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Summary
Objective: This work presents a novel approach for the prediction of mortality in
intensive care units (ICUs) based on the use of adverse events, which are defined
from four bedside alarms, and artificial neural networks (ANNs). This approach is
compared with two logistic regression (LR) models: the prognostic model used in
most of the European ICUs, based on the simplified acute physiology score (SAPS
II), and a LR that uses the same input variables of the ANN model.
Materials and Methods: A large dataset was considered, encompassing forty two
ICUs of nine European countries. The recorded features of each patient include the
final outcome, the case mix (e.g. age) and the intermediate outcomes, defined as the
daily averages of the out of range values of four biometrics (e.g. heart rate). The
SAPS II score requires seventeen static variables (e.g. serum sodium), which are
collected within the first day of the patient’s admission. A nonlinear least squares
method was used to calibrate the LR models while the ANNs are made up of multi-
layer perceptrons trained by the RPROP algorithm. A total of 13164 adult patients
were randomly divided into training (66%) and test (33%) sets. The two methods
were evaluated in terms of receiver operator characteristic (ROC) curves.
Results: The event based models predicted the outcome more accurately than
the currently used SAPS II model (P < 0.05), with ROC areas within the ranges
83.9− 87.1% (ANN) and 82.6− 85.2% (LR) vs 80% (LR SAPS II). When using the
same inputs, the ANNs outperform the LR (improvement of 1.3− 2%).
Conclusion: Better prognostic models can be achieved by adopting low cost and
real-time intermediate outcomes rather than static data.
Keywords: Artificial neural networks; Classification; Data mining; Intensive care;
Logistic regression;
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1 Introduction

In the last decades, there has been an increasing development in intensive care
medicine, where the goal is to provide the best outcome for critically ill patients.
Indeed, a worldwide expansion occurred in the number of intensive care units (ICUs)
[1]. Moreover, scoring the severity of illness has become a daily practice, with
several metrics available, such as the acute physiology and chronic health evaluation
system (APACHE II), the simplified acute physiology score (SAPS II) or mortality
probability model (MPM), just to name a few [2].

The intensive care improvement comes with a price, being ICUs responsible for
an increasing percentage of the health care budget. Resource availability limitations
force them to make sure that intensive care is applied only to those who are likely to
benefit from it. Critical decisions include interrupting life-support treatments and
writing do-not-resuscitate orders when intensive care is considered futile. Under
this context, mortality assessment is a crucial task, being used not only to predict
the final clinical outcome but also to evaluate the ICU effectiveness. The prevalent
prognostic models are built using a logistic regression over a static score (e.g. SAPS
II); i.e., computed with data collected only within the first twenty four hours of the
patient’s admission. This limits the impact of clinical decision making, since the
scores are usually not updated during the patients’ length of stay.

On the other hand, the use of data mining in medicine is a rapidly growing
field, which aims at discovering some structure in large clinical heterogeneous data
[3]. This interest arose due to the rapid emergence of electronic data management
methods, holding valuable and complex information. Human experts are limited
and may overlook important details, while automated discovery tools can analyze
the raw data and extract high level information for the decision-maker [4].

The artificial neural networks (ANNs) are one of the most successful data mining
techniques, denoting a set of connectionist models inspired by the behavior of the
human brain and presenting useful capabilities for medicine such as nonlinear learn-
ing, multi-dimensional mapping and noise tolerance [5]. The interest in ANNs was
stimulated by the advent of the backpropagation algorithm in 1986. Since then, the
number of ANN publications in Medicine has spawned from two in 1990 to five hun-
dred in 1998 [6] and the search term ”neural network computer” in the MEDLINE
database displays more than two thousand articles from 1999 to 2004.

In the past, there has been work comparing ANNs and logistic regression models
for ICU mortality prediction, reporting either better [7][8] or similar [9][10][11] per-
formances. Yet, in all these studies, the ANNs were trained with the static variables
used by the APACHE II score. This work follows an alternative direction, the use
of data collected after the first twenty four hours of a patients’ admission. A similar
approach has been proposed by Kayaalp and his collaborators [12][13] where they
adopted a time series prediction point of view, using twenty three temporal fields,
such as the daily sequential organ failure assessment (SOFA) score, which takes time
and costs to be obtained. However, in previous work [14], it has been shown that
the SOFA can be replaced by real-time and less costly outcomes, known as events,
which are automatically measured as out of range values of four commonly bedside
monitored physiological parameters. Hence, this article presents a novel approach
for ICU mortality prediction, based on the use of daily intermediate events.

A final remark will be given to the relation between prognostic models and treat-
ments. A prognostic scoring system should be independent of treatment, providing a
means of measuring disease or health status of a patient, where usually a higher score
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corresponds to greater severity. Different elements contribute to this total score, in-
cluding physiological variables. Although therapeutical approaches may influence
the final patient outcome, their effect will be reflected upon the average number of
events per day, the alarms signs. By augmenting a prognostic model with utility
assessments of potential outcomes and indicating particular variables for decision
support, optimal decisions for a group or individual patients can be determined [15].

The paper is organized as follows: first, the ICU clinical data is presented and the
prognostic models are introduced (Section 2); next, a description of the performed
experiments is given, being the results analyzed and discussed (Section 3); finally,
closing conclusions are drawn (Section 4).

2 Materials and methods

2.1 Clinical data

This work adopted part of data collected during the EURICUS II project [16], which
involved forty two ICUs of nine European Union countries, from November/98 to
August/99. The patient’s data was manually collected and registered by the nursing
staff. In every hour, the monitored bedside parameters were introduced into daily
patient records. The whole data was gathered at the Health Services Research Unit
of the Groningen University Hospital, the Netherlands. The final database presented
one entry (or example) per patient. After a consult with ICU experts, the patients
with age lower than eighteen, burned or with bypass surgery were discarded. It
should be noticed that these last two classes of patients are often not treated in
ICUs but in specialized areas (e.g. burn or coronary units). In addition, four entries
were removed due to the presence of missing values [17], remaining a total of 13164
records.

The main features of the clinical data are described in Table 1. The case mix
appears in the first four rows, an information that remains unchanged during the
patient’s admission. The frequency distributions (or histograms) related to these
variables are plotted in Figure 1, which also includes the patient’s length of stay
and the final outcome. Next, there are twelve variables related to the intermediate
outcomes, which are defined from four monitored biometrics: the systolic blood
pressure (BP), the heart rate (HR), the oxygen saturation (O2) and the urine output
(UR). Finally, the last attribute denotes the patients’ final outcome.

In a UCI, there are several events that may affect the patient’s condition (e.g.
shock, extemporary extubation or hypoxia). For the selection of an event, it is im-
portant that its occurrence and duration can be registered by physiological changes
(e.g. shock and not pneumonia). Moreover, such physiological variables should be
commonly registered in the ICUs, at regular intervals. These are the main reasons
for the choice of the four biometrics. A panel of seven EURICUS II experts elab-
orated a protocol that defines the normal ranges for these parameters (see Table
2). When an out of range value occurs for a given interval, an alarm is triggered,
defining an event. A critical event is a more serious event and it is classified by
a longer event or a more extreme out of range measurement. Thus, each event or
critical event is defined as a binary variable, which will be set to 0 (false), if the
physiologic value lies within the advised range; or 1 (true) else, according to the
time criterion.

The first eight outcomes of Table 1 denote the number of events/critical events,
while the latter ones denote the total time in minutes considering only the critical
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Table 1: The attributes of the intensive care data.

Attribute Description Domain Values
SAPS II SAPS II score {0, 1, . . . , 163}
age Patients’ age {18, 19, . . . , 100}
admtype Admission type {1, 2, 3}a

admfrom Admission origin {1, 2, . . . , 7}b

NBP Average number of blood pressure events [0.0, . . . , 33.0]
NCRBP Average number of critical blood pressure events [0.0, . . . , 6.0]
NHR Average number of heart rate events [0.0, . . . , 42.0]
NCRHR Average number of critical heart rate events [0.0, . . . , 6.0]
NO2 Average number of oxygen events [0.0, . . . , 28.0]
NCRO2 Average number of critical oxygen events [0.0, . . . , 6.0]
NUR Average number of urine events [0.0, . . . , 38.0]
NCRUR Average number of critical urine events [0.0, . . . , 8.0]
TCRBP Average time (min.) of blood pressure critical events [0.0, . . . , 36.0]
TCRHR Average time (min.) of heart rate critical events [0.0, . . . , 33.0]
TCRO2 Average time (min.) of oxygen critical events [0.0, . . . , 33.0]
TCRUR Average time (min.) of urine critical events [0.0, . . . , 40.0]
death The occurrence of death {0, 1}c

a 1 - Non scheduled surgery, 2 - Scheduled surgery, 3 - Physician.
b 1 - Surgery block, 2 - Recovery room, 3 - Emergency room, 4 - Nursing room,

5 - Other ICU, 6 - Other hospital, 7 - Other sources.
c 0 - No death, 1 - Death.

events. The whole twelve outcomes were analyzed as daily averages using the pa-
tients’ records, since this allows prediction at early stages of the patients’ admission.
During the patients’ length of stay in the ICU, intermediate outcomes of the first day
can feed into a real-time prognostic model; in next day, an accumulative knowledge
is built by averaging current events with the ones obtained from the previous day;
and so on.

Table 2: The protocol for the out of range measurements.

BP O2 HR UR
Normal Range 90− 180mmHg ≥ 90% 60− 120bpm ≥ 30ml/h

Eventa ≥ 10min. ≥ 10min. ≥ 10min. ≥ 1h
Eventb ≥ 10min. in 30min. ≥ 10min. in 30min. ≥ 10min. in 30min. –

Critical Eventa ≥ 1h ≥ 1h ≥ 1h ≥ 2h
Critical Eventb ≥ 1h in 2h ≥ 1h in 2h ≥ 1h in 2h –
Critical Eventc < 60mmHg < 80% < 30bpm ∨ > 180bpm ≤ 10ml/h

a Defined when continuously out of range.
b Defined when intermittently out of range.
c Defined anytime.
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Figure 1: The histograms for the case mix (SAPS II, age, admtype and admfrom)
variables, the length of stay and the final outcome (death).

2.2 Logistic regression

The logistic regression is a statistical method that is commonly used within the
Medicine field to model the probability of binary events (e.g. the proportion of
patients that respond to a given therapy). It operates a smooth non linear transfor-
mation, where the probability of the event k is given by [4]:

Pk =
1

1 + exp(β0 +
∑N

i=1 βixi)
(1)
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where β0, . . . , βN denote the parameters of the model and x1, . . . , xN the dependent
variables.

On the other hand, the SAPS II is the most widely European score for mortal-
ity assessment, ranging from 0 to 163, where a high value indicates a high death
probability [18]. The model encompasses a total of seventeen variables (Table 3),
such as age, previous health status or diagnosis, which are collected within the first
twenty four hours of the patient’s admission. Some of these variables are associated
to clinical tests (e.g. blood samples) that are expensive.

Table 3: The SAPS II variables (adapted from [18]).

Attribute Description
age Patients’ age (in years)
heart rate Worst value in 24 hours (either low or high)
systolic blood pressure Worst value in 24 hours (either low or high)
body temperature Highest temperature in degrees
ventilation Lowest PaO2/FiO2 ratio if ventilated
urinary output Total urinary output in 24 hours
serum urea level Highest value in mmol/L, g/L or mg/dL
WBC count Worst WBC count from the scoring sheet
serum potassium level Worst value in mmol/L
serum sodium level Worst value in mmol/L
serum bicarbonate level Lowest value in mEq/L
bilirubin Highest value in µmol/L or mg/dL
Glasgow coma score Lowest value
admission Unscheduled surgical, scheduled surgical or medical
AIDS Yes, if HIV-positive with illness
hematologic malignancy Yes, if lymphoma, acute leukemia or multiple myeloma
metastatic cancer Yes, if proven by surgery or any other method

The prognostic model, known as predictive death rate (pdrk), is given by the
logistic regression:

logitk = B0 + B1 × SAPSIIk + B2 × ln(SAPSIIk + 1)
pdrk = exp(logitk)/(1 + exp(logitk))

(2)

where SAPSIIk denotes the score for the patient k, being B0, B1 and B2 internal
parameters estimated by calibration procedures. The majority of the European
ICUs use the values B0 = −7.7631, B1 = 0.0737 and B2 = 0.9971, which were
optimized in the study of Le Gall and his collaborators [18] by applying a Hosmer-
Lemeshow goodness-of-fit test to an international database with a total of 13152
examples collected from September/91 to February/92. The predicted class (Pk) for
the k patient is given by the nearest class value to a decision threshold D within the
range [0.0, 1.0]:

Pk =

{
0 , if pdrk < D
1 , else

(3)

where the class values Pk = 0 denotes no death and Pk = 1 death.
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2.3 Artificial neural networks

The multilayer perceptron is one of the most popular ANN architectures. It consists
of a feedforward network, where processing neurons are grouped into layers and
connected by weighted links [5]. Supervised learning is achieved by an iterative
adjustment of the network connection weights, called the training procedure, in order
to minimize an error function, which is computed over a set of training examples
(E). Each p ∈ E example maps an input vector (xp

1, . . . , x
p
N ) with a vector of target

values (tp1, . . . , t
p
M ), where N and M denote the number of the input and output

neurons. Typically, the sum squared error (SSE) is used as the cost function [19]:

SSE =
∑
p∈E

∑
i∈M

(tpi − sp
i )

2 (4)

where sp
i is the ANN output value.

The network is activated by feeding the input layer with the input vector and then
propagating the activations in a feedforward fashion, via the weighted connections,
through the entire network. For a given input (x1, . . . , xN ), the state of a neuron
(si) is computed by:

si = f(wi,0 +
∑
j∈I

wi,j × sj) (5)

where I represents the set of nodes reaching node i; f the activation function,
possibly of nonlinear nature; wi,j the weight of the connection between nodes j
and i; and s1 = x1, . . . , sN = xN . The wi,0 connections, called bias, work as a
constant term, since their input is always 1.0. Bias connections are normally added
to multilayer perceptrons, since they increase the network learning flexibility; i.e.,
the hyperplanes defined by the neurons are not constrained to pass through the
origin [20].

i

wj
s

Hidden LayerInput Layer Output Layer

wi,0i,j

x

x

1

2

+1

+1

+1

xN

+1... ...... ...

i

Figure 2: A fully connected network one hidden layer, 1 output node and bias
connections.

Multilayer perceptrons with bias connections, one hidden layer with a fixed
number of hidden nodes, one output node and logistic activation functions f(x) =
1/(1+exp(−x)) were adopted (Figure 2). The predicted class (Pk) for the k example
is given by:

Pk =

{
0 , if ANNk < D
1 , else

(6)
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where ANNk denotes the neural output value for the k patient.
Before training the ANNs, the data was preprocessed: the input values were

standardized into the range [−1.0, 1.0] and an 1-of-C encoding, which uses one binary
variable per each class, was applied to the nominal (non ordered) attributes with few
categories (admtype and admfrom). For example, the admtype variable is fed to
3 input nodes, according to the scheme: 1 → (−1.0−1.0 1.0); 2 → (−1.0 1.0−1.0);
and 3 → (−1.0 − 1.0 1.0).

At the beginning of the training process, the network weights are randomly set
within the range [−1.0, 1.0]. Then, the resilient propagation (RPROP) algorithm is
applied during the training, with the aim of minimizing the SSE. The RPROP is an
enhanced version of the backpropagation algorithm, performing a local adaptation
of the weight-updates based on behavior of the error function, given by the local
gradient information. A full description of the RPROP details can be found in [19].
This algorithm contains two parameters, which were set to the RPROP advised
values: ∆0 = 0.1 and ∆max = 50.0. Nevertheless, the choice of these parameters
is rather uncritical, since the error convergence is usually insensitive to the ∆0

and ∆max values. Furthermore, when compared with other algorithms, such as
the standard backpropagation, the RPROP presents a faster training, requiring less
computational effort [19][21]. Finally, the training is stopped when the error slope
is approaching zero or after a maximum of 100 epochs [22].

When compared to other data mining techniques, such as decision trees, ANNs
often present a higher predictive accuracy [23]. However, in data mining applica-
tions, besides obtaining a high predictive performance, it is also important to provide
explanatory knowledge; i.e., what has the model learned. With ANNs this can be
given after the training process, by measuring the importance of the inputs and
extracting a set of rules.

In the past, several approaches have been proposed to measure the importance of
inputs, such as the weight-elimination algorithm [24], which is based in the network
smallest weights. However, a huge (tiny) input-to-hidden weight does not necessarily
mean that the input has a huge (tiny) effect on the output, since the weight effect is
limited by the squashing functions of the hidden neurons [25]. A better alternative
is to use sensitivity analysis [26], which has outperformed other input selection
techniques, such as forward selection and genetic algorithms. It can be measured as
the variance (Va) produced in the output (y) when the input attribute (a) is moved
through its entire range:

Va =
∑L

i=1 (yi − y)/(L− 1)
Ra = Va/

∑A
j=1 Vj

(7)

where A denotes the number of input attributes and Ra the relative importance of
the a attribute. The yi output is obtained by holding all input variables at their
average values. The exception is xa, which varies through its range with L levels. In
this work, L was set to two for the binary attributes (xa ∈ {−1.0, 1.0}) and eleven
for the continuous inputs (xa ∈ {−1.0,−0.8,−0.6, . . . , 0.8, 1.0}).

The extraction of knowledge from ANNs is still an active research area [23].
Currently, there are two main approaches [27]: the use of decompositional and
pedagogical techniques. The former models the ANN at the minimum level of gran-
ularity: first, rules are extracted from each individual neuron (hidden and output);
then, the subsets of rules are aggregated to form a global relationship. The latter
algorithms extract the direct relationships between the inputs and outputs of the
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ANN. By using a black-box point of view, less computation effort is required and a
simpler set of rules may be achieved.

2.4 Statistics

Thirty runs were applied in all experiments. The results are shown in terms of the
mean and t-student 95% confidence intervals. The accuracy estimates are achieved
using the Holdout method [28]: in each simulation, the available data is divided into
two mutually exclusive partitions, using stratified sampling. The training set is used
during the modeling phase, while the test set is adopted after training, in order to
compute the accuracy estimates.

A common tool for classification analysis is the confusion matrix which matches
the test results (predicted) and patients real condition (actual) values [29]. From
the matrix, three measures of performance can be defined [30]: the sensitivity (Sen),
also known as recall and type II error; the specificity (Spe), also known as precision
and type I error; and the accuracy (Acc), also called correct classification rate, which
gives an overall evaluation. The receiver operating characteristic (ROC) curve shows
the performance of a two class classifier across the range of possible threshold (D)
values, plotting one minus the specificity (x-axis) versus the sensitivity (y-axis) [31].
The global accuracy is given by the area under the curve (AUC =

∫ 1
0 ROCdD). A

random classifier will have an AUC of 0.5, while the ideal value should be close to
1.0.

3 Results

3.1 Training setup

All experiments reported in this work related to the ANNs, including the RPROP
algorithm, were conducted using an object oriented programming environment de-
veloped in JAVA [32]. On the other hand, the logistic regression models and the
statistics, including the Acc, Spe, Sen, AUC and t-student tests; were computed
using the R statistical environment [33].

The commonly used 2/3 and 1/3 partitions were adopted for the definition of the
training and test set sizes [28]. A model is said to overfit when it correctly handles
the training data but fails to generalize. Usually, overfitting is a critical issue in
ANN modeling. As pointed out by Sarle [34], the best way to avoid overfitting is
to use a large and diverse dataset. Since this is such a case, generalization loss is
unlikely to occur, specially if small ANNs are adopted. To accomplish this and also
to reduce the computational searching space, the number of hidden nodes was set
to round(N/2), where N denotes the number of input nodes. It should be stressed
that this rule does not constitute the optimal solution. However, in data mining
applications, it is often more important to select the training data carefully than
decisions regarding learning algorithms [35]. In effect, previous experiments [14]
have shown that: the number of hidden nodes has a minor impact, when compared
with filtering or feature selection setups; and with the round(N/2) setup overfitting
is not an important issue.

In the preliminary experiments, all inputs were considered. The exception is the
age attribute, which was not included since it is already used by the SAPS II metric.
The decision threshold was set to the middle of its range (D = 0.5). The table also
presents the AUC values, which where computed using a 0.005 grid search for the
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D value, with a total of 201 decision points. To prevent tuning, the adjustment of
the models’ parameters to the test performances, the training configuration will be
improved using only training errors (Table 4).

Table 4: The training set performances (in percentage).

Setup Acc Sen Spe AUC
Constant Predictor 80.45±0.00 0.00±0.00 100.00±0.00 50.00±0.00
Normal 85.75±0.10 41.78±0.34 96.43±0.08 84.02±0.14
Balanced 78.22±0.20 76.45±0.37 79.99±0.36 86.42±0.19
Log Balanced 79.87±0.19 78.99±0.22 80.76±0.26 88.15±0.19

The constant predictor is defined as the most prevalent outcome. This naive
classifier provides an accuracy of 80.45%, corresponding to the proportion of no death
cases. The first neural simulation (Normal) presents a better accuracy (85.75%)
when compared with the former setup. Yet, from the sensitivity point of view, the
first two configurations are poor classifiers. Since there is a higher number of false
conditions in the training set, the learning process will tend to favor such cases.
Although popular within the data mining community, the accuracy measure is not
sufficient in Medicine, where a test should report both high sensitivity and specificity
values [30]. To solve this handicap, a common solution is to balance the training
data [17], by using a filtering method that selects an equal number of true and false
examples. Therefore, a balanced setup was devised by adopting a under sampling
procedure where false (no death) examples were randomly deleted from the training
set. This setup obtained better results, with a double increase in the sensitivity
(34.7%) when compared to the decrease in the specificity (16.4%). Finally, since
all outcomes presented high positive skewed distributions, with mean values close
to zero, a third configuration was tested (Log Balanced), where the intermediate
outcomes suffered the logarithm transform ln(x + 1). Since this last setup gave
the best results, it will be the selected training technique. It should be noted that
paired t-tests confirmed statistical differences (P < 0.05) between the setups for all
measures.

3.2 Test set performances

The results reported on this section were computed over the test sets, which contain
the 1/3 samples that were not used in any part of the training process. Each test set
also keeps the original proportions of death cases, which is 19.55%. The comparison
will be performed between artificial neural network (ANN) and logistic regression
(LR) models. In total, eight distinct models will be evaluated (Table 5):

ANN/LR ALL - similar to the Log Balanced setup, where all inputs are used
except the age;

ANN/LR Case Outcomes - with all inputs except the SAPS II;

ANN/LR Outcomes - which only uses the intermediate outcomes;

LR SAPS II - the most used European prognostic model [18], defined by Equation
2, with the fixed parameters B0 = −7.7631, B1 = 0.0737 and B2 = 0.9971;
and
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LR SAPS II B - equivalent to the previous model, except that in each run, the
parameters (B0, B1 and B2) are calibrated to a balanced training.

The LR models (except LR SAPS II) were optimized by a nonlinear least squares
algorithm that minimizes the SSE, under the R environment [33].

Table 5: The test set performances (in percentage).

Setup Acc Sen Spe AUC
ANN All 79.21±0.24 78.11±0.51 79.48±0.35 87.12±0.21
ANN Case Outcomes 78.22±0.26 75.78±0.66 78.82±0.36 85.52±0.20
ANN Outcomes 77.60±0.31 70.00±0.59 79.45±0.48 83.88±0.23
LR All 75.97±0.29 77.06±0.68 75.71±0.40 85.17±0.27
LR Case Outcomes 77.15±0.26 70.63±0.67 78.73±0.41 83.78±0.24
LR Outcomes 77.57±0.15 65.91±0.62 80.41±0.21 82.59±0.23
LR SAPS II 82.60±0.14 42.57±0.50 92.33±0.12 79.84±0.26
LR SAPS II B 69.37±0.32 77.57±0.64 67.37±0.48 80.04±0.25

The results are shown in Table 5, while the correspondent ROCs are plotted
in Figure 3. Paired t-tests were also performed, confirming statistical differences
(P < 0.05) for the AUC metric between all models, except the pairs: LR SAPS
II/LR SAPS II B (P = 0.27); ANN Outcomes/LR Case Outcomes (P = 0.40); and
ANN Case Outcomes/LR All (P = 0.13).

First, the last two setups will be analyzed. Due to the balanced training, the
second logistic setup presents higher sensitivity values than the first one. Yet, in
terms of the ROC analysis, and despite of using quite different learning procedures,
the two logistic models are statistically equivalent. Furthermore, both setups are
outperformed by all models that use the intermediate events, with a difference rang-
ing from 2.19% to 6.72%. This is an important result, since it backs the main claim
of this work: the selected daily events do provide useful information for predicting
ICU mortality.

When using the same inputs, the ANNs outperform the LR models, with im-
provements of 1.95% (All), 1.74% (Case Outcomes) and 1.29% (Outcomes).
Regarding the feature selection, the best option, in terms of predictive performance,
is to use all attributes. When replacing the SAPS II attribute by the age (setup
Case Outcomes), there is a decay of 1.60% (ANN) and 1.39% (LR). A similar
effect occurs when only the intermediate outcomes are used, with a 1.64% (ANN)
and 1.9% (LR) decrease in terms of the AUC values. It is also important to stress
that if the AUC is above 80% then the discriminator is considered excellent [18].
Since the first six setups are above this limit, this means that high quality results
were achieved.

3.3 Explanatory knowledge

Table 6 shows the relative importance of the inputs for the event based models
when applying the sensitivity analysis procedure (Equation 7). To improve clarity,
the importance of the attributes related to each biometric were summoned into a
single value (last four columns). The obtained results are consistent for both ANN
and LR models. For the All selection, the event based variables denote a strong
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Figure 3: The receiver operating characteristic curves.

influence, summing a total of 80.2% (ANN) and 76.5% (LR). Furthermore, the
table suggests that the case mix is not needed in this configuration, a scenario that
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Table 6: The relative importance of the input variables (in percentage).

Setup SAPS II age admtype admfrom BP? HR? O2? UR?

ANN All 16.8 – 1.0 2.0 15.9 14.4 30.7 19.2
ANN Case Outcomes – 14.3 5.9 11.7 13.1 16.7 22.5 15.8
ANN Outcomes – – – – 16.9 15.8 21.8 45.5
LR All 19.3 – 2.8 1.4 17.9 16.2 23.1 19.3
LR Case Outcomes – 19.2 3.6 13.4 15.3 14.0 18.6 15.9
LR Outcomes – – – – 24.1 18.6 26.5 30.8

? All attributes related to the variable where included: number of events/critical
events and the time.

changes when the SAPS II is excluded (setup Case Outcomes). When comparing
the bedside parameters, the importance order changes from model to model. The
oxygen saturation is the most relevant biometric in the first two configurations. The
urine output comes in second place for ANN/LR All setups and presents the the
highest influence when only event based data is used.

TCRUR>0.51
15041928

No death Death

Death

Death No death Death

Death

Death

No death

No death

Death

false

Number of false cases Number of true cases

true

2171711
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45 172
N02>0.26

1109395

103292

241 51
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true

true
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true

true

falsetruefalsetruefalse
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Split Node

Leave

Figure 4: Example of a decision tree extracted from a trained neural network. Vari-
ables denote the logarithm transform ln(x + 1) of the intermediate outcomes from
Table 1.

For demonstrative purposes, a simple pedagogical rule extraction technique will
be applied to the ANN setup that only includes the intermediate outcomes. The
intention is to provide a descriptive model of what a trained ANN has learned. The
rules will be presented in terms of a decision tree [36], a branching structure based on
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split nodes, that test a given feature, and leaves, which assign a class label. First, a
new dataset was constructed, by considering the inputs of a given balanced training
set, in a total of 3432 cases; and the corresponding ANN output class labels. Then, a
decision tree algorithm was applied to this dataset by using the rpart library of the R
environment [33]. The obtained decision tree managed to explain the ANN behavior
with an accuracy of 90%. To simplify the visualization, the tree was pruned to a
maximum of ten splits (Figure 4). As an example, the following rule corresponds to
the top right path of the tree, explaining a total of 1109 cases:

if ln(TCRUR + 1) > 0.51 ∧ ln(TCRBP + 1) > 0.13 then Death

It is interesting to notice that the most important attribute is the time of urine
critical events (TCRUR), which appears at the root node. At the next levels, the
relevant features are the oxygen saturation (TCRO2) and blood pressure (TCRBP),
while the heart rate outcome only appears at the fourth level. Hence, the decision
tree corroborates the sensitivity analysis procedure for input relevance (third row of
Table 6).

4 Conclusion

The surge of data mining techniques, such as artificial neural networks (ANN), has
created new exciting possibilities in medicine. In this work, these techniques were
applied for the prediction of death in intensive care units (ICUs) by using daily
intermediate outcomes, which are defined from four commonly bedside monitored
variables. In contrast, the current ICU prognostic models, based on a logistic re-
gression (LR), use data collected only in the first day of the patient’s admission.
Both approaches were tested in a large database with a total of 13164 records taken
from forty two ICUs of nine European countries.

Experiments were drawn to test several training configurations, being the best
performances obtained by the use of a balanced training procedure and a logarithm
transform on the intermediate outcomes. The test set results clearly favor the event
based models, when compared with current ICU models. Furthermore, when using
the same input variables, the ANNs presented better performances than the LR
methods, with improvements within the range 1.29-1.95%. Moreover, several input
selection combinations were also considered, being the best result obtained by the
use of all input variables except the patients’ age. However, since the SAPS II score
requires time and costs to be obtained, it can be replaced by the age, provided that
a decrease of 1.39-1.60% in performance is acceptable.

The presented approach aims at improving clinical decision-making by providing
the best estimate of the patient’s condition. It is not intended for evaluating ICUs,
since a bad performing ICU will produce more critical events and consequently the
poor performance will not be identified. The results have been analyzed under the
receiver operator characteristic (ROC) curves, which plots one minus the specificity
versus the sensitivity, when varying a decision threshold (D ∈ [0.0, 1.0]). Globally,
high quality results were achieved, with area under the curve (AUC) values higher
than 80%. In a real scenario, the decision threshold could be optimized for distinct
purposes. High sensitivity models would allow an early identification of deteriorating
patients, while high specificity ones would be essential for interrupting life-support
treatments.
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Nowadays, the majority of the European ICUs adopted the SAPS II prognostic
model, which is based on a logistic regression. Yet, this model was outperformed by
all event based models (ANN and LR). Furthermore, the proposed approach (setup
Case Outcomes) requires less variables. The SAPS II index was developed in the
last decade and currently there is an intensive research for the development of its
successor, the SAPS III [38]. This work shows that a different direction should be
pursued: the use of intermediate information rather than static data.

Regarding the comparison between the logistic regression and ANNs, although
the latter present a higher accuracy, the former method is more easy to interpret.
Yet, it is possible to extract human friendly rules from trained ANNs, as shown in
the previous section. Nevertheless, if the physicians are not comfortable with the
ANNs, then the LR Case Outcomes setup is advised.

This study was based on an off-line learning, since the data mining techniques
were applied after the conclusion of the EURICUS II project [16]. However, the
proposed approach opens room for the development of tools for clinical decision
support, which are expected to enhance the physician response and proactiveness.
Although the data was manually collected, it could be acquired with a low cost and
in real-time, since the events can be automatically fired from the four monitored
variables. However, in a real environment there are several phenomena which may
cause bad readings (e.g. spurious heart rates may be caused by loose leads). In such
scenarios, data quality and cleansing procedures should be addressed [37] and/or
the data could be validated by the ICU staff. It is also interesting to notice that
such system could potentially provide more updated predictions (e.g. every hour).

Another important aspect is related to the concept of lead time: how long before
the patient died was the system able to predict the death? Since the full daily records
were not available for this study, this question will be addressed in future work.
Indeed, it is intended to extend this approach to an on-line learning environment,
by attaching computer systems with friendly human interfaces into ICUs, with the
capability to learn and respond in real-time. This will allow us to obtain, after some
time, a valuable feedback from the physicians, in terms of trust and acceptance of this
alternative solution. Currently, a pilot project, called INTCare, is being developed
under this perspective at the ICU of the Hospital Geral de Santo António, Oporto,
Portugal.
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