucose, total protein and secretedprotein concentrations (g/L), and x5 is the volume (L). The parameter x0
2 is20g/L and the initial conditions are x(t0) = (1.0, 5.0, 0.0, 0.0, 1.0)T .

1.5. Optimal control of a fed-batch fermentation for proteinproduction
This optimal control problem is a maximization of a fed-batch fermentation
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for a protein production by recombinant bacteria ([8, 9]). In this problem twostreams are fed to the fermenter at di�erent volumetric rates. Glucose is fed ata volumetric feed rate u1(t) and concentration in the feed of xF2 = 100.0g/L,while the inducer is fed with a di�erent stream at a rate u2(t) with concentrationin the stream of xF4 = 4.0g/L.
The optimization problem is:

max
u(t)

J(tf ) ≡ x3(tf )x7(tf )/Q−
∫ tf

t0

u2(τ)xF4 dτ

s.t. ẋ1 = µx1 −Dx1, ẋ2 = −Y −1µx1 −Dx2 + u1x
F
2 /x7

ẋ3 = Rfpx1 −Dx3, ẋ4 = −Dx4 + u2x
F
4 /x7

ẋ5 = −a1x5, ẋ6 = a2(1− x6), ẋ7 = u1 + u2

0 ≤ u1(t) ≤ 1, 0 ≤ u2(t) ≤ 1, ∀t ∈ [t0, tf ]

with
µ = 0.407ψ(x5 + 0.22x6/(0.22 + x4)), Rfp = 0.095ψ(0.0005 + x4)/(0.022 + x4)

D = (u1 + u2)/x7, ψ = x2/(0.108 + x2 + x2
2/14814.8)

a1 = a2 = 0.09x4/(0.034 + x4)

where Y = 0.51 is the growth yield coe�cient, Q = 5 is the ratio of proteinvalue to inducer cost, x1 is the biomass (g/L), x2, x3, and x4 are the glucose,protein and inducer concentrations (g/L), x5 and x6 are the inducer shock andinducer recovery factors, and x7 is the volume (L). The initial conditions are
x(t0) = (0.1, 40, 0.0, 0.0, 1.0, 0.0, 1.0)T .
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