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Electronic Properties of Disordered Two-Dimensional Carbon
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Two-dimensional carbon, or graphene, is a semi-metal that presents unusual low-energy electronic
excitations described in terms of Dirac fermions. We analyze in a self-consistent way the effects of
localized (impurities or vacancies) and extended (edges or grain boundaries) defects on the elec-
tronic and transport properties of graphene. On the one hand, point defects induce a finite elastic
lifetime at low energies with the enhancement of the electronic density of states close to the Fermi
level. Localized disorder leads to a universal, disorder independent, electrical conductivity at low
temperatures, of the order of the quantum of conductance. The static conductivity increases with
temperature and shows oscillations in the presence of a magnetic field. The graphene magnetic sus-
ceptibility is temperature dependent (unlike an ordinary metal) and also increases with the amount
of defects. Optical transport properties are also calculated in detail. On the other hand, extended
defects induce localized states near the Fermi level. In the absence of electron-hole symmetry, these
states lead to a transfer of charge between the defects and the bulk, the phenomenon we call self-
doping. The role of electron-electron interactions in controlling self-doping is also analyzed. We
also discuss the integer and fractional quantum Hall effect in graphene, the role played by the edge
states induced by a magnetic field, and their relation to the almost field independent surface states
induced at boundaries. The possibility of magnetism in graphene, in the presence of short-range
electron-electron interactions and disorder is also analyzed.

PACS numbers: 81.05.Uw, 71.55.-i,71.10.-w

I. INTRODUCTION

Carbon is a life sustaining element that, due to the
versatility of its bonding, is present in nature in many
allotropic forms. Besides being an element that is
fundamental for life on the planet, it has been ex-
plored recently for basic science and technology in the
form of three-dimensional graphite,1 one-dimensional
nanotubes,2 zero-dimensional fullerenes,3 and more re-
cently in the form of two-dimensional Carbon, also known
as graphene. Experiments in graphene-based devices
have shown that it is possible to control their elec-
trical properties by the application of external gate
voltage,4,5,6,7,8,9,10,11 opening doors for carbon-based
nano-electronics. In addition, the interplay between dis-
order and magnetic field effects leads to an unusual
quantum Hall effect predicted theoretically12,13,14 and
measured experimentally6,8,15. These systems can be
switched from n-type to p-type carriers and show entirely
new electronic properties. We show that their physical
properties can be ascribed to their low dimensionality,
and the phenomenon of self-doping, that is, the change in
the bulk electronic density due to the breaking of particle-
hole symmetry, and the unavoidable presence of struc-
tural defects. Our theory not only provides a descrip-
tion of the recent experimental data, but also makes new
predictions that can be checked experimentally. Our re-
sults have also direct implication in the physics of Carbon
based materials such as graphite, fullerenes, and carbon
nanotubes.

Graphene is the building block for many forms of Car-

bon allotropes. Its structure consists of a Carbon hon-
eycomb lattice made out of hexagons (see Fig. 1). The
hexagons can be thought of Benzene rings from which
the Hydrogen atoms were extracted. Graphite is ob-
tained by the stacking of graphene layers that is sta-
bilized by weak van der Waals interactions.16 Carbon
nanotubes are synthesized by graphene wrapping. De-
pending on the direction in which graphene is wrapped,
one can obtain either metallic or semiconducting elec-
trical properties. Fullerenes can also be obtained from
graphene by modifying the hexagons into pentagons and
heptagons in a systematic way. Even diamond can be ob-
tained from graphene under extreme pressure and tem-
peratures by transforming the two-dimensional sp2 bonds
into three-dimensional sp3 ones. Therefore, there has
been enormous interest over the years in understanding
the physical properties of graphene in detail. Neverthe-
less, only recently, with the advances in material growth
and control, that one has been able to study truly two-
dimensional Carbon physics.

One of the most striking features of the electronic
structure of perfect graphene planes is the linear rela-
tionship between the electronic energy, Ek, with the two-
dimensional momentum, k = (kx, ky), that is: Ek =
vF|k|, where vF is the Dirac-Fermi velocity. This sin-
gular dispersion relation is a direct consequence of the
honeycomb lattice structure that can be seen as two in-
terpenetrating triangular sub-lattices. In ordinary metals
and semiconductors the electronic energy and momen-
tum are related quadratically via the so-called effective
mass, m∗, (Ek = ~

2k2/(2m∗)), that controls much of
their physical properties. Because of the linear dispersion
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relation, the effective mass in graphene is zero, leading
to a unusual electrodynamics. In fact, graphene can be
described mathematically by the two-dimensional Dirac
equation, whose elementary excitations are particles and
holes (or anti-particles), in close analogy with systems in
particle physics. In a perfect graphene sheet the chemi-
cal potential, µ, crosses the Dirac point and, because of
the dimensionality, the electronic density of states van-
ishes at the Fermi energy. The vanishing of the effective
mass or density of states has profound consequences. It
has been shown, for instance, that the Coulomb interac-
tion, unlike in an ordinary metal, remains unscreened17

and gives rise to an inverse quasi-particle lifetime that in-
creases linearly with energy or temperature18, in contrast
with the usual metallic Fermi liquid paradigm, where the
inverse lifetime increases quadratically with energy.

The fact that graphene is a two-dimensional system
has also serious consequences in terms of the positional
order of the Carbon atoms. Long-range Carbon order in
graphene is only really possible at zero temperature be-
cause thermal fluctuations can destroy long-range order
in two-dimensions (the so-called, Hohenberg-Mermin-
Wagner theorem19). At a finite temperature T , topo-
logical defects such as dislocations are always present.
Furthermore, because of the particular structure of the
honeycomb lattice, the dynamics of lattice defects in
graphene planes belong to the generic class of kineti-
cally constrained models20,21, where defects are never
completely annealed since their number decreases only as
a logarithmic function of the annealing time20. Indeed,
defects are ubiquitous in carbon allotropes with sp2 co-
ordination and have been observed in these systems22.
As a consequence of the presence of topological defects,
the electronic properties discussed previously, are signifi-
cantly modified leading to qualitatively new physics. As
we show below, extended defects can lead to the phe-
nomenon of self-doping with the formation of electron or
hole pockets close to the Dirac points. We show, how-
ever, that the presence of such defects can still lead to
long electronic mean free paths. We present next an anal-
ysis of the physical properties of graphene as a function of
the density of defects, at zero and finite temperature, fre-
quency, and magnetic field. The defects analyzed here,
like boundaries (edges), dislocations, vacancies, can be
considered strong distortions of the perfect system. In
this respect, our work complements the studies of de-
fects and interactions in systems described by the two-
dimensional Dirac equation23.

The role of disorder on the electronic properties of
coupled graphene planes shows also its importance on
the unexpected appearance of ferromagnetism in proton
irradiated graphite24,25,26,27,28,29. In a recent publica-
tion, the role of the exchange mechanism on a disordered
graphene plane was addressed30. It was found that disor-
der can stabilizes a ferromagnetic phase in the presence
of long-range Coulomb interactions. On the other hand,
the effect of disorder on the density of states of a single
graphene plane amounts to the creation of a finite density

of states at zero energy. Therefore, a certain amount of
screening should be present and the question of whether
the interplay of disorder and short-range Coulomb inter-
action may stabilize a ferromagnetic ground state has to
be addressed as well.

Moreover, with the current experimental techniques, it
is possible to study not only a single layer of graphene
but also graphene multi-layers (bilayers, trilayers, etc).
Recent experiments provide direct evidence that while
the high-energy physics of graphene multi-layers (for en-
ergies above around 100 meV from the Dirac point) is
quite different from that of single layer graphene, the low-
energy physics seems to be universal, two-dimensional,
independent of the number of layers, and dominated by
disorder5,8,11. Hence, the work described here maybe
fundamental for the understanding of this low-energy be-
havior. There is still an interesting question whether this
universal low-energy physics survives in bulk graphite.

In this paper we present a comprehensive and
unabridged study of the electronic properties of graphene
in the presence of defects (localized and extended), and
electron-electron interaction, as a function of tempera-
ture, external frequency, gate voltage, and magnetic field.
We study the electronic density of states, the electron
spectral function, the frequency dependent conductivity,
the magneto-transport, and the integer and fractional
quantum Hall effect. We also discuss the possibility of
a magnetic instability of graphene due to short-range
electron-electron interactions and disorder (the problem
of ferromagnetism in the presence of disorder and long-

range Coulomb interactions was discussed in a previous
publication30).

The paper is organized as follows: in Sec. II A a for-
mal solution for the single impurity and many impurities
T−matrix calculation is given. Details of the position av-
eraging procedure are given in Sec. V, in connection with
the same problem, but in a magnetic field. In Sec. II B the
problem of Dirac fermions in a disordered honeycomb lat-
tice is studied within the full Born approximation (FBA)
and the full self-consistent Born approximation (FSBA)
for the density of states. Using the results of Sec. II B,
the spectral and transport properties of Dirac fermions
are computed in Sec. III. In Sec. IV we address the
question of magnetism and the interplay between short-
range electron-electron interactions and disorder. The
density of states of Dirac fermions in a magnetic field
perpendicular to a graphene plane is studied in Sec. V
and the magneto-transport properties of this system are
computed both at zero and finite frequencies, using the
FSBA. The quantization values for the integer quantum
Hall effect and for Jain’s sequence of the fractional quan-
tum Hall effect are discussed. Finally, Sec. VII contains
our conclusions. We have also added appendices with the
details of the calculations.
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II. IMPURITIES AND VACANCIES.

The honeycomb lattice can be described in terms of
two triangular sub-lattices, A and B (see Fig. 1). The
unit vectors of the underlying triangular sub-lattice are

a1 =
a

2
(3,

√
3, 0) ,

a2 =
a

2
(3,−

√
3, 0) , (2.1)

where a is the lattice spacing (we use units such that
KB = 1 = ~). The reciprocal lattice vectors are:

b1 =
2π

3a
(1,

√
3, 0) , b2 =

2π

3a
(1,−

√
3, 0) . (2.2)

The vectors connecting any A atom to its nearest neigh-
bors are:

δ1 =
a

2
(1,

√
3, 0),

δ2 =
a

2
(1,−

√
3, 0),

δ3 = a(1, 0, 0) (2.3)

and the vectors connecting to next-nearest neighbors are:

n1 = −n2 = a1 ,

n3 = −n4 = a2 ,

n5 = −n6 = a1 − a2 . (2.4)

missing atom or vacancy

FIG. 1: (color on line) A honeycomb lattice with vacancies,
showing its primitive vectors.

In what follows we use a tight-binding description for
the π-orbitals of Carbon with a Hamiltonian given by:

Ht.b. = −t
∑

〈i,j〉,σ

(a†i,σbj,σ + h.c.)

+ t′
∑

〈〈i,j〉〉,σ

(a†i,σaj,σ + b†i,σbj,σ + h.c.) , (2.5)

where a†i,σ (ai,σ) creates (annihilates) and electron on site

Ri with spin σ (σ =↑, ↓) on sub-lattice A and b†i,σ (bi,σ)

creates (annihilates) and electron on site Ri with spin
σ (σ =↑, ↓) on sub-lattice B. t is the nearest neighbor
(〈i, j〉) hopping energy (t ≈ 2.7 eV), and t′ is the next-
nearest neighbor (〈〈i, j〉〉) hopping energy (t′/t ≈ 0.1).
We notice en passant that in earlier studies of graphite31

it has been assumed that t′ = 0. This assumption, how-
ever, is not warranted since there is overlap between Car-
bon π-orbitals in the same sub-lattice. In fact, we will
show that t′ plays an important role in graphene since it
breaks the particle-hole symmetry and is responsible for
various effects observed experimentally.

Translational symmetry is broken by the presence of
disorder. Localized defects such as vacancies and impu-
rities are included in the tight-biding description by the
addition of a local energy term:

Himp. =
∑

i,σ

Vi

(

a†i,σai,σ + b†i+δ3,σbi+δ3,σ

)

, (2.6)

where Vi is a random potential at site Ri. In momentum
space we define:

a†i,σ =
1√
NA

∑

k

eik·Ria†k,σ , b†i,σ =
1√
NB

∑

k

eik·Rib†k,σ ,

(2.7)
where NA = NB = N , and the non-interacting Hamilto-
nian, H1 = Ht.b. +Himp., reads:

H1 =
∑

k,σ

[φ(k)a†k,σbk,σ + φ∗(k)b†k,σak,σ]

+
∑

k,σ

φ̃(k)(a†k,σak,σ + b†k,σbk,σ)

+
∑

q,k,σ

Vq[a†k+q,σak,σ + b†k+q,σbk,σ] , (2.8)

where

φ(k) = −t
3

∑

i=1

eik·δi ,

φ̃(k) = t′
6

∑

i=1

eik·ni , (2.9)

and Vq is the Fourier transform of the random potential
due to impurities. Hamiltonian (2.8) is the starting point
of our approach.

A. The single impurity problem and the T-matrix
approximation

In the single impurity case one can write Vq = V/N
where V is the strength of the impurity potential. In
what follows we use standard finite temperature Green’s
function formalism32,33. Because of the existence of two
sub-lattices, the Green’s function can be written as a 2×2
matrix:

Gσ(k,p, τ) =

(

GAA,σ(k,p, τ) GAB,σ(k,p, τ)
GBA,σ(k,p, τ) GBB,σ(k,p, τ)

)

,(2.10)
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where

GAA,σ(k,p, τ) = −〈T ak,σ(τ)a†p,σ(0)〉 ,
GAB,σ(k,p, τ) = −〈T ak,σ(τ)b†p,σ(0)〉 ,
GBA,σ(k,p, τ) = −〈T bk,σ(τ)a†p,σ(0)〉 ,
GBB,σ(k,p, τ) = −〈T bk,σ(τ)b†p,σ(0)〉 , (2.11)

where τ is the “imaginary” time, and T is the time or-
dering operator.

For a single impurity the Green’s function can be writ-
ten as G(k,p, τ) = δk,pG(k, τ), where32:

G(k, ωn) = G0(k, ωn) + G0(k, ωn)Timp.(ωn)G0(k, ωn) ,
(2.12)

where ωn = 2πT (n+1/2) is the fermionic Matsubara fre-
quency, G0(k, ωn) is the propagator of the tight-binding
Hamiltonian (2.5) and

Timp.(ωn) =
V

N
[1− V Ḡ0(ωn)]−1 , (2.13)

is the single impurity T-matrix, where:

Ḡ0(ωn) =
1

N

∑

k

G0(k, ωn) . (2.14)

The above result is exact for a single impurity. For a
finite but small density, ni = Ni/N , of impurities, the
Green’s function equation becomes:

G(k, ωn) = G0(k, ωn) + G0(k, ωn)T (ωn)G(k, ωn) ,
(2.15)

which is valid up to first order in ni, that is, it takes only
into account the multiple scattering of the electrons by a
single impurity. Equation (2.15) can be solved as:

G(k, ωn) = [[G0(k, ωn)]−1 − T (ωn)]−1 , (2.16)

where

T (ωn) = NiTimp.(ωn) = V ni[1− V Ḡ0(ωn)]−1 . (2.17)

For vacancies we take V → ∞ and (2.17) reduces to:

T (ωn) = −ni[Ḡ
0(ωn)]−1 . (2.18)

It worth stressing that Eqs. (2.12) and (2.13) although
similar in form to Eqs. (2.16) and (2.17) have a very dif-
ferent meaning. Whereas the first set applies to the sin-
gle impurity problem, the latter set is the consequence
of an assemble average over the impurity positions (see
Sec. V for details on the averaging procedure in the con-
text of Landau levels) with a re-summation procedure,
corresponding to the FBA33.

B. The low-energy physics and the electronic
density of states

The results of the previous subsection are entirely gen-
eral, in the sense that no approximation for the band

structure was made. Consider, for simplicity, the tight-
binding Hamiltonian (2.5) in the case of t′ = 0, that can
be written, in momentum space, as:

Ht.b. =
∑

k,σ

[a†k,σ, b
†
k,σ] ·

[

0 φ(k)
φ∗(k) 0

]

·
[

ak,σ

bk,σ

]

,(2.19)

which can be diagonalized and produces the spectrum:

E±(k) = ±|φ(k)| , (2.20)

where the plus (minus) sign is related with the upper
(lower) band. It is easy to show that the spectrum van-
ishes at the K point in the Brillouin zone with wave-
vector, Q = (2π/(3

√
3a), 2π/(3a)), and other five points

in the Brillouin zone related by symmetry. In fact, it is
easy to show that:

φ(Q + p) ≃ 3

2
taeiπ/3(py − ipx)

+
3

8
ta2eiπ/3(p2

x − p2
y − 2ipxpy) ,(2.21)

φ(Q + p)

|φ(Q + p)| = eiδ(Q+p) ≈ eiπ/3 (py − ipx)

|p| , (2.22)

where p (p≪ Q) is measured relatively to the K point in
Brillouin zone and we have defined eiδ(k) = φ(k)/|φ(k)|,
for latter use. Using (2.21) in (2.20) we find:

E±(Q + p) ≃ ±3

2
ta|p| = ±vF |p| , (2.23)

for the electron’s dispersion. Eq. (2.23) is the dispersion
of a relativistic particle with “light” velocity vF = 3ta/2,
that is, a Dirac fermion. Hence, at low energies (energies
much lower than the bandwidth), the effective descrip-
tion of the tight-binding problem reduces the 6 points
in the Brillouin zone to 2 Dirac cones, each one of them
associated with a different sublattice. The low energy de-
scription is valid as long as the characteristic momenta
(energy) of the excitations is smaller than a cut-off, kc

(D = vF kc), of the order of the inverse lattice spacing.
In the spirit of a Debye model, where one conserves the
total number of states in the Brillouin zone, we choose kc

such that πk2
c = (2π)2/Ac, where Ac = 3

√
3a2/2 is the

area of the hexagonal unit cell. Hence, eq.(2.23) is valid
for p≪ kc and E ≪ D = kcvF .

So far we have discussed the case of t′ = 0. When t′ 6= 0
the problem can also be easily diagonalized and one finds
that, close to the K point, the electron dispersion changes
to:

E±(Q + p) ≈ −3t′ ± vF |p| +
9t′a2

4
p2 , (2.24)

showing that t′ does not change the Dirac physics but
introduces an asymmetry between the upper and lower
bands, that is, it breaks the particle-hole symmetry.
Hence, t′ affects only the intermediate to high energy be-
havior and preserves the low-energy physics. For many
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of the properties discussed in this section t′ does not play
an important role and will be dropped. Nevertheless, we
will see later that in the presence of extended defects t′

plays an important role and has to be introduced in order
to provide a consistent physical picture of graphene.

For t′ = 0 we find:

GAA(ωn,k) =
∑

j=±1

1/2

iωn − j|φ(k)| , (2.25)

GAB(ωn,k) =
∑

j=±1

jeiδ(k)/2

iωn − j|φ(k)| , (2.26)

GBA(ωn,k) =
∑

j=±1

je−iδ(k)/2

iωn − j|φ(k)| , (2.27)

GBB(ωn,k) = GAA(ωn,k) . (2.28)

The expansion of the energy around the K point sim-
plifies greatly the expressions in the calculation of the
T-matrix, since they lead to simpler forms to Eqs. (2.25)-
(2.28). For the case of vacancies, Eq.(2.18), it is easy to
see that at low energies the T-matrix reads:

T (ωn) = −ni[Ḡ
0
AA(ωn)]−1 I , (2.29)

where I a 2×2 identity matrix, and

Ḡ0
AA(ωn) =

1

2N

∑

j=±1,k

1

iωn − j|φ(k)|

=
1

2ρ

∑

j=±1

∫

d2k

(2π)2
1

iωn − jvFk

=
1

4πρ

∫ kc

0

dk k

iωn − jvF k

= − 1

4πρv2
F

iωn ln
(

D2/ω2
n

)

, (2.30)

where ρ = S/V is the graphene planar density (S is
the area of the graphene layer). After a Wick rotation
(iωn → ω + i0+) one finds:

Ḡ0
AA(ω + i0+) = −F0(ω) − iπρ0(ω) , (2.31)

where,

F0(ω) =
2ω

D2
ln

(

D

|ω|

)

, (2.32)

ρ0(ω) =
|ω|
D2

, (2.33)

where we have used that ρ = 1/Ac = k2
c/(4π), and hence

4πρv2
F = D2. In the above equations we always assume

|ω| ≪ D. Notice that ρ0(ω) is simply the density of states
of two-dimensional Dirac fermions.

1. A single vacancy

Assuming that a single unit cell has been diluted, we
use Eqs. (2.12) and (2.13) to determine the correction to

the Dirac fermion density of states. The actual density
of states, ρ(ω), is given by:

ρ(ω) = − 1

π
ImḠAA(ω + i0+)

= ρ0(ω) − 2/N

D2

ρ0(ω)

F 2
0 (ω) + π2ρ2

0(ω)

≈ ρ0(ω) − 2/N

|ω| log2(D/|ω|)
(ω → 0) ,(2.34)

indicating that the contribution of the vacancy to the
density of states is singular in the low frequency regime.
The contribution is negative because one has exactly one
missing state associated with the vacancy. The elec-
tronic wave function around a single impurity was com-
puted in Ref.[34]. The result obtained here is identical to
the one obtained in the dilution problem in Heisenberg
antiferromagnets35,36. The reason for this coincidence
is easy to understand: the low energy excitations of an
antiferromagnet in the ordered Néel phase are antiferro-
magnetic magnons with linear dispersion relation, that
is, relativistic bosons with a “speed of light” given by
the spin-wave velocity. Since we have been discussing a
non-interacting problem, the statistics plays no role, and
the effect of disorder is the same for relativistic bosons
or fermions.

2. The full Born approximation (FBA)

The situation is clearly different if one has a finite
density of vacancies. In this case we have to deal
with Eqs. (2.16) and (2.17) corresponding to the FBA
where all one-impurity scattering events have been con-
sidered. As before, the density of states is given by
ρ(ω) = −ImḠAA(ω + i0+)/π and it is possible, after
some tedious algebra, to obtain an analytical expression
for this quantity, given by:

ρ(ω) =
ρ0(ω)

D2

2ni

a(ω)
ln

(

D2

b2(ω) + c2(ω)

)

+
1

πD2

∑

α=±1

αb(ω)

a(ω)

[

arctan

(

a(ω)D

c

)

+ arctan

(

αb(ω)

c(ω)

)]

, (2.35)

with

a(ω) = F 2
0 (ω) + π2ρ2

0(ω) ,

b(ω) = a(ω)ω − niF0(ω) ,

c(ω) = niπρ0(ω) , (2.36)

where F0(ω) and ρ0(ω) are defined in (2.32) and (2.33),
respectively. A plot of Eq. (2.35) is given in Fig. 2 for
two values of the impurity concentration ni. Once again,
the low energy behavior of ρ(ω) is the same found in
the context of diluted antiferromagnets.35,36 We remark
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that the dilution procedure introduces a low energy scale
proportional to Dni, as can be seen from panel (c) in
Fig. 2.
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FIG. 2: (color on line) Density of states obtained from the
FBA. Panel (a) shows ρ(ω) over the entire band; panel (b)
shows the low energy part, where it is seen that the peak in
ρ(ω) has a higher value for lower ni; panel (c) shows that the
peak in ρ(ω) appears at an energy scale of the order of niD/4.

3. The full self-consistent Born approximation (FSBA)

The FBA does not take into account electronic scat-
tering from multiple vacancies, it accounts only for mul-
tiple scattering from a single one. In order to include
some contributions from multiple site scattering another
partial series summation can be performed by replacing
the bare propagator in the expression of the T-matrix in
(2.18) by full propagator, leading to the FSBA. Because
the matrix elements of the scattering potential computed
from two Bloch states |k〉 and |p〉 are assumed momen-
tum independent, the self-energy for the electrons de-
pends only on the frequency. The self-consistent problem
requires, in general, a careful numerical solution but in
this particular case it is possible to reduce the problem to
a set of coupled algebraic equations. The self-consistent
problem requires the solution of the equation:

Σ(ωn) =
−ni

Ḡ0
AA(ωn − Σ(ωn))

, (2.37)

where Σ(ωn) is the electron self-energy. One can show
that the self-energy can be written as:

Σ(ω + i0+) =
ni

F (ω) + iπρ(ω)
, (2.38)

where F (ω) and ρ(ω) are determined by the following set
of coupled algebraic equations:

F (ω) =
b

2a(ω)D2
Ψ(F, ρ, ω) +

c(ω)

a(ω)D2
Υ(F, ρ, ω) ,(2.39)

πρ(ω) =
c(ω)

2a(ω)D2
Ψ(F, ρ, ω) − b(ω)

a(ω)D2
Υ(F, ρ, ω) ,(2.40)

where we used the definitions (2.36) and also defined the
functions Ψ(F, ρ, ω) and Υ(F, ρ, ω):

Ψ(F, ρ, ω)
∑

α

ln

[

(αa(ω)D + b(ω))2 + c2(ω)

b2(ω) + c2(ω)

]

, (2.41)

Υ(F, ρ, ω) = −2 arctan[b(ω)/c(ω)]

+
∑

α

α arctan[a(ω)D/c(ω) − αb(ω)/c(ω)] .(2.42)

The solution of Eqs. (2.39) and (2.40) describes the ef-
fect of the vacancies on the density of states of the Dirac
Fermions. ρ(ω) is the self-consistent density of states,
and F (ω) corresponds to the real part of self-energy
(in analogy with ρ0(ω) and F0(ω) defined in (2.33) and
(2.32)). In Fig. 3 we show the result of this procedure
for various impurity concentrations.
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FIG. 3: (color on line) Density of states obtained in FSBA.
Panel (a) shows ρ(ω); panel (b) shows F (ω); panel (c) shows
ρ(ω) at low energies.

The low-energy behavior of the density of states, show-
ing a parabolic enhancement of ρ(ω), has also been found
in the context of heavy-fermion superconductors37. An
exact numerical calculation of the electronic density was
carried out in Ref.[34], where it was found that besides
the low energy dome-like shape of the ρ(ω) (as shown in
Fig. 3), a large peak appears very close to ω = 0. This
peak is reminiscent of the single impurity result given in
(2.34). Hence, besides the peak, the FSBA gives a very
good account of the density of states in this problem.

Notice that the self-energy, Σ(ω), in (2.38) depends on
ni in a non-trivial way, since both the self-consistent F (ω)
and ρ(ω) also depend on ni. The self-energy is depicted
in Fig. 4 for various values of the dilution density ni.

III. SPECTRAL AND TRANSPORT
PROPERTIES

The electronic spectral function is defined as:

A(k, ω) = − 1

π
ImG(k, ω + i0+) , (3.1)
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FIG. 4: (color on line) Imaginary (left panel) and real (right
panel) part of the self-energy obtained from the FSBA. Note
that both quantities are divided by Dni.

and can be interpreted as the probability density that
an electron has momentum k and energy ω. For a non-
interacting, non-disordered, problem, the spectral func-
tion is simply a Dirac delta function at ω = E(k). In
the presence of disorder and/or electron-electron interac-
tions the spectral function is broadened and its sharpness
determines whether the electronic system supports quasi-
particles. The spectral function can be measured directly
in angle resolved photoemission experiments (ARPES)38.

In terms of the self-energy, Σ(k, ω), the spectral func-
tion reads:

A(k, ω) = − 1

π

ImΣ(k, ω)

[ω − E(k) − ReΣ(k, ω)]2 + [ImΣ(k, ω)]2
.(3.2)

In the case of graphene, there are two contributions to
the self-energy,

Σ(k, ω) = Σe.−e.(k) + Σdis.(ω) , (3.3)

where Σe.−e.(k) is the self-energy correction due to the
electron-electron interactions that was computed origi-
nally in Ref. [39]:

ImΣe.−e.(k) =
1

48

(

e2

ǫ0vF

)2

vF |k| , (3.4)

where e is the electron charge, and ǫ0 the dielectric con-
stant of graphene. The other contribution, Σdis., is due
to disorder and is given in (2.38).

Notice that these two contributions to the self-energy
have very different dependence with the energy: while the
electron-electron self-energy decreases as the energy (mo-
mentum) decreases, the self-energy due to disorder in-
creases as the energy decreases. Hence, electron-electron
interactions are dominant at high energies while disorder
is dominant at low energies. This interplay between the
two self-energies leads to the prediction that there will be
a minimum in the self-energy for some energy where the

FIG. 5: (color on line) Imaginary part of the electron’s self
energy including both the effect of disordered and electron-
electron interaction. The inset shows an intensity plot for the
spectral function A(k, ω) for D = 8.248 eV , ni = 0.0001.

electron-electron interaction becomes of the same order
of the electron-vacancy interaction. In Fig. 5 we plot the
self-energy as a function of energy for various impurity
concentrations together with the spectral function (in-
set). One can clearly observe the non-monotonic depen-
dence of the self-energy with the energy. This behavior
should be observable in ARPES experiments.

Assuming an electric field applied in the x-direction,
the frequency dependent (real part) conductivity is cal-
culated from the Kubo formula:

σ(q, ω) =
1

ω

∫ ∞

0

dteiωt〈[J†
x(q, t), Jx(q, 0)]〉 (3.5)

where Jx is the x-component of the current operator
which, due to gauge invariance, has the form40:

Jx = −ite
∑

i,σ,δ

ux · δa†i,σbi+δ,σ − ux · δb†i,σ+δai,σ (3.6)

(the notation i + δ means Ri + δ). In Fourier space,
and after expanding the general expression around the
K-point in the Brillouin zone, we obtain:

Jx = −ivF e
∑

k,σ

(e−iπ/3a†k,σbk,σ − eiπ/3b†k,σak,σ) . (3.7)

Substitution of (3.7) into (3.5) shows that the problem
depends on the Green’s functions defined in (2.11). How-
ever, due to the special form of Eq. (2.22) the conduc-
tivity does not have contributions coming from products
of Green’s functions of the form GABGBA. Taking into
account the number of bands and the spin degeneracy,
the Kubo formula for the real part of the conductivity at
finite frequency and temperature has the form:

σ(ω, T ) = − 4v2
F e

2

NAcω

∫ ∞

−∞

dǫ

2π
[f(ǫ+ ω) − f(ǫ)] ×

∑

k

ImGAA(k, ǫ+ i0+)ImGAA(k, ǫ+ ω + i0+) , (3.8)
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FIG. 6: (color on line) Left: Kernel of the integral for σ(0, T )
as function of the energy. Product of the Fermi function
derivative by K(ǫ) at two different temperatures.

where f(ǫ) = 1/(e(ǫ−µ)/T + 1) is the Fermi-Dirac dis-
tribution function. The integral over k in (3.8) can be
performed and find:

σ(ω, T ) = − e2

2π2ω

∫ ∞

−∞

dǫ[f(ǫ+ ω) − f(ǫ)]K(ω, ǫ) ,(3.9)

where

K(ω, ǫ) = ImΣ(ǫ+ ω) ImΣ(ǫ) Θ(ω, ǫ) , (3.10)

(Θ(ω, ǫ) defined in Appendix A).
It is instructive to consider the zero-temperature, zero-

frequency limit of the conductivity in Eq. (3.8) (restoring
~):

σ0 =
2

π

e2

h

(

1 − [ImΣ(0)]2

D2 + [ImΣ(0)]2

)

≈ 2

π

e2

h
. (3.11)

The result (3.11) shows that as long as ImΣ(0) ≪
D, σ0 has a universal value independent of the dilu-
tion concentration, in agreement with earlier theoretical
works41,42, and in agreement with the experimental data
in graphene6.

At finite temperatures the integral in (3.9) has to be
evaluated numerically. Consider σ(0, T ) whose behavior
is determined by K(ǫ) ≡ K(0, ǫ). The quantities K(ǫ)
and −f ′(ǫ)K(ǫ) ( −f ′(ǫ) is the derivative of the Fermi
function in order to ǫ) are both represented in Fig. 6. The
behavior of K(ǫ) shows, “V”-like shape as the energy ǫ
is varied. As a consequence, σ(0, 0) should present the
same “V”-like shape as the chemical potential µ moves
around µ = 0. Such behavior has indeed been observed
in atomically thin carbon films4,6, where the density of
electrons was controled by a gate potential. The temper-
ature dependence of the σ(0, T ), for µ = 0, is depicted
in Fig. 7 for different vacancy concentrations, and it is
found to follow Sommerfeld asymptotic expansion, but
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FIG. 7: (color on line) Dependence of σ(T, 0) on the temper-
ature and on the impurity dilution ni.

the number of terms needed to fit the numerical curve
grows very fast as the dilution is reduced.

In Fig. 8 we plot the frequency dependence of σ(ω, T )
obtained from numerical integration of (3.9) with the self-
energy given in (2.38). At low temperature, we see that
σ(ω, T ) develops a maximum around an energy value that
is dependent on the number of impurities. In fact, if
plot σ(ω, T ) as function of ω/

√
ni, the conductivity al-

most shows scaling behavior for all impurity dilutions
(see lower left panel). As the temperature increases, and
if σ(0, T ) is sufficiently large, the conductivity σ(ω, T )
acquires a Drude-like behavior (right panel).
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IV. MAGNETIC RESPONSE AND THE ROLE
OF SHORT RANGE COULOMB INTERACTIONS

The ferromagnetism measured in proton irradiated
graphite opens the question whether the interplay of in-
teractions and disorder can drive the system from a para-
magnetic to a magnetic ground state15. We study the
effect of disorder on the magnetic susceptibility in the
presence of short-range interactions, and the resulting
change in the tendency towards magnetic instabilities.
The problem of magnetic instabilities due to long-range
exchange interactions43 in the presence of small density
of carriers was discussed in great detail in ref. [30]. We
do not address here the effects associated to the interplay
between the long-range Coulomb interaction and differ-
ent types of lattice disorder44 and the appearance of local
moments close to defects45,46,47,48.

The paramagnetic susceptibility of graphene is given
by:

χ(T ) =
∂mz

∂h
= 4

∂

∂h

1

N

∑

k

∑

n

GAA(k, iωn − h)

= −4

∫ ∞

−∞

dǫf ′(ǫ)ρ(ǫ) , (4.1)

where

mz(T ) = 2
∑

i,σ

σ〈a†i,σai,σ〉 , (4.2)

is the magnetization, and ρ(ǫ) is the electronic density
of states which, in the presence of disorder, is given in
(2.40). Within the Stoner mechanism49, ferromagnetism
is possible if the local electron-electron interaction term
(the so-called Hubbard term)50, U , is large than a critical
value given by:

1

U c
F

=
1

4
χ(0) . (4.3)

In the case of an antiferromagnetic instability the same
criteria would lead to another critical value of U given
by:

1

U c
AF

=
2

πD

∫ D

−∞

dǫρ(ǫ) arctan

[

D

ImΣ(ǫ)

]

. (4.4)

Notice that in the case of antiferromagnetism one finds
that U c

AF ≈ D/(1 − ni) when ImΣ → 0, in agreement
with Hartree-Fock calculations51.

In Fig. 9 we plot the magnetic susceptibility as function
of T for different values of ni. The signature of the pres-
ence of Dirac fermions comes from the linear dependence
on T for T/D ≪ 1. Notice that, unlike the case of an
ordinary metal that has a temperature dependent Pauli
susceptibility, the graphene susceptibility increases with
temperatures and number of impurities. At low temper-
atures χ(T ) presents a small upturn not visible in Fig. 9.
From the value of χ(0) and (4.3) we obtain the critical in-
teraction required for a ferromagnetic transition, which

is shown in the lower left panel of Fig. 9. Notice that
the critical interaction strength for ferromagnetism de-
creases as the vacancy concentration increases indicating
that disorder favors a ferromagnetic transition.

Using (4.4) and the results of the previous sections we
can also calculate the critical value for an antiferromag-
netic transition. The result is shown in the lower right
panel of Fig. 9. In contrast with the ferromagnetic case,
the antiferromagnetic instability is suppressed by disor-
der, requiring a large value of the electron-electron inter-
action. Notice that the value of the critical ferromagnetic
coupling is always bigger than the antiferromagnetic one,
indicating that at half-filling the graphene lattice is more
susceptible to antiferromagnetic correlations. This result
is consistent with an old proposal by Linus Pauling that
graphene should be a resonant valence bond (RVB) state
with local singlet correlations16.
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FIG. 9: (color on line) Top: Dependence of χ(T ) on the
temperature and on the impurity dilution ni. Bottom: De-
pendence of UF and UAF (in units of D) as function of ni.

Hence, the Stoner criteria seems to be unable to ex-
plain the ferromagnetic behavior observed experimen-
tally. One might ask whether additional scattering
mechanisms, such that provided by long-range electron-
electron interactions, can modify the critical values of the
couplings. The self-energy correction due to long-range
electron-electron scattering is given in (3.4) and can be
added to the Dyson equation for the Green’s function
and a new self-consistent density of states can be com-
puted. This approach does not modify the value of U c

F

which is determined by the low frequency behavior of
the self-energy. In case of antiferromagnetism we find
that indeed it leads to an increase on U c

AF , but the re-
sult is non-conservative since the integral over the den-
sity of states gives a smaller value than (1 − ni). There-
fore, we find from these calculations and previous ones30

that graphene is not particularly susceptible to ferromag-
netism.
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V. MAGNETO-TRANSPORT

The description of the magneto-transport properties of
electrons in a disordered honeycomb lattice is complex
because of the interference effects associated with the
Hofstadter problem52. As in the previous sections, we
simplify our problem by describing the electrons in the
honeycomb lattice as Dirac fermions in the continuum.
A similar approach was considered by Abrikosov in the
quantum magnetoresistance study of non-stoichiometric
chalcogenides53. In the case of graphene, the effective
Hamiltonian describing Dirac fermions in a magnetic field
(including disorder) can be written as: H = H0+Hi with

H0 = −vF

∑

i=x,y

σi[−i∂i + eAi(r)] , (5.1)

where, in the Landau gauge, (Ax, Ay, Az) = (−By, 0, 0)
is the vector potential for a constant magnetic field B in
the z−direction, σi is the i = x, y, z Pauli matrix, and

Hi = V

Ni
∑

j=1

δ(r − rj)I . (5.2)

The formulation of the problem in second quantization
requires the solution of H0, which is sketched in Ap-
pendix B. The field operators are defined as (see Ap-
pendix B for notation; the spin index is omitted for sim-
plicity):

Ψ(r) =
∑

k

eikx

√
L

(

0
φ0(y)

)

ck,−1

+
∑

n,k,α

eikx

√
2L

(

φn(y − kl2B)
φn+1(y − kl2B)

)

ck,n,α . (5.3)

The sum over n = 0, 1, 2, . . . , is cut off at an n0 given
by E(1, n0) = D. In this representation H0 becomes
diagonal, leading to Green’s functions of the form (in
Matsubara representation):

G0(k, n, α; iω) =
1

iω − E(α, n)
, (5.4)

is effectively k-independent, and E(α,−1) = 0 is the zero
energy Landau level. The part of Hamiltonian due to the
impurities is written as:

Hi =
V

L

Ni
∑

j=1

∑

p,k

e−ixj(p−k)

[

φ0(yj − pl2B)φ0(yj − kl2B)c†p,−1ck,−1 +
∑

n,α

α√
2
φ0(yj − pl2B)φn+1(yj − kl2B)c†p,−1ck,n,α

+
∑

n,α

α√
2
φn+1(yj − pl2B)φ0(yj − kl2B)c†p,n,αck,−1

+
∑

n,m,α,λ

1

2
[φn(yj − pl2B)φm(yj − kl2B) + αλφn+1(yj − pl2B)φm+1(yj − kl2B)]c†p,n,αck,m,λ



 . (5.5)

Equation (5.5) describes the elastic scattering of electrons
in Landau levels by the impurities. It is worth noting that
this type of scattering connects Landau levels of negative
and positive energy.

A. The full self-consistent Born approximation

In order to describe the effect of impurity scatter-
ing on the magnetoresistance of graphene, the Green’s
function for Landau levels in the presence of disorder
needs to be computed. In the context of the 2D elec-
tron gas, an equivalent study was performed by Otha
and Ando,54,55,56using the averaging procedure over im-
purity positions of Duke57. Here the averaging proce-
dure over impurity positions is performed in the standard
way, namely, having determined the Green’s function for
a given impurity configuration (r1, . . .rNi

), the position
averaged Green’s function is determined from (as in Sec.

II A):

〈G(p, n, α; iω; r1, . . .rNi
)〉 ≡ G(p, n, α; iω)

= L−2Ni





Ni
∏

j=1

∫

drj



G(p, n, α; iω; r1, . . .rNi
) . (5.6)

In Sec. II A the averaging involved plane wave states;
in the presence of Landau levels the average over im-
purity positions involves the wave functions of the one-
dimensional harmonic oscillator. In the averaging proce-
dure we have used the following identities:

∫

dyφn(y − pl2B)φm(y − pl2B) = δn,m , (5.7)

∫

dpφn(y − pl2B)φm(y − pl2B) =
δn,m

l2B
. (5.8)
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FIG. 10: (color on line) Electronic density of states in a
magnetic field for different dilutions and magnetic field. The
non-disordered DOS and the position of the Landau levels
in the absence of disorder are also shown. The two arrows in
the upper panel show the position of the renormalized Landau
levels (see Fig.11) given by the solution of Eq. (5.14). The
energy is given in units of ωc ≡ E(1, 1).

After a lengthy algebra, the Green’s function in the pres-
ence of vacancies, in the FSBA, can be written as:

G(p, n, α;ω + 0+) = [ω − E(n, α) − Σ1(ω)]−1 ,(5.9)

G(p,−1;ω + 0+) = [ω − Σ2(ω)]−1 , (5.10)

where

Σ1(ω) = −ni[Z(ω)]−1 , (5.11)

Σ2(ω) = −ni[gcG(p,−1;ω + 0+)/2 + Z(ω)]−1 ,(5.12)

Z(ω) = gcG(p,−1;ω + 0+)/2

+ gc

∑

n,α

G(p, n, α;ω + 0+)/2 , (5.13)

and gc = Ac/(2πl
2
B) is the degeneracy of a Landau level

per unit cell. One should notice that the Green’s func-
tions do not depend upon p explicitly. The self-consistent
solution of Eqs. (5.9), (5.10), (5.11), (5.12) and (5.13)
gives density of states, the electron self-energy, and the
renormalization of Landau level energy position due to
disorder.

The effect of dilution in the density of states of Dirac
fermions in a magnetic field is shown in Fig. 10. For
reference we note that E(1, 1) = 0.14 eV, for B = 14
T, and E(1, 1) = 0.1 eV, for B = 6 T. From Fig. 10
we see that given an impurity concentration the effect
of broadening due to vacancies is less effective as the
magnetic field increases. It is also clear that the position
of Landau levels is renormalized relatively to the non-
disordered case. The renormalization of the Landau level
position can be determined from poles of (5.10):

ω − E(α, n) − ReΣ(ω) = 0 . (5.14)

Of course, due to the importance of scattering at low
energies, the solution to Eq. (5.14) does not represent
exact eigenstates of system since the imaginary part of
the self-energy is non-vanishing, however these energies
do determine the form of the density of states, as we
discuss below.

In Fig. 11, the graphical solution to Eq. (5.14) is given
for two different energies (E(−1, n), with n = 1, 2), being
clear that the renormalization is important for the first
Landau level. This result is due to the increase of the
scattering at low energies, which is present already in the
case of zero magnetic field. The values of ω satisfying Eq.
(5.14) show up in density of states as the energy values
where the oscillations due to the Landau level quantiza-
tion have a maximum. In Fig. 10, the position of the
renormalized Landau levels is shown in the upper panel
(marked by two arrows), corresponding to the bare en-
ergies E(−1, n), with n = 1, 2. The importance of this
renormalization decreases with the reduction of number
of vacancies. This is clear in Fig. 10 where a visible shift
toward low energies is evident when ni has a small 10%
change, from ni = 10−3 to ni = 9 × 10−4.
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FIG. 11: (color on line) Self-consistent results for Σ1(ω) (top)
and Σ2(ω)(bottom). The energy is given in units of ωc ≡
E(1, 1). In the left panels we show the intercept of ω−E(α, n)
with ReΣ(ω) as required in (5.14).

B. Calculation of the transport properties

The study of the magnetoresistance properties of the
system requires the calculation of the conductivity ten-
sor. In terms of the field operators, the current density
operator j is given by18:

j = vF e[Ψ
†(x, y)σxΨ(x, y),Ψ†(x, y)σyΨ(x, y)] , (5.15)

leading to current operator in the Landau basis written
as:
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Jx = vF e
∑

p,α

1√
2

[

c†p,−1ck,0,α + c†p,0,αcp,−1

]

+ vF e
∑

p,n,α,λ

1

2

[

λ(1 − δn,0)c
†
p,n,αcp,n−1,λ + αc†p,n,αcp,n+1,λ

]

, (5.16)

Jy = vF e
∑

p,α

i√
2

[

c†p,−1ck,0,α − c†p,0,αcp,−1

]

+ vF e
∑

p,n,α,λ

i

2

[

−λ(1 − δn,0)c
†
p,n,αcp,n−1,λ + αc†p,n,αcp,n+1,λ

]

.(5.17)

As in Sec. III, we compute the current-current correlation function and from it the conductivity tensor is derived.
The diagonal component of the conductivity tensor σxx(ω, T ) is given by (with the spin included):

σxx(ω, T ) = −4(vF e)
2

2πl2B

1

ω

∫ ∞

−∞

dǫ

2π
[f(ǫ+ ω) − f(ǫ)]

[

1

2

∑

α1

[ImG(−1; ǫ+ i0+)ImG(0, α; ǫ+ ω + i0+)

+ ImG(0, α; ǫ+ i0+)ImG(−1; ǫ+ ω + i0+)] +
1

4

∑

n≥1,α,λ

ImG(n, α; ǫ+ i0+)ImG(n− 1, λ; ǫ+ ω + i0+)

+
1

4

∑

n≥0,α,λ

ImG(n, α; ǫ+ i0+)ImG(n+ 1, λ; ǫ+ ω + i0+)



 , (5.18)

and the off-diagonal component σxy(ω, T ) of the conductivity tensor is given by:

σxy(ω, T ) =
2(vF e)

2

4πl2B

1

ω

∫ ∞

−∞

dǫ

2π
tanh

( ǫ

2T

)

∑

α,γ

[

γ[ReG(0, α; ǫ+ γω + i0+)ImG(−1; ǫ+ i0+)

− ReG(−1; ǫ+ γω + i0+)ImG(0, α; ǫ+ i0+)] +
∑

λ,n≥1

γ

2
[ReG(n, α; ǫ+ γω + i0+)ImG(n− 1, λ; ǫ+ i0+)

− ReG(n− 1, α; ǫ+ γω + i0+)ImG(n, λ; ǫ+ i0+)]
]

. (5.19)

If we neglect the real part of the self-energy, and assume
ImΣi(ω) = Γ = constant (i = 1, 2), and let ω → 0, Eq.
(5.18) reduces to Eq. (85) in Ref. [58], if we further
assume the case E(1, 1) ≫ Γ then Eq. (5.19) reduces to
Eq. (86) of the same reference.

As in Sec. III, it is instructive to consider first the case
ω, T → 0, which leads to (σxx(0, 0) = σ0):

σ0 =
e2

h

2

π

[

ImΣ1(0)/ImΣ2(0) − 1

1 + (ImΣ1(0)/ωc)2

+
n0 + 1

n0 + 1 + (ImΣ1(0)/ωc)2

]

. (5.20)

When ImΣ1(0) ≃ ImΣ2(0) and ωc ≫ ImΣ1(0) (or n0 ≫
ImΣ1(0)/ωc), with ωc = E(0, 1) =

√
2vF /l

2
B, Eq. (5.20)

reduces to: σ0 ≃ 2/π(e2/h), which is identical to the
result (3.11) in the absence of the field found in Sec.
III. This result was obtained previously by Ando and
collaborators using the second order self-consistent Born
approximation59,60. However, in the FSBA it is required
that the above conditions be satisfied for this result to
hold. From Fig. 12 we see that the above conditions hold
approximately over a wide ranges of field strength.

Because the d.c. magneto-transport properties have
been measured graphene samples4 subjected to a gate
potential (allowing to tune the electronic density), it is
important to compute the conductivity kernel, since this

has direct experimental relevance. In the the case ω → 0
we write the conductivity σxx(0, T ) as:

σxx(0, T ) =
e2

πh

∫ ∞

−∞

dǫ
∂f(ǫ)

∂ǫ
KB(ǫ) , (5.21)

where the conductivity kernelKB(ǫ) is given is Appendix
A. The magnetic field dependence of kernel KB(ǫ) is
shown in Fig. 12. Observe that the effect of disorder is
the creation of a region where KB(ǫ) remains constant
before it starts to increase in energy with superimposed
oscillations coming from the Landau levels. The same
effect, but with the absence of the oscillations, was iden-
tified at the level of the self-consistent density of states
plotted in Fig. 10. Together with σxx(0, T ), the Hall
conductivity σxy(0, T ) allows the calculation of the resis-
tivity tensor:

ρxx =
σxx

σ2
xx + σ2

xy

,

ρxy =
σxy

σ2
xx + σ2

xy

. (5.22)

Let us now focus on the optical conductivity, σxx(ω).
This quantity can be probed by reflectivity experiments
on the sub-THz to Mid-IR frequency range.61 We depict
the behavior of Eq. (5.18) in Fig. 13 for different mag-
netic fields. It is clear that the first peak is controlled by
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FIG. 12: (color on line) Kernel of the conductivity (in units
of πh/e2) as function of energy for different magnetic fields
and for a dilution concentration of ni = 0.001. The horizontal
line represents the universal limit πhσ0/e2 = 2.

the E(1, 1) − E(1,−1), and we have checked it does not
obey any particular scaling form as function of ω/B. On
the other hand, as the effect of scattering becomes less
important the high energy conductivity oscillations start
obeying the scaling ω/

√
B, as we show in the lower right

panel of Fig. 13.
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FIG. 13: (color on line) Optical conductivity (in units of
πh/e2) at 10 K as function of the energy for different magnetic
fields and for a dilution concentration of ni = 0.001. The ver-
tical arrows in the upper left panel, labeled a, b, and c, repre-
sent the renormalized E(1, 1) −E(−1, 0), E(2, 1)− E(−1, 0),
and E(1, 1) − E(1,−1) transitions.

VI. EXTENDED DEFECTS

A. Self-doping in the absence of electron-hole
symmetry.

The standard description of a graphene sheet, follow-
ing the usual treatment of the electronic band structure
of graphite1,31,62,63, assumes that in the absence of in-
terlayer interactions the electronic structure of graphite
shows electron-hole symmetry. This can be justified us-
ing a tight binding model by considering only hopping
between π orbitals located at nearest neighbor Carbon
atoms. Within this approximation it can be shown that
in certain graphene edges64,65 one would find a flat sur-
face band66. Disclinations (a pentagonal or heptagonal
ring) can also lead to a discrete spectrum and states at
zero energy39,67. Other types of defects, like a combina-
tion of a five-fold and seven-fold ring (a lattice disloca-
tion) or a Stone-Wales defect (made up of two pentagons
and two heptagons) also lead to a finite density of states
at the Fermi level68,69,70.

Band structure calculations show that the electronic
structure of a single graphene plane is not strictly sym-
metrical around the energy of the Dirac points71. The ab-
sence of electron-hole symmetry shifts the energy of the
states localized near impurities above or below the Fermi
level, leading to a transfer of charge from/to the clean
regions to the defects. Hence, the combination of local-
ized defects and the lack of perfect electron-hole symme-
try around the Dirac points leads to the possibility of
self-doping, in addition to the usual scattering processes
whose influence on the transport properties has been dis-
cussed in the preceding sections.

Point defects, like impurities and vacancies, can nu-
cleate a few electronic states in their vicinity. Hence, a
concentration of ni impurities per Carbon atom leads to
a change in the electronic density of the regions between
the impurities of order ni. The corresponding shift in the
Fermi energy is ǫF ≃ vF

√
ni. In addition, the impurities

lead to a finite elastic mean free path, lelas ≃ an
−1/2
i ,

and to an elastic scattering time τelas ≃ (vFni)
−1, in

agreement with the FSBA calculation in the preceding
sections. Hence, the regions with few impurities can
be considered low-density metals in the dirty limit, as
τ−1
elas ≃ ǫF.

Extended lattice defects, like edges, grain boundaries,
or microcracks, are likely to induce the formation of a
number of electronic states proportional to their length,
L/a, where a is of the order of the lattice constant.
Hence, a distribution of extended defects of length L at
a distance proportional to L itself gives rise to a con-
centration of L/a carriers per unit Carbon in regions of
order (L/a)2. The resulting system can be considered a
metal with a low density of carriers, ncarrier ∝ a/L per
unit cell, and an elastic mean free path lelas ≃ L. Then,
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we obtain:

ǫF ≃ vF√
aL

1

τelas
≃ vF

L
(6.1)

and, therefore, (τelas)
−1 ≪ ǫF when a/L ≪ 1. Hence,

the existence of extended defects leads to the possibil-
ity of self-doping but maintaining most of the sample
in the clean limit. In this regime, coherent oscillations
of the transport properties are to be expected, although
the observed electronic properties will correspond to a
shifted Fermi energy with respect to the nominally neu-
tral defect–free system.

B. Electronic structure near extended defects.

We describe the effects that break electron-hole sym-
metry near the Dirac points in terms of a finite next-
nearest neighbor hopping between π orbitals, t′, in
(2.5). From band structure calculations71, we expect
that |t′/t| ≤ 0.2. We calculate the electronic structure
of a ribbon of width L terminated at zigzag edges, which
are known to lead to surface states for t′ = 0. The trans-
lational symmetry along the axis of the ribbon allows us
to define bands in terms of the wavevector parallel to this
axis. In Fig. 14, we show the bands closest to ǫ = 0 for
a ribbon of width 200 unit cells and different values of
t′/t. The electronic structure associated to the interior
region (the continuum cone), projected in Fig. 14 is not
significantly changed by t′. The localized surface bands,
extending from k‖ = (2π)/3 to k‖ = −(2π)/3, on the
other hand, acquires a dispersion of order t′ (for a per-
turbative treatment of this effect, see ref. [72]). Hence,
if the Fermi energy remains unchanged at the position of
the Dirac points (ǫDirac = −3t′), this band will be filled,
and the ribbon will no longer be charge neutral. In order
to restore charge neutrality, the Fermi level needs to be
shifted down (for the sign of t′ chosen in the figure) by
an amount of order t′. As a consequence, some of the
extended states near the Dirac points are filled, leading
to the phenomenon of self-doping. The local charge as
function of distance to the edges, setting the Fermi en-
ergy so that the ribbon is globally neutral. Note that the
charge transferred to the surface states is very localized
near the edges of the system.

C. Electrostatic effects.

The charge transfer discussed in the preceding subsec-
tion is suppressed by electrostatic effects, as large devi-
ations from charge neutrality have an associated energy
cost. In order to study these charging effects we add to
the free-electron Hamiltonian (2.5) the Coulomb energy
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FIG. 14: Bands closest to the Dirac point of a graphene
ribbon of 200 unit cells width. Top: t′ = 0. Center: t′ =
−0.1t. Bottom: t′ = −0.2t
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of interaction between electrons:

HI =
∑

i,j

Ui,jninj , (6.2)
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FIG. 16: Top: Self-consistent charge density (continuous
line) and electrostatic potential (dashed line) of a graphene
ribbon with periodic boundary conditions along the zig-zag
edge and with a circumference of size W = 80

√
3a, and a

length of L = 960a. The parameters used are described in
the text. The inset shows the details of the electronic density
near the edge. Due to the presence of the edge, there is a
displaced charge in the bulk (bottom panel) that is shown as
a function of the width W .

where ni =
∑

σ(a†i,σai,σ+b†i,σbi,σ) is the number operator
at site Ri, and

Ui,j =
e2

ǫ0|Ri − Rj |
, (6.3)

is the Coulomb interaction between electrons. We expect,
on physical grounds, that an electrostatic potential builds
up at the edges, shifting the position of the surface states,
and reducing the charge transferred to/from them. The
potential at the edge induced by a constant doping δ
per Carbon atom is roughly, ∼ (δe2/a)(W/a) (δe2/a is
the Coulomb energy per Carbon), and W the width of
the ribbon (W/a is the number of Carbons involved).
The charge transfer is arrested when the potential shifts
the localized states to the Fermi energy, that is, when
t′ ≈ (e2/a)(W/a)δ. The resulting self-doping is therefore
δ ∼ (t′a2)/(e2W ).

We treat the Hamiltonian (6.2) within the Hartree ap-
proximation (that is, we replace HI by HM.F. =

∑

i Vini

where Vi =
∑

j Ui,j〈nj〉, and solve the problem self-

consistently for 〈ni〉). Numerical results for graphene

ribbons of length L = 80
√

3a and different widths are
shown in Fig. 15 and Fig. 16 (t′/t = 0.2 and e2/a = 0.5t).
The largest width studied is ∼ 0.1µm, and the total num-
ber of carbon atoms in the ribbon is ≈ 105. Notice that
as W increases, the self-doping decreases indicating that,
for a perfect graphene plane (W → ∞), the self-doping
effect disappears. For realistic parameters, we find that
the amount of self-doping is 10−4 − 10−5 electrons per

unit cell for domains of sizes 0.1 − 1µm, in agreement
with the amount of charge observed in these systems.
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FIG. 17: Electronic levels of a graphene ribbon with zig-
zag edges in the presence of a magnetic field (t′ = −0.2t).
The magnetic flux per hexagon of the honeycomb lattice is
Φ = 0 (top), Φ = 0.00025 (center), and Φ = 0.0005 (bottom),
in units of the quantum of magnetic flux, Φ0 = h/e. The
corresponding magnetic fields are 0T, 60T and 120T.

D. Edge and surface states in the presence of a
magnetic field.

We can analyze the electronic structure of a graphene
ribbon of finite width in the presence of a magnetic field.
The resulting tight binding equations can be considered
as an extension of the Hofstadter problem73 to a honey-
comb lattice with edges. The bulk electronic structure
is characterized by the Landau level structure discussed
in previous sections. These states are modified at the
edges, leading to chiral edge states, as discussed in rela-
tion to the Integer Hall Effect (IQHE)74. The existence
of two Dirac points leads to two independent edge states,
with the same chirality. In addition, Landau levels with
positive energy should behave in an electron-like fashion,
moving upwards in energy as their “center of gravity” ap-
proaches the edges. Landau levels with negative energy
should be shifted towards lower energy near the edges.

A zig-zag edge induces also a non-chiral surface band.
If the width of these states is much smaller than the
magnetic field they will not be much affected by the pres-
ence of the field. The extension of the surface states is
comparable to the lattice spacing for most of the range
|k‖| ≤ (2π)/3, except near the Dirac points, so that the
effect of realistic magnetic fields on these states is negli-
gible.

The finite value of the second nearest neighbor hopping
t′ modifies the Landau levels obtained from the analysis
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of the Dirac equation. Elementary calculations (as those
given in Appendix B) lead to:

E±(n) = −3t′ + 2l−2
B α

(

n+
1

2

)

±
√

l−4
B α2 + 2l−2

B γ2n ,

(6.4)
with n = 0, 1, 2, 3, . . ., α = 9t′a2/4 and γ = 3ta/2, with
the single assumption that t ≫ t′. This solution points
out a number of interesting aspects, the most important
of which is disappearance of the zero energy Landau level,
made partially of holes and partially of electrons. With
t′, the electron or hole nature of the energy level becomes
unambiguous, and half of the original zero energy Lan-
dau level (with t′ = 0)moves down in energy (relatively
to the Fermi energy) and the other half moves up. In
addition, the level spacing for electron and hole levels
becomes unequal.
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FIG. 18: (Color online) Wave function of the lowest Landau
levels for different momenta. Black: n=0. Red: n=1. Green:
n=2. Blue: n=3.

The presence of a magnetic field acting on the ribbon
does not break the translational symmetry along the di-
rection parallel to the ribbon, that allows us to discuss
the electronic structure in terms of the same bands cal-
culated in the absence of the magnetic field. Results
for the ribbon analyzed in Fig. 14 for different magnetic
fields are shown in Fig. 17. The “center of gravity” of
the wavefunctions associated to the levels moves in the
direction transverse to the ribbon as the momentum is
increased. The results show the bulk Landau levels, and
their changes as the wavefunctions approach the edges.
The surface band is practically unchanged, except for
small avoided crossings every time that it becomes de-
generate with a bulk Landau level. The results show
quite accurately the expected scaling ǫn ∝ ±√

n for the
eigenenergies derived from the Dirac equation, with small
corrections due to lattice effects and a finite t′ (see Ap-
pendix B). The corresponding wavefunctions for different
bands and momenta are shown in Fig. 18. The Landau

levels move rigidly towards the edges, where one also find
surface states.

We can compute the Hall conductivity from the num-
ber of chiral states induced by the field at the edges74. If
we fix the chemical potential above the n-th level, there
are 2× (2n+ 1) edge modes crossing the Fermi level (in-
cluding the spin degeneracy). Hence, the Hall conductiv-
ity is:

σxy =
e2

h
2 × (2n+ 1) =

4e2

h
(n+ 1/2) . (6.5)

This result should be compared with the usual IQHE in
heterostructures, in which the factor of 1/2 is absent.
The presence of this 1/2 factor is a direct consequence
of the presence of the zero mode in the Dirac fermion
problem. The existence of this anomalous IQHE was pre-
dicted long ago in the context of high energy physics75,76

and more recently in the context of graphene12,14, but
was observed in graphene only recently by two indepen-
dent groups6,11. An incomplete IQHE, with a finite lon-
gitudinal resistivity, was observed in HOPG graphite77.

E. Fractional quantum Hall effect

While the IQHE depends only of the cyclotron energy,
ωc, and therefore is a robust effect, the fractional quan-
tum Hall effect (FQHE) is a more delicate problem since
it is a result of electron-electron interactions. The prob-
lem of electron-electron interactions in the presence of a
large magnetic field in a honeycomb lattice is a complex
problem that deserves a separate study. In this paper we
make a few conjectures about the structure of the FQHE
based on generic properties of Laughlin’s wave functions.

The electrons occupying the lowest Landau level are
assumed to be in a many-body wavefunction written as
(Ri = (xi, yi) and z = x+ iy)78 :

Ψ = exp(−i2m
∑

i<j

αi,j)Φ(z1, . . . , zN ) , (6.6)

where αi,j = arctan[Im(zi − zj)/Re(zi − zj)],
Φ(z1, . . . , zN ) is an anti-symmetric function of the inter-
change of two z′s, and m = 0, 1, 2, . . .. The effect of the
singular phase associated with the many-body wave func-
tion is to introduce an effective magnetic field B∗ given
by:

B∗ = B − ∇a(r)/e = B − 2π(2m)ρ(r)/e , (6.7)

where the gauge field a(r) is given by

a(ri) = 2m
∑

j 6=i

∇(ri)αi,j , (6.8)

and ρ(r) is the electronic density. The procedure outlined
above is called flux-attachment and leads to appearance
of composite fermions. These composite particles do not
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feel the external field B but instead an effective field B∗.
Therefore, the FQHE of electrons can be seen as an IQHE
of these composite particles.

Given an electronic density δ, we may define an effec-
tive filling factor p∗ for the composite particles as:

p∗ =
2πδ

eB∗
. (6.9)

In the lowest Landau level the electron filling factor is:

p =
2πδ

eB
, (6.10)

and combining Eqs. (6.9) and (6.10) we obtain:

p =
p∗

2mp∗ + 1
, (6.11)

so, we can write:

B∗ = B(1 − 2mp) . (6.12)

The crucial assumption in the case of graphene is that
the effective p∗ associated with the integer quantum Hall
effect of composite particles has the form given in (6.5),
that is (spin ignored):

p∗ = (2n+ 1) , n = 0, 1, 2, 3, . . . , (6.13)

(the effective field B∗ is such that the system has one
or more filled composite particle Landau levels, and the
chemical potential lies between two these) leading to a
quantized Hall conductivity given by:

σxy =
2n+ 1

2m(2n+ 1) + 1

2e2

h
. (6.14)

For n = 0, one obtains the so-called Laughlin sequence:
σxy = 1/(2m + 1)(2e2/h), and for m = 0 we recover
(6.5). This argument shows that Jain’s sequence is quite
different from that of the 2D electrons gas79.

As in the case of the IQHE, the FQHE can be thought
in terms of chiral edge states, or chiral Luttinger liquids,
that circulate at the edge of the sample80. One can see
the IQHE and FQHE as direct consequences of the pres-
ence of these edge states. Because of their chiral nature,
edge states do not localize in the presence of disorder
and hence the quantization of the Hall conductivity is
robust. In graphene, as we have discussed previously,
zig-zag edges support surface states that are non-chiral
Luttinger liquids. We have recently shown that electron-
electron interactions between chiral Luttinger liquids and
non-chiral surface states can lead to instabilities of the
chiral edge modes leading to edge reconstruction13 and
hence to the destruction of the quantization of conduc-
tivity. We also have shown that this edge reconstruc-
tion depends strongly on the amount of disorder at the
edge of the sample. While this effect is not strong in the
IQHE (because the cyclotron energy is very large when
compared with the other energy scales), it makes the ex-
perimental observation of the FQHE in graphene very
difficult.

VII. CONCLUDING REMARKS

To summarize, we have analyzed the influence of local
and extended lattice defects in the electronic properties
of single graphene layer. Our results show that: (1) Point
defects, such as vacancies, lead to an enhancement of the
density of states at low energies and to a finite density
of states at the Dirac point (in contrast to the clean case
where the density of states vanishes); (2) Vacancies have
a strong effect in the Dirac fermion self-energy leading
to a very short quasi-particle lifetime at low energies; (3)
The interplay between local defects and electron-electron
interaction lead to the existence of a minimum in the
imaginary part of the electron self-energy (a result that
can be measured in ARPES); (4) The low temperature
d.c. conductivity is a universal number, independent on
the disorder concentration and magnetic field; (5) The
d.c. conductivity, as in the case of a semiconductor, in-
creases with temperature and chemical potential (a result
that can be observed by applying a bias voltage to the
system); (6) The a.c. conductivity increases with fre-
quency at low frequency and at very low impurity con-
centrations can be fitted by a Drude-like model; (7) The
magnetic susceptibility of graphene increases with tem-
perature (it is not Pauli-like, as in an ordinary metal) and
is sensitive to the amount of disorder in the system (it
increases with disorder); (8) Within the Stoner criteria
for magnetic instabilities we find that graphene is very
stable against magnetic ordering and that the phase dia-
gram of the system is dominated by paramagnetism; (9)
In the presence of a magnetic field and disorder, the elec-
tronic density of states shows oscillations due to the pres-
ence of Landau levels which are shifted from their posi-
tions because of disorder; (10) The magneto-conductivity
presents oscillations in the presence of fields and that
their dependence with chemical potential and frequency
are rather non-trivial, showing transitions between differ-
ent Landau levels; (11) Extended defects, such as edges,
lead to the effect of self-doping where charge is trans-
fered from/to the defects to the bulk in the absence of
particle-hole symmetry; (12) The effect of extended de-
fects on transport is very weak and that electron scatter-
ing is dominated by local defects such as vacancies; (13)
The quantization of the Hall conductance in the IQHE is
anomalous relative to the case of the 2D electron gas with
an extra factor of 1/2 due to the presence of a zero mode
in the Dirac fermion dispersion; (14) We conjecture that
the FQHE in graphene has a sequence of states which is
very different from the sequence found in the 2D electron
gas and we propose a formula for that sequence.

The results and experimental predictions made in this
work are based on a careful analysis of the problem
of Dirac fermions in the presence of disorder, electron-
electron interactions and external fields. We use well
established theoretical techniques and find results that
agree quite well with a series of amazing new experi-
ments in graphene4,5,6,7,8,10,11. The main lesson of our
work is that graphene presents a completely new electro-
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dynamics when compared to ordinary metals which are
described quite well within Landau’s Fermi liquid the-
ory. In this work, we focus on the effects of disorder and
electron-electron interaction and have shown that Dirac
fermion respond to these perturbations in a way which is
quite different from ordinary electrons. In fact, graphene
is a non-Fermi liquid material where there is no concept
of an effective mass and, therefore, a system where Fermi
liquid concepts are not directly applicable. A new phe-
nomenology, beyond Fermi liquid theory, has to be de-
veloped for this system. Our work can be considered a
first step in that direction.
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APPENDIX A: Θ(ω, ǫ), AND KB(ǫ)

In the calculation of σ(ω, T ) and σ(0, T ) we defined:

Θ(ω, ǫ) =
∑

s1=±1,s2=±1

[

N + s1M

B

(

arctan

[

D − s1A

B

]

+ arctan

[

s1A

B

])

+
P + s2V

E

(

arctan

[

D − s2C

E

]

+ arctan

[

s2C

E

])

+
M

2
log

[

(D − s1A)2 +B2

A2 +B2

]

+
V

2
log

[

(D − s1C)2 + E2

C2 + E2

]]

, (A1)

where

M = (C2 + E2 −A2 −B2)/D, V = −M ,

N = 2(s1A− s2C)(A2 +B2)/D ,

P = −2(s1A− s2C)(A2 +B2)/D ,

D = (A2 +B2 − C2 − E2)2

+ 4(A2 +B2)(C2 − s1s2AC) ,

+ 4(C2 + E2)(A2 − s1s2AC) ,

A = ǫ+ ω − ReΣ(ǫ+ ω) ,

B = ImΣ(ǫ+ ω) ,

C = ǫ− ReΣ(ǫ) ,

E = ImΣ(ǫ) ,

(A2)

and cosα = (C2 − E2)/(C2 + E2).

In the magneto-transport properties, σxx(0, T ) given
by Eq. (5.21), depends on the kernel KB(x), which is
defined as:

KB(x) =
v2

F

2πl2B

∑

α

[

ImΣ2(x)

[x− ReΣ2(x)]2 + [ImΣ2(x)]2
ImΣ1(x)

[x− E(α, 0) − ReΣ1(x)]2 + [ImΣ1(x)]2

+
∑

λ,n≥1

ImΣ1(x)

[x− E(α, n) − ReΣ1(x)]2 + [ImΣ1(x)]2
ImΣ1(x)

[x− E(λ, n− 1) − ReΣ1(x)]2 + [ImΣ1(x)]2

]

. (A3)

APPENDIX B: THE DIRAC EQUATION IN A
MAGNETIC FIELD

The Hamiltonian (5.1) can be solved using a trial
spinor of the form:

ψ(r)

(

c1φ1(y)
( )

)

eikxx

√ , (B1)

with L the size of the system in the x direction. After
straightforward manipulations, the eigenproblem reduces
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to:

vF

√
2lB

(

0 a
a† 0

) (

c1φ1(y)
c2φ2(y)

)

E

(

c1φ1(y)
c2φ2(y)

)

, (B2)

where

a =
1√
2lB

(y + l2B∂y) , (B3)

a† =
1√
2lB

(y − l2B∂y) , (B4)

with the magnetic length defined as l2B = 1/(eB). For
the case of E 6= 0, it is simple to see that the spinor

1√
2

(

φn(y)
αφn+1(y)

)

, (B5)

is an eigenfunction of (B2) with eigenvalue E(α, n) =

αvF

√
2/lB

√
n+ 1, with α = ±1, and φn ( n = 0, 1, 2, . . .)

the n eigenfunction of the usual 1D harmonic oscillator.
In addition, there exists a zero energy mode whose eigen-
function is given by:

(

0
φ0(y)

)

, (B6)

that completes the solution of the original eigenproblem.
As in the more conventional Landau level problem, the
degeneracy of each level is L2B/φ0, with φ0 = h/e the
quantum of flux.
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